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Preface

This book concerns the foundations of Quantum Gravity, in particular from a con-
ceptual point of view. It provides a self-contained introduction to this topic, resting
on particular features of the accepted Paradigms of Physics: Newtonian Physics,
Special Relativity (SR), Quantum Mechanics (QM), Quantum Field Theory (QFT)
and General Relativity (GR). In approaching Quantum Gravity, many conceptual is-
sues turn out to be related to notions of time. This occurs because notions of time are
substantially different across these Paradigms. A first example in which this occurs
is QM versus GR. Isham and Kuchař formalized the study of such discrepancies be-
tween notions of time. They did so by giving a conceptual classification of the many
time-related reasons why a wide range of attempted approaches to Quantum Gravity
fail to be satisfactory, in two seminal Reviews in the early 1990’s [483, 586]. The
current book’s titular ‘Problem of Time’ refers to this conceptual classification. This
is a multi-faceted collection of very interesting problems which turn out to be heav-
ily interlinked. Quite a few of these problems were first glimpsed in the pioneering
works of Wheeler and DeWitt in the 1960’s [237, 897, 899] on the geometrodynam-
ical formulation of GR.

The Problem of Time is, in greater generality, a consequence of the mismatch
between Background Dependent and Background Independent [12, 363] Paradigms
of Physics. Newtonian Physics, SR, QM, and QFT are all Background Dependent,
whereas GR is Background Independent and many approaches to Quantum Grav-
ity expect this to be Background Independent as well. So, whereas there has been
quite widespread belief among theoretical physicists that the Problem of Time is
a quantum matter, this is a misconception since clearly also Classical Physics can
exhibit mismatches between Background Dependent and Background Independent
Paradigms. Once this is taken into account, models exhibiting classical versions
of the Problem of Time turn out to provide substantial conceptual insight into the
harder quantum versions of the Problem of Time.

It is thus clear that further explanation of what this book (and [483, 586]) takes
the Problem of Time to consist of is best done after the following.

v



vi Preface

A) Presenting the standard Paradigms of Physics and explaining how notions of
time differ across these.

B) Outlining what each of Quantum Gravity and Background Independence are.

N.B. that A)—in Chaps. 1 to 8’s account of notions of time and of space and of
the diversity of physical laws across accepted Paradigms in Physics—serves as a
preamble. It is not to be mistaken for introduction of the material which the rest of
the book greatly expands upon, which is, rather, Chaps. 9, 10 and 12 on the Problem
of Time and Background Independence issues which underlie this. Chapters 1 to 8
enter, rather, into assembling check lists to test foundational and Quantum Gravita-
tional candidate times against, to see if these merit to be called timefunctions, and
toward building up toward plausible Quantum Gravitational laws in Chap. 11. While
these may be somewhat unexpected and indirect uses of Chaps. 1 to 8’s material,
this is the intended use of these Chapters in writing this book. By way of explana-
tion, this book’s main topic happens to benefit from a preliminary presentation of
the types of law and notions of time and space that each of the established theories
has. This is prudent given that this book’s main topic is a systematic analysis of a
wide range of more speculative foundational and Quantum Gravitational programs
in which only subsets of standard theories’ laws and temporal and spatial notions
are kept.

From the Accepted Paradigms of Physics to Quantum Gravity

This book thus begins by considering time and clock concepts, alongside supporting
notions of space, length-measuring devices, spacetime and frames. Chapter 1 gives a
largely theory-free conceptual outline of these, intended for a very wide and diverse
multidisciplinary audience.

Each of the Newtonian Paradigm, SR, QM, QFT and GR are then covered in
turn, in Chaps. 2 to 7. This treatment includes in outline how these Paradigm Shifts
affect time, clock, space, length-measuring, spacetime and frame concepts.

This theory by theory development has the further complication of not being a
linear venture: these Paradigms of Physics fan out from Newtonian Mechanics as in-
dicated in Fig. 1.a). Three distinct theoretical developments each bring in one of the
three known fundamental constants of Nature:1 Newton’s gravitational constant G,
the reciprocal of the speed of light c, and Planck’s constant �, as follows.

1Values of—and uncertainties in—these fundamental constants are as follows [661]. The speed of
light in vacuo c is defined to be exactly 299,792,458 m s−1 due to the metre itself being defined in
terms of c (see Chap. 1.13). Planck’s constant � = 1.054571800(13)× 10−34 kg m2 s−1. Newton’s
gravitational constant G = 6.67408(31) × 10−11 m3 kg−1 s−1. The error analysis for the Planck
units is very straightforward: sinceG is by far the least accurately known of the fundamental units,
the error in this swamps the others.



Preface vii

Fig. 1 a) Planckian cube of fundamental physical theories. Here, NM stands for Newtonian Me-
chanics and (Q)NG stands for (Quantum) Newtonian Gravity. b) indicates the ‘Newton–Einstein’
(alias ‘classical’, in the sense of ‘non-quantum’) plane, and the ‘Particle Physics’ (i.e. ‘non-grav-
itational’) plane. c) Gordian cube: here it is perceived that different routes along the edges to the
‘final Quantum Gravity vertex’ may not commute (in the algebraic sense, upon viewing its edges
as maps). d) Cutting the Gordian cube? [Or ‘thinking outside of the box’ that is a)?] Here, (Q)RPM
stands for (Quantum) Relational Particle Mechanics; see the next Subsection for an outline of what
(Quantum) Gestalt means. e) Indicates the corresponding coverage by Chapters in Part I

1) G is significant when gravitational force is non-negligible in comparison to
whichever forces dominate the physics. G was originally formulated in New-
tonian Gravity, which lies within Newton’s Paradigm of Physics, whereas 2) and
3) each additionally represent introducing a new Paradigm.

2) c is non-negligibly finite in SR [736]; this is relevant to objects whose velocities
v are non-negligible compared to c.

3) � is significant in Quantum Mechanics (QM) [599], due to certain quantities
coming in minimum-sized packets. For instance, angular momentum comes in �

(or �/2) sized packets. This is relevant in situations involving quantities compa-
rable in size to the corresponding minimum packets.

Pairwise incorporations of these constants are furthermore as follows (Fig. 1.a).
4) Relativistic QFT [712] involves c and � together, corresponding to the Compton

wavelength

lC = �/mc (1)
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length-scale for a ‘particle’ of mass m.
5) GR [874]—in the sense of a Relativistic Theory of Gravitation—considers c

and G together, corresponding to strongly gravitating fast-moving objects e.g.
confined to around the scale given by the Schwarzschild radius,

rSchw = GM/2 c2. (2)

Each of the ‘Particle Physics’ and ‘Newton–Einstein’ planes indicated in
Fig. 1.b) are self-consistent two-step Paradigm Shifts.

6) Considering � and G together gives ‘Quantum Newtonian Gravity’; this is how-
ever much less relevant (Ex VI.0). A characteristic lengthscale here would be

lg := �
2/2GMm2. (3)

7) Finally, ‘Quantum Gravity’ [75, 154, 194, 237–239, 385, 471, 474, 475, 483,
485, 552, 586, 746, 845] is often held to be ‘the’ triple combination at the last
vertex of Fig. 1.a)’s ‘cube’ of theories. The three fundamental constants combine
here to form the Planck units:

lPl =
√
�G/c3 � 1.616228(38)× 10−35 m, (4)

tPl =
√
�G/c5 � 5.39116(13)× 10−44 s, (5)

mPl =√� c/G � 2.176470(51)× 10−8 kg. (6)

The first two of these are very small compared to ‘ordinary physical quantities’.
[Compare lPl with the atomic � 10−10 m and nuclear � 10−15 m lengthscales,
and with the maximum precision of displacement detection in existing gravi-
tational wave detectors corresponding to displacements of � 10−18 m. Com-
pare also the ratio of tPl to the timescales of observational Physics with the
maximally accurate clock precision of currently around 1 part in 1016, as per
Chap. 1.] On the other hand, mPl is very large upon considering its interpre-
tation as a single ‘fundamental particle’ mass: compare e.g. the proton mass
1.672621898(21) × 10−27 kg. By SR’s E = mc2, mPl corresponds to an energy
scale EPl = 1.220910(29) × 1019 GeV. N.B. this is much larger than the 102 to
104 GeV range of the most powerful particle accelerator to date: CERN’s Large
Hadron Collider (LHC). Moreover, as detailed in Chap. 11, the Planck regime
is expected to feature in some parts of Black Hole Physics and Early-Universe
Cosmology. In particular, this book covers the Quantum Cosmology arena and
simpler model arenas that exhibit features of this.

Differing Roles of Time and Space Throughout the Paradigms
of Physics

Space and especially time are moreover not consistently conceived of throughout
‘the Planckian cube of theories’. Due to this, consideration of which units can be
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built out of fundamental constants may not suffice as a conceptual framework within
which to reconcile the Paradigm Shifts of Physics. Indeed, this book expounds that
GR involves qualitatively distinct concepts of time, space, spacetime and frame from
those used in Particle Physics.

On these grounds, this book contends that conceiving of ‘Quantum Gravity’
solely in terms of ‘the Planckian cube’ is a misleading simplification. This con-
ceptual disparity points instead to different paths around this ‘cube’ not commuting
(Fig. 1.c). By this disparity and the subsequent notorious difficulty with its resolu-
tion, it might be more apt to name the cube not ‘Planckian’ but ‘Gordian’: after a
notorious knot of the ancient world that was presented to Alexander the Great. He is
supposed to have dealt with this knot by ‘thinking out of the box’. Accounts differ,
however, as to whether this involved cutting it or removing it from the wooden pole
it was mounted upon. Indeed, suggestions for approaching ‘Quantum Gravity’ differ
amongst themselves as well.

A further interplay is that the Theoretical Physics literature often pays little at-
tention to the properties entailed in calling an entity a time or a clock. This is unfor-
tunate, because a number of such purported time quantities do not stand up against
a suitable list of temporal properties. We emphasize this point in this book firstly
by attributing mathematical properties to ‘timefunctions’, and operational character
to ‘clocks’, in contradistinction to physical, philosophical and conceptual discus-
sion of aspects of time.2 Secondly, we refer to candidate times, timefunctions and
clocks until enough properties of these have been established. There is moreover not
a unique list of properties to check against, since different physical theories involve
different lists of properties, as the ‘Gordian cube’ in Fig. 1.c foreshadows.

Background Independence in Mechanics, GR and Quantum
Gravity

Following Einstein, a second perspective on the nature of—and motivation for—
GR is as a freeing from absolute or background structures. From this perspective,
GR is more than just a Relativistic Theory of Gravitation. Such perspectives have
subsequently been dubbed Background Independence [12, 363, 483, 485, 552, 752];
contrast with how Background Dependent absolute structures pervade all six of the
other non-final vertices of the cube. This book considers GR as embodying both of
these perspectives at once, phrasing this in the shorthand that GR is a ‘gestalt’ of a
Relativistic Theory of Gravitation and of Background Independence.

2This book prioritizes conceptual matters concerning time over giving detailed specifics of accu-
rate timekeeping [82, 783]. It does contain some comments on sidereal and ephemeris astronom-
ical times, atomic clocks, and SR and GR implications for timekeeping. Some of the theoretical
concepts outlined in this book, moreover, may eventually become relevant to timekeeping: space
clocks, extending Earth or Solar System based reference systems to galactic and cosmological
scales, and clocks in physically extreme regimes.
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Some programs in Physics confine themselves to Background Dependent the-
ories. Such approaches work for Quantum Theory within the Newtonian and
Minkowskian Paradigms, while amounting to dismissing features of GR that are in-
convenient in these Paradigms. This is to be contrasted with seeking new Paradigms
that reconcile GR and Quantum Theory by having features of mixed quantum and
GR origin! If GR’s second meaning—Background Independence—is retained in
passing to the quantum level, this book terms such an approach ‘Quantum Gestalt’.
This book ceases to use the name ‘Quantum Gravity’ in this context due to it im-
plicitly giving complete priority to the gravitational perspective on GR’s identity
over the Background Independent perspective. Quantum Gestalt is a proposed fam-
ily of Paradigms for Physics that encompass a number of theories and programs
which implement Background Independence. Since some kind of Background Inde-
pendence is widely considered in approaches to ‘Quantum Gravity’, the Quantum
Gestalt family includes a number of well-known examples, such as Geometrody-
namics [483, 581, 899], Loop Quantum Gravity [752, 845], the Canonical Approach
to Supergravity [232], and M-Theory [136, 719]. In this way, this book covers how
Background Independence—and consequently the intriguing and difficult Problem
of Time—are manifested in a wide range of well-known current approaches to
‘Quantum Gravity’.

Both by resting upon Background Independence and by inherent interest in tem-
poral matters, the Problem of Time is also a topic of interest more widely in Founda-
tions of Physics and Philosophy of Physics, as well as in Theoretical Physics gener-
ally and in Background Independent Quantum Gravity in particular. None the less,
this book mostly concerns Theoretical Physics rather than Philosophy of Physics.3

While attempting to combine QM and GR is an example of Background De-
pendence versus Independence clash, it is a very hard example, so it very much
helps to first point out that there are other simpler examples. In particular, I) Clas-
sical Physics already exhibits such mismatches: there is also a Classical Problem of
Time, which is more straightforward to resolve. II) Finite models (Minisuperspace
GR and Mechanics models) already exhibit many of the Problem of Time’s mis-
matches as well. III) Some elsewise simplified models (Midisuperspace, or, even
more simply, ‘slightly inhomogeneous’—perturbative—semiclassical such) exhibit
all of them. I), II) and III) turn to be very insightful topics to consider prior to the
Problem of Time between QM and full GR. In this vein, we outline the Classical
Problem of Time in Chaps. 9 and 10 prior to its quantum counterpart in Chap. 12,
and we always start by considering the above kinds of model arenas.

Returning to the Gordian cube, one can view ‘freeing from absolute structures’
or Background Independence as a fourth departure (see Chap. 3) from Newtonian
Mechanics which can be adopted independently from Relativity, Gravitation and
the Quantum, and their considerations of fundamental units. A simple opening here
turns out to involve a Mechanics that satisfies relational criteria which arose from
Leibniz’s and Mach’s criticisms of the Newtonian Paradigm. While no concrete

3For the philosophically-minded reader, most of what few such matters are mentioned in this book
involve Leibniz, Mach or Broad.
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such Mechanics was available in their day, Barbour and Bertotti’s [105] Relational
Particle Mechanics is a satisfactory such (with or without Newtonian Gravitation:
Fig. 1.d). Relational Particle Mechanics is based on the following Background In-
dependence principles.

1) Temporal Relationalism is that there is no meaningful time for the Universe as
a whole. We shall see that this is implemented by actions which are, firstly, free
of extraneous time-like quantities, and, secondly, Manifestly Reparametrization
Invariant, by which there is no physically meaningful role for ‘label times’ either.

If time is not primary, moreover, we need to study whatever other entities that are
still regarded as primary. One approach to this begins by considering configurations
and configuration spaces q. This book is consequently also a sizeable resource on
such ‘spaces of shapes’[301, 539] (Appendices G–I and N).

2) Configurational Relationalism involves taking into account that a continuous
group of transformations g acting on the system’s configuration space q is
physically irrelevant. For Mechanics, these transformations are usually trans-
lations and rotations of space, though in general Configurational Relationalism
also covers physically irrelevant internal transformations, as occur in the most
common types of Gauge Theory. Configurational Relationalism can be resolved,
at least in principle, by Best Matching, which is bringing two configurations into
minimum incongruence with each other by application of g’s group action.

Relational Particle Mechanics furthermore points to a theory of Quantum Back-
ground Independence, which, from the perspective of Quantum Gestalt, is the com-
plement of ‘Quantum Gravity’ interpreted literally.

The significance of Temporal and Configurational Relationalism significantly in-
creases upon realizing that GR itself can be recast in terms of these principles. These
give two precise senses in which GR is ‘Machian’. Mach’s work is widely of foun-
dational interest; for instance, some of Mach’s concepts played a role in Einstein’s
search for GR. Moreover, the two precise senses alluded to—Mach’s Time Principle
and Mach’s Space Principle—do not coincide with how Einstein interpreted a partly
different set of Mach’s ideas; also his historical route to GR ended up making at best
indirect use of Machian themes. As Wheeler argued [660, 899], however, there are
many routes to the same theory of GR. Some of these arrive at a dynamical for-
mulation of GR: a theory of evolving spatial geometry: Geometrodynamics [899].
It then turns out that a more specific formulation of GR as Geometrodynamics is
Machian after all ([62, 109] and Chap. 9). Finally, GR in Machian Geometrody-
namics form can furthermore even be rederived from Temporal and Configurational
Relationalism first principles ([62, 109] and Part II).

The proposal then is to ‘cut the Gordian cube’ by taking the following path
(Fig. 1.d) along the ‘space of fundamental theories’. a) Relational Particle Mechan-
ics, b) the same with Newtonian Gravity, c) GR in Machian Geometrodynamics
form (with SR recovered as a limiting case), d) Quantum Gestalt.

In this book, we let the physical theories themselves determine which notions of
time are appropriate; see e.g. [483, 519–521, 581, 584, 586, 589, 899] for earlier
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such physical and conceptual approaches. With Quantum Gravity and its Quantum
Gestalt subset being an unfinished subject with disputed foundations, this book con-
siders conceptual notions to take precedence; only then is one to ask what Mathe-
matics is required for the suitable concepts to be modelled well. This is as opposed
to picking a theory for its mathematical tractability at the expense of whether it
models suitable physical concepts. The Appendices provide supporting basic Pure
Mathematics, Geometry and its application to configuration spaces and the Princi-
ples of Dynamics. They also provide theorems for full GR’s configuration spaces
and partial differential equation theorems, and various other levels of structure for
Classical and Quantum Physics.

This approach is commensurate with how Physics has quite often required the
development of new Mathematics that is suitable for its concepts: Calculus, Linear
Algebra, Analysis. . . . There are moreover many tractable types of Mathematics that,
however, as far as we know, Nature makes no use of. So it may be tenuous to let
oneself be guided by solvability in a scientific subfield that has no experimental or
observational input. This is not to be confused with how internal consistency is a
valid guiding principle for theories. The point is that internal consistency is not a
guarantee that the Universe will be as imagined, since this criterion is not by itself a
guarantor of uniqueness.

The Problem of Time

We have now reached a position in which we can comment on a useful introductory
breakdown of what the Problem of Time consists of. It has nine facets—closely
following Isham and Kuchař [483, 586]—resulting from nine corresponding aspects
of Background Independence (identified in subsequent work).

Aspect 1) Temporal Relationalism leads to the notorious Frozen Formalism Prob-
lem: Facet 1). At the quantum level, this is the presence of an apparently frozen
quantum wave equation—the Wheeler–DeWitt equation— where one would ex-
pect an equation which is dependent on (some notion of) time. This quantum
Frozen Formalism Problem is very well known, but is unfortunately often con-
fused with the entire multi-faceted Problem of Time.

Aspect 2) Configurational Relationalism leads to—in the case of GR, for which
g = Diff (�): the spatial diffeomorphisms—the Thin Sandwich Problem, which is
Facet 2). [The Thin Sandwich is a particular GR specialization of the previously
mentioned notion of Best Matching.]

Each of Temporal and Configurational Relationalism moreover provides constraint
equations. In the case of GR, these are the well-known Hamiltonian and momentum
constraints respectively. Indeed, the above-mentioned Wheeler–DeWitt equation is
the quantum Hamiltonian constraint, whereas the Thin Sandwich Problem is a par-
ticular approach to solving the momentum constraint at the classical level.
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It is next natural to ask whether one has found all of the constraints: algebraic
Constraint Closure is Aspect 3). This is approached by introducing a suitable brack-
ets structure and systematically applying the Dirac Algorithm. If the answer is in
the negative, one has a Constraint Closure Problem: Facet 3).

The objects which brackets-commute with all the constraints—or with spe-
cific subalgebraic structures thereof—are of subsequent interest. These objects—
observables or beables—are useful objects due to their physical content, whereby
Aspect 4) is Assignment of Beables. If obtaining a sufficient set of these to do Physics
is in practice blocked—a common occurrence in Gravitational Theory—then one
has a Problem of Beables: Facet 4).

Since GR is also a theory with a meaningful and nontrivial notion of spacetime,
it has more Background Independence aspects than Relational Particle Mechanics
does. Indeed, the Einstein field equations of GR determine the form of GR space-
time, as opposed to SR Physics unfolding on a fixed background spacetime. From a
dynamical perspective, GR’s geometrodynamical evolution forms spacetime itself,
rather than being a theory of the evolution of other fields on spacetime or on a se-
quence of fixed background spatial geometries. Regardless of whether spacetime is
primary or emergent, there is now also need for the following.

Aspect 5) is Spacetime Relationalism, whereby the diffeomorphisms of spacetime
itself, Diff (m), are physically redundant transformations. Whereas this is straight-
forwardly implemented in the classical spacetime formulation of GR, it becomes
harder to implement at the quantum level. For instance, it feeds into the Measure
Problem of Path Integral Approaches to Quantum Gravity, so Facet 5) is indeed
nontrivial.

Foliations of spacetime play major roles, both in dynamical and canonical formula-
tions, and as a means of modelling the different possible fleets of observers within
approaches in which spacetime is primary. Background Independence Physics is
moreover to possess Foliation Independence : Aspect 6). If this cannot be estab-
lished, or fails, then a Foliation Dependence Problem is encountered: Facet 6).

Starting with less structure than spacetime—assuming just one or both of spa-
tial structure or discreteness—is particularly motivated by Quantum Theory [899].
Moreover, in such approaches the spacetime concept is to hold in suitable limit-
ing regimes: Spacetime Constructability—Aspect 7)—is required. If this is false, or
remains unproven, then we have a Spacetime Construction Problem: Facet 7).

Finally, Aspect 8) is Global Validity and Aspect 9) is No Unexplained Multiplici-
ties. These apply to all the other aspects, facets and strategies toward resolving these;
contentions with these are termed, respectively, Global Problems of Time: Facet 8)
and Multiple Choice Problems of Time: Facet 9).

All in all, the Problem of Time is a multi-faceted subset of the reasons why
forming ‘Quantum Gravity’ Paradigms is difficult and ambiguous; Further reasons
are purely technical, or a mixture of both.

The classical versions of Background Independence and the Problem of Time
are more straightforward, so this book presents these before their quantum coun-
terparts. Similarly, this book makes use of the simpler Relational Particle Mechan-
ics and Minisuperspace model arenas prior to passing to more complicated cases.
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Diffeomorphisms are, moreover, crucial [483] as regards a number of Problem of
Time facets, and require inhomogeneous GR models so as to feature nontrivially.
Balancing this requirement, enough simplicity for calculations, and cosmological
applications, this book’s third choice of model arena is Slightly Inhomogeneous
Cosmology: a type of perturbative Midisuperspace model. This furthermore per-
mits investigating whether galaxies and cosmic microwave background hot-spots
could have originated from quantum cosmological fluctuations [419]. Finally, this
choice of model arenas amounts to concentrating on Quantum Cosmology rather
than Black Hole models.

Isham and Kuchař’s reviews [483, 586] on the Problem of Time are of a very high
standard. The current book, however, further advances the subject in the following
ways. This book’s first advance is that we have enough room to trace the Problem
of Time Facets back to more basic and well-known temporal concepts which reside
within the Newtonian Paradigm, SR, GR, QM and QFT, by presenting the latter in
prequel chapters. This book’s second advance is that we present many improvements
in the conceptualization of Problem of Time facets and linking them to underlying
notions of Background Independence. These conceptual advances point to renaming
a number of facets and aspects so as to more truly reflect their content. Consult
Fig. 12.3 at the end of Part I to keep track of the evolution and end-product form
of these names for the multiple parts of the Problem of Time. This book’s third
advance is due to those Reviews now being over 20 years old, and containing almost
no mention of Supergravity, String and M-Theory, Loop Quantum Gravity, or other
modern approaches to Quantum Gravity. In this way, the current book updates and
expands on the range of theories considered. In particular, Canonical Supergravity
turns out to be a valuable counter-example to the suggestion that passing from one
GR-like theory to another leaves the Problem of Time largely unchanged. Apologies
are offered as regards not covering all Quantum Gravity programs. This is beyond
what can be covered in a single book. Besides, our intent is to focus on time and
notions of Background Independence underlying this rather than on diversity of
Quantum Gravity programs per se.4

Concerning This Book’s Three Parts, Appendices and Epilogues

Part I is a ‘first track’ introduction to the above-mentioned topics that is widely
accessible, including for Freshers new to a graduate school or PhD program, and
for advanced undergraduates. This outlines each Fundamental Theory of Physics,
alongside explaining the notion of time used in each. Conceptual outlines are subse-
quently provided, both of Quantum Gravity and of the nine aspects of Background
Independence with the ensuing nine facets of the Problem of Time as piecemeal

4Readers new to Quantum Gravity may complement this book with Kiefer’s [552] wide overview,
in addition to introductory literature more specific to their intended research program, some of
which is outlined in Chap. 11 and in Exercise Sets V and VI.
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entities. Finally, Part I outlines a number of different strategies that have been sug-
gested to deal with these facets.5 Part I and its supporting (unstarred) Mathemati-
cal Appendices additionally contain Exercises for students to actively expand their
horizons. The more challenging Exercises are marked with †, with those marked ††
being considerably more challenging.

Parts II (classical) and III (quantum) concern the rather more advanced—‘second
track’—material necessary for a more full and up to date an account of the Prob-
lem of Time. These are supported by the starred Mathematical Appendices. Parts II
and III reflect that the Devil is in the detail. For, as Isham and Kuchař argued, the
Problem of Time facets turn out to be heavily interlinked, and none of the strategies
proposed to date work when examined in sufficient detail. N.B. that this heavy in-
terlinking takes the form that if one resolves a facet piecemeal, and then attempts to
extend this resolution to resolve a second facet, then this extension has a strong ten-
dency to spoil the resolution of the first facet. Because of this, little overall progress
has arisen from treating Problem of Time facets piecemeal. This is why it is very im-
portant to list the facets together in explaining what the Problem of Time is. In par-
ticular, studying just one facet—most commonly the Frozen Formalism Problem—
misses out not only the other facets but also how these interfere with each other,
which is a very major part of the subject. One reason for this interference is that the
facets share temporal and Background Independence roots; they have a common ori-
gin due to the Background Dependent and Background Independent Paradigms not
fitting together. This strongly suggests that they should ultimately be approached
together rather than piecemeal. Moreover, another reason for this interference is
that modelling each facets’ concepts brings in its own distinct type of mathematics.
Indeed, this book’s fourth advance is to go much further than previous authors in
identifying the mathematics that modelling each facet requires.

This book’s fifth advance is to temporarily present each facet’s concepts and con-
sequent mathematical modelling by itself, in full awareness that these approaches
will subsequently need to be combined, and that the lion’s share of the difficulty is
in the latter. This temporary presentation of the individual facets is of pedagogical
value: Part I’s account, by steering clear of facet interferences, is rather probably
simpler to understand than Kuchař and Isham’s reviews, so it serves as an overall
introduction to this subject area. This and this book’s first advance combine to make
Part I a useful introduction to read prior to Kuchař and Isham’s reviews as well as
Parts II and III.

This book’s sixth advance is in demonstrating that if the mathematics needed
to model each facet is taken far enough, then resolutions of different facets can be

5Recommended books to read beforehand or alongside this one are Lanczos [598] or Goldstein
[371] for Principles of Dynamics formulations of Mechanics, Landau–Lifshitz [599] and Isham
[487] for QM, Rindler [736] for SR and a brief introduction to GR, and Chaps. 1 to 4 of Peskin
and Schroeder [712] for a brief introduction to QFT. Wald [874] and the entirety of Peskin and
Schroeder are good books for second studies of GR and QFT respectively, and the first two chapters
of Dirac [250] or the first four of Henneaux and Teitelboim [446] constitute a second course in
specifically-constrained Principles of Dynamics.
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combined after all. One caveat here is that almost all of Parts II and III concen-
trate on a local resolution of the Problem of Time, i.e. on joint treatment of all the
facets bar the Global one and the Multiple Choice one. Within this restriction, we
take each of few-particle Relational Particle Mechanics, Minisuperspace, Slightly
Inhomogeneous Cosmology, and full GR as far as we can. Some issues considered
are additionally only taken as far as the Semiclassical Quantum Cosmology regime.
Within these limitations and considering the classical case first, the fourth, fifth and
sixth advances can none the less be made.

Indeed, Parts II and III show how far the mathematics needed to model each lo-
cal facet needs to be taken before it can accommodate considering multiple facets.
For instance, it has long been known that replacing Euler–Lagrange actions by Ja-
cobi actions implements Temporal Relationalism. In comparison, this book shows
that to maintain Temporal Relationalism upon considering further facets, one needs
to follow the Jacobi action up by reformulating the entirety of the Principles of
Dynamics, spacetime foliation kinematics, Canonical Quantization and the Path
Integral Approach to Quantum Theory. It is also very satisfying to see that some
already-known key objects such as configurations, momenta, actions and constraint
equations remain unchanged in the process. However, this amounts to around two
orders of magnitude more work than simply replacing the Euler–Lagrange action
by the Jacobi action. In this way, this book contends that the previous five decades
of attempts at concurrently resolving multiple Problem of Time facets failed to get
round facet interference by seldom, if ever, coupling such a level of thoroughness to
mathematics which carefully fits each facet’s conceptual basis.

The main ‘A Local Resolution of the Problem of Time’ program that this book
concentrates on building up as a Combined Semiclassical, Histories and Timeless
Approach. This is a Machian extension of earlier work by Halliwell, shown to hold
beyond the Minisuperspace arena he explicitly investigated. The book also reviews
other conceptually interesting strategies that have been suggested over the years
toward attempting to resolve the Problem of Time: attempting a Klein–Gordon in-
terpretation for Quantum GR, hidden time, matter time, and a further variety of
Timeless,, Path Integral and Histories Approaches.

These results are subsequently tempered with brief accounts of Global Problems
and Multiple-Choice Problems in Epilogues at the end of each of Parts II and III.
Finally, further Epilogues are provided to outline Background Independence and the
Problem of Time at deeper levels of mathematical structure than the usually assumed
metric and differentiable structure level: the topological manifold level, topological
space level, at the level of sets, and alternatives thereto. Whereas in the context
of GR, Background Independence is almost always meant at the metric and dif-
ferentiable manifold (diffeomorphism) levels of mathematical structure, there is no
conceptual reason to stop at this level. These Epilogues represent ‘third track’ ma-
terial, extending one’s mathematical framework to include either of these would be
considerably harder than the book’s local resolution; these lie on, or somewhat be-
yond, the frontier of current research. We do however point to suitable mathematics
to model the Global and Multiple-Choice Problems: stratified manifolds, sheaves,
deformed cohomology, Topos Theory. . . . Some of these topics are supported by the
double-starred Mathematical Appendices.
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Since Part II and III’s material is more advanced, these contain not Exer-
cises but Research Projects. Many of the largest such—program rather than pa-
per sized—are gathered in Part III’s Conclusion and in the Epilogues. The website
https://conceptsofshape.space/problem-of-time-book/ will be periodically updated
to keep track of which of these projects have received significant progress. The Au-
thor can be contacted at Dr.E.Anderson.Maths.Physics@protonmail.com.

Let us end with two recommendations for readers who are interested in pursuing
Quantum Gravity and are relatively new to this field. Firstly, take a wide overview.4

Only by comparing different thoughts about conceptually similar questions—and
how answers to these pan out under diverse assumptions—can one get a feel for
whether the specifics of a particular Quantum Gravity program are likely to have
lasting significance in humanity’s understanding of Nature. Secondly, think for
yourself.

Edward AndersonCambridge, UK
2017

https://conceptsofshape.space/problem-of-time-book/
mailto:Dr.E.Anderson.Maths.Physics@protonmail.com
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25.7 Classical Kuchař Beables: d∂DEs and Solutions . . . . . . . . . 328
25.8 Examples of Classical Dirac Beables . . . . . . . . . . . . . . 332
25.9 Examples of Further Notions of Beables . . . . . . . . . . . . . 333

26 Fully Timeless Approaches . . . . . . . . . . . . . . . . . . . . . . . 337
26.1 Propositions in the Classical Context . . . . . . . . . . . . . . 337
26.2 Fully Timeless Approaches . . . . . . . . . . . . . . . . . . . . 339
26.3 Supplanting Questions of Being at a Time . . . . . . . . . . . . 339
26.4 Classical Timeless Structures. i. Good g Quantities . . . . . . . 340
26.5 ii. Sub- and Super-structures for q . . . . . . . . . . . . . . . . 340
26.6 iii. Information, Correlation and Patterns in q . . . . . . . . . . 340
26.7 iv. Formalization by Stochastic Mathematics on q . . . . . . . 341
26.8 Supplanting Questions of Becoming by a Semblance of Dynamics 343
26.9 Cambium Records . . . . . . . . . . . . . . . . . . . . . . . . 346



xxviii Contents

27 Spacetime Relationalism . . . . . . . . . . . . . . . . . . . . . . . . 347
27.1 Implementation of Spacetime Relationalism . . . . . . . . . . . 347
27.2 Diff (m)’s Brackets and Algebraic Structure . . . . . . . . . . 348
27.3 The Space of Spacetimes and of GR Solutions . . . . . . . . . 348
27.4 The Path (Via) Alternative . . . . . . . . . . . . . . . . . . . . 349
27.5 Spacetime Observables . . . . . . . . . . . . . . . . . . . . . . 349
27.6 Use Diff (m) or Some Larger Group? . . . . . . . . . . . . . . 350
27.7 Relationalism as Alternative Route to Physical Theories . . . . 351
27.8 Contrast Between Spacetime and Temporal and Configurational

Relationalisms . . . . . . . . . . . . . . . . . . . . . . . . . . 352

28 Classical Histories Theory . . . . . . . . . . . . . . . . . . . . . . . 355
28.1 g-Free Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
28.2 g-Nontrivial Classical Histories . . . . . . . . . . . . . . . . . 357
28.3 Classical Histories Constraint Closure and Beables . . . . . . . 357

29 Classical Machian Combined Approach . . . . . . . . . . . . . . . 359
29.1 Classical Machian Histories . . . . . . . . . . . . . . . . . . . 359
29.2 Records Within Classical Histories Theory . . . . . . . . . . . 361
29.3 Beables in the Combined Approach . . . . . . . . . . . . . . . 363

30 Slightly Inhomogeneous Cosmology (SIC) . . . . . . . . . . . . . . 365
30.1 Relational Action for SIC . . . . . . . . . . . . . . . . . . . . 365
30.2 Constraints for SIC . . . . . . . . . . . . . . . . . . . . . . . . 367
30.3 Constraint Closure Posed . . . . . . . . . . . . . . . . . . . . . 368
30.4 Outcome of Dirac Algorithm and Thin Sandwich . . . . . . . . 370
30.5 Beables for SIC . . . . . . . . . . . . . . . . . . . . . . . . . . 374
30.6 The Averaging Problem in GR . . . . . . . . . . . . . . . . . . 376
30.7 SIC Records . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
30.8 SIC Histories . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
30.9 Summary of the Model Arenas . . . . . . . . . . . . . . . . . . 377
30.10 Frontiers of Research . . . . . . . . . . . . . . . . . . . . . . . 377

31 Embeddings, Slices and Foliations . . . . . . . . . . . . . . . . . . 379
31.1 Single-Slice Concepts. i. Topological and Differentiable

Manifold Levels . . . . . . . . . . . . . . . . . . . . . . . . . 379
31.2 ii. Metric Level . . . . . . . . . . . . . . . . . . . . . . . . . . 380
31.3 More General Examples . . . . . . . . . . . . . . . . . . . . . 382
31.4 Spaces of Embeddings and of Slices . . . . . . . . . . . . . . . 382
31.5 Foliation in Terms of a Decorated Chart . . . . . . . . . . . . . 383
31.6 ADM Kinematics for Foliations . . . . . . . . . . . . . . . . . 383
31.7 Spaces of Foliations . . . . . . . . . . . . . . . . . . . . . . . 386
31.8 Refoliation Invariance . . . . . . . . . . . . . . . . . . . . . . 386
31.9 Bubble Time and Its Dual: Many-Fingered Time . . . . . . . . 386
31.10 Issues Involving Specific Foliations . . . . . . . . . . . . . . . 387
31.11 Various Other Arenas’ (Lack of) Foliation Concepts . . . . . . 388



Contents xxix

32 Applications of Split Spacetime, Foliations and Deformations . . . 391
32.1 Deformation Approach to Geometrodynamics . . . . . . . . . . 391
32.2 Universal Kinematics for Hypersurfaces in Spacetime (ADM

Split Version) . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
32.3 Thin Sandwich Completion in Terms of Hypersurface Kinematics 394
32.4 Space–Time Split Account of Observables or Beables . . . . . . 394
32.5 Difference Between Hamiltonians and Gauge Generators . . . . 396
32.6 ‘Nothing Happens’ Fallacy . . . . . . . . . . . . . . . . . . . . 397
32.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
32.8 Foliation Considerations end Unimodular Approach to Problem

of Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
32.9 Spacetime to Foliations to Internal Time . . . . . . . . . . . . . 399
32.10 Covariant-and-Canonical Histories Theory . . . . . . . . . . . 399

33 Spacetime Construction and Alternative Emergent Structures . . . 401
33.1 Relational First Principles Ansatz

for Geometrodynamical Theories . . . . . . . . . . . . . . . . 402
33.2 Geometrodynamical Consistency, Local Relativity

and Spacetime Construction . . . . . . . . . . . . . . . . . . . 403
33.3 Strongly Vanishing Options: GR, Strong Gravity, Geometrostatics 404
33.4 Family Ansatz for Addition of Minimally-Coupled Matter . . . 407
33.5 The 3 Strong Obstruction Factors as Relativities . . . . . . . . . 408
33.6 The Fourth Weakly-Vanishing Factor . . . . . . . . . . . . . . 410
33.7 Discover-and-Encode Approach to Physics . . . . . . . . . . . 410
33.8 Conformogeometrodynamics Assumed . . . . . . . . . . . . . 412
33.9 Simpler Cases of Spacetime Constructability . . . . . . . . . . 415
33.10 Caveats on Further Matter Results . . . . . . . . . . . . . . . . 416

34 TRi Foliation (TRiFol) . . . . . . . . . . . . . . . . . . . . . . . . . 419
34.1 TRi-Split Version of Geometrodynamics . . . . . . . . . . . . . 419
34.2 TRiFol Itself . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
34.3 Many-Fingered and Bubble Times, and Deformation First

Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
34.4 Machian Hypersurface Kinematics . . . . . . . . . . . . . . . . 424
34.5 Machian Thin Sandwich Completion . . . . . . . . . . . . . . 425
34.6 TRi Refoliation Invariance . . . . . . . . . . . . . . . . . . . . 429

35 Classical-Level Conclusion . . . . . . . . . . . . . . . . . . . . . . . 431
35.1 Classical Machian Emergent Time Approach . . . . . . . . . . 431
35.2 Denizens of Each Problem of Time Facet . . . . . . . . . . . . 431
35.3 Interferences Between Classical Problem of Time Facets. i . . . 432
35.4 ii. Supporting Model Arenas . . . . . . . . . . . . . . . . . . . 433
35.5 iii. Further Facets in the Case of GR . . . . . . . . . . . . . . . 434
35.6 Further Orders of Passage Through the Problem of Time’s ‘Gates’ 435
35.7 Ties Between Time and Other Concepts . . . . . . . . . . . . . 437



xxx Contents

36 Epilogue II.A. Threading and Null Formulations . . . . . . . . . . 439
36.1 The 1 + 3 Threading Formulation . . . . . . . . . . . . . . . . 439
36.2 Characteristic, 2 + 2 and Twistor Formulations . . . . . . . . . 440
36.3 Summary and Machian Evaluation . . . . . . . . . . . . . . . . 441

37 Epilogue II.B. Global Validity and Global Problems of Time . . . . 443
37.1 Classical Emergent Machian Time . . . . . . . . . . . . . . . . 444
37.2 Scale Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
37.3 g Nontrivial. i. Monopoles in Configuration Space . . . . . . . 447
37.4 ii. Gribov Phenomena . . . . . . . . . . . . . . . . . . . . . . 448
37.5 iii. Stratification and Its Consequences . . . . . . . . . . . . . . 449
37.6 iv. Sheaf Methods . . . . . . . . . . . . . . . . . . . . . . . . . 452
37.7 Brackets and Constraint Closure . . . . . . . . . . . . . . . . . 453
37.8 Problem of Beables . . . . . . . . . . . . . . . . . . . . . . . . 454
37.9 Timeless Approaches . . . . . . . . . . . . . . . . . . . . . . . 455
37.10 Spacetime Relationalism . . . . . . . . . . . . . . . . . . . . . 455
37.11 Histories Theory . . . . . . . . . . . . . . . . . . . . . . . . . 456
37.12 Combined Approach . . . . . . . . . . . . . . . . . . . . . . . 456
37.13 Space–Time Split, Foliations and Refoliation Invariance . . . . 457
37.14 Spacetime Constructability . . . . . . . . . . . . . . . . . . . . 458

38 Epilogue II.C. Background Independence and Problem of Time
at Deeper Levels of Structure . . . . . . . . . . . . . . . . . . . . . 461
38.1 Time, Background Independence and Problem of Time upon

Descent. i. Persistent Features . . . . . . . . . . . . . . . . . . 463
38.2 ii. Losses in Earlier Stages of Descent . . . . . . . . . . . . . . 467
38.3 Topological Manifold Level . . . . . . . . . . . . . . . . . . . 468
38.4 Metric Space and Topological Space Levels . . . . . . . . . . . 471
38.5 Yet Deeper Levels of Structure . . . . . . . . . . . . . . . . . . 473

Part III Quantum Problem of Time

39 Geometrical Quantization. i. Kinematical Quantization . . . . . . 477
39.1 Unconstrained Beables Come First in Geometrical Quantization 478
39.2 Brackets Map Between Spaces of Objects . . . . . . . . . . . . 479
39.3 Specifically Quantum Attributes of Brackets . . . . . . . . . . . 479
39.4 The Groenewold–Van Hove Phenomenon . . . . . . . . . . . . 480
39.5 Examples of Kinematical Quantization . . . . . . . . . . . . . 481
39.6 ii. Further Global Nontriviality . . . . . . . . . . . . . . . . . . 487
39.7 Conceptual Outline of the Kochen–Specker Theorem . . . . . . 487

40 Geometrical Quantization. ii. Dynamical Quantization . . . . . . . 489
40.1 Operator Ordering . . . . . . . . . . . . . . . . . . . . . . . . 489
40.2 Quantum Wave Equations . . . . . . . . . . . . . . . . . . . . 491
40.3 Addendum: q-Primality at the Quantum Level . . . . . . . . . 492



Contents xxxi

41 Further Detail of Time and Temporal Relationalism in Quantum
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
41.1 Time in Quantum Theory Revisited . . . . . . . . . . . . . . . 493
41.2 The Quantum Frozen Formalism Problem . . . . . . . . . . . . 494
41.3 Temporal Relationalism Implementing Canonical Quantum

Theory (TRiCQT) . . . . . . . . . . . . . . . . . . . . . . . . 495
41.4 Do Absolute and Relational Mechanics Give Distinct QM? . . . 495
41.5 Inner Product and Adjointness Issues . . . . . . . . . . . . . . 498

42 Geometrical Quantization with Nontrivial g. i. Finite Theories . . 501
42.1 Configurational Relationalism at the Quantum Level . . . . . . 501
42.2 Dirac Quantization of Finite Models . . . . . . . . . . . . . . . 502
42.3 Reduced Quantization of Finite Models . . . . . . . . . . . . . 504
42.4 Three More Operator Ordering Problems . . . . . . . . . . . . 509

43 Geometrical Quantization with Nontrivial g. ii. Field Theories
and GR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
43.1 Further QFT Subtleties . . . . . . . . . . . . . . . . . . . . . . 511
43.2 Unconstrained Examples . . . . . . . . . . . . . . . . . . . . . 512
43.3 Dirac Quantization of Geometrodynamics.

i. Kinematical Quantization . . . . . . . . . . . . . . . . . . . 512
43.4 ii. Dynamical Quantization . . . . . . . . . . . . . . . . . . . . 514
43.5 Dirac-Type Quantization of Nododynamics Alias LQG . . . . . 516
43.6 Dirac Quantization of Super-RPM and Supergravity . . . . . . 518
43.7 Is Quantization Is a Functorial Prescription? . . . . . . . . . . . 519

44 Tempus Ante Quantum . . . . . . . . . . . . . . . . . . . . . . . . 521
44.1 Finite g-Free Models . . . . . . . . . . . . . . . . . . . . . . 521
44.2 Nontrivial g Models . . . . . . . . . . . . . . . . . . . . . . . 522
44.3 Problems with These Approaches . . . . . . . . . . . . . . . . 523

45 Tempus Post Quantum. i. Paralleling QFT . . . . . . . . . . . . . . 527
45.1 Attempting a Schrödinger Inner Product . . . . . . . . . . . . . 527
45.2 Attempting a Klein-Gordon Inner Product Based on Riem Time 527
45.3 ‘Third Quantization’ Generalized and Renamed . . . . . . . . . 528
45.4 Problem of Time Strategies in Affine Geometrodynamics . . . . 529

46 Tempus Post Quantum. ii. Semiclassical Machian Emergent Time . 531
46.1 Born–Oppenheimer Scheme . . . . . . . . . . . . . . . . . . . 532
46.2 Discussion of Adiabatic Approximations . . . . . . . . . . . . 533
46.3 WKB Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
46.4 Scale–Shape Split h- and l-Equations . . . . . . . . . . . . . . 534
46.5 Semiclassical WKB Emergent Time . . . . . . . . . . . . . . . 534
46.6 l-Time-Dependent Schrödinger Equation . . . . . . . . . . . . 536
46.7 Rectified Time and Its Relation to Shape Space . . . . . . . . . 536
46.8 The WKB Assumption Is Crucial but Unjustified . . . . . . . . 537



xxxii Contents

47 Tempus Post Quantum. iii. Semiclassical Quantum Cosmological
Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
47.1 Back-Reaction, Higher Derivative, and Expectation Terms . . . 539
47.2 Solving the h-Equation for Emergent Machian Time . . . . . . 541
47.3 Some l-Time-Dependent Schrödinger Equation Regimes . . . . 543
47.4 Dirac-Quantized Semiclassical Schemes . . . . . . . . . . . . . 544
47.5 Extension Including Fermions . . . . . . . . . . . . . . . . . . 546
47.6 Variational Methods for Quantum Cosmology . . . . . . . . . . 546
47.7 Perturbative Schemes . . . . . . . . . . . . . . . . . . . . . . . 549
47.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

48 Semiclassicality and Quantum Cosmology: Interpretative Issues . 551
48.1 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . 551
48.2 Wigner Functionals . . . . . . . . . . . . . . . . . . . . . . . . 551
48.3 Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
48.4 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
48.5 Is Physics only About Subsystems? . . . . . . . . . . . . . . . 553

49 Quantum Constraint Closure . . . . . . . . . . . . . . . . . . . . . 555
49.1 Split Quantum Constraint Structures and Nontrivial g . . . . . 556
49.2 (Counter)Examples of Quantum Constraint Closure . . . . . . . 557
49.3 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
49.4 Strategies for Dealing with Quantum Constraint Closure Problem 559
49.5 Quantum Implications of Constraints Closing as Algebroids . . 560
49.6 The Semiclassical Case . . . . . . . . . . . . . . . . . . . . . . 560
49.7 Is There a Quantum Dirac-Type Algorithm? . . . . . . . . . . . 561

50 Quantum Beables or Observables . . . . . . . . . . . . . . . . . . . 563
50.1 Types of Constrained Quantum Beables . . . . . . . . . . . . . 563
50.2 Indirect Constructions for Quantum Dirac Beables D . . . . . . 565
50.3 Quantum-Level Problem of Beables . . . . . . . . . . . . . . . 565
50.4 Beables Motivated from Realist Interpretations . . . . . . . . . 567

51 Fully Timeless Approaches at the Quantum Level . . . . . . . . . . 569
51.1 Quantum-Level Propositions . . . . . . . . . . . . . . . . . . . 569
51.2 Conditional Probabilities . . . . . . . . . . . . . . . . . . . . . 572
51.3 Timeless Records Theories . . . . . . . . . . . . . . . . . . . . 575
51.4 Records Approaches with More than Just Timeless Structure . . 578

52 Spacetime Primary Approaches: Path Integrals . . . . . . . . . . . 579
52.1 Unconstrained Models . . . . . . . . . . . . . . . . . . . . . . 579
52.2 Path Integrals in Gauge Theory . . . . . . . . . . . . . . . . . 579
52.3 Strategies for GR Path Integrals . . . . . . . . . . . . . . . . . 580
52.4 Temporal Relationalism Implementing Path Integral Quantum

Theory (TRiPIQT) . . . . . . . . . . . . . . . . . . . . . . . . 583
52.5 Canonical-and-Path-Integral Approaches . . . . . . . . . . . . 584



Contents xxxiii

53 Histories Theory at the Quantum Level . . . . . . . . . . . . . . . 585
53.1 Gell-Mann–Hartle-Type Histories Theory . . . . . . . . . . . . 585
53.2 Histories Projection Operator (HPO) Approach . . . . . . . . . 586
53.3 Computation of Decoherence Functionals . . . . . . . . . . . . 587
53.4 Further Theories, Structures and Problems . . . . . . . . . . . . 588
53.5 TRi Quantum Histories Theory . . . . . . . . . . . . . . . . . 589
53.6 Further Examples of Histories Formulations . . . . . . . . . . . 590
53.7 Records Within Quantum Histories Theory . . . . . . . . . . . 594

54 Combined Histories-Records-Semiclassical Approach . . . . . . . 597
54.1 g-Free Models Without Machian Emergence . . . . . . . . . . 598
54.2 Machian Time Version Sitting Within Semiclassical Approach . 601
54.3 Combined Approach for g-Nontrivial Theories . . . . . . . . . 602
54.4 Construction of Quantum Dirac Beables from Quantum Kuchař
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Part I
Time in Fundamental Physics



Chapter 1
Introduction: Conceptual Outline of Time

“What then is time? If no one asks me, I know what it is. If I wish to explain it to
him who asks, I do not know.” Saint Augustin, 398 A.D.

There is a long history of fascination with notions of time as well as uncertainty
as to their meaning. This book does not claim to give a final answer to this, but it
does provide an analysis, theory by theory, as regards the observationally successful
fundamental theories of Physics. The main topic of this book is how the distinct no-
tion of time for two families of these theories—Quantum Mechanics (QM) and Gen-
eral Relativity (GR), or, more accurately, Background Dependent and Background
Independent theories—might be pieced together in forming a theory of Quantum
Gravity. We begin, however, with a largely theory-free consideration of concepts
often associated with time.

1.1 Time-Related Notions

“Time present and time past
Are both perhaps present in time future,
And time future contained in time past.

If all time is eternally present
All time is unredeemable.” T.S. Eliot [289].

The Universe is made up of occurrences, some of which we experience during
our lives, such as ripples on a pond, cars in motion, or meeting a friend. The goal of
Science is to describe and relate experiences and occurrences in the simplest possi-
ble manner [145, 632]. This is a matter of efficient codification: as regards piecing
together patterns of occurrences or experiences, explaining them and assessing the
likelihood of more such. Physical laws are one means of efficient codification (see
Chaps. 2 to 7). Moreover, time and space concepts—and by extension time and
space themselves—can also be argued to be none other than efficient codifications
[632].
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4 1 Introduction: Conceptual Outline of Time

Let us next consider various time-related notions in this light. One classification
of possible occurrences is into present, past and future. These are tensed notions, in
the sense that they are built into the tenses of the verbs used in our languages. The
present is, the past was and the future will be. These are different and distinguishable
sets of everyday occurrences. This is through experiencing a set of occurrences in
the present, remembering a subset of the past that one had experienced, whereas one
can neither experience nor remember the future. I.e. past, present and future differ
qualitatively as regards the extent to which one perceives them.

On the other hand, before, after and simultaneous with are tenseless notions.
These are useful concepts for ordering commonplace occurrences. Amongst these,
‘simultaneous with’ to some extent characterizes the present now that one experi-
ences.

The past was before the present, which is before the future. The pairings ‘past
and future’ and ‘before and after’ have an additional feature which ‘present’ and
‘simultaneous with’ do not possess. This is because ‘before’ and ‘after’ can apply in
a wider range of contexts such as that the ‘far past’ occurred before the ‘recent past’,
and the ‘near future’ will be before the ‘far future’. In this way, future and past both
have a notion of ‘extent in time’, whereby these are larger than the present, which
does not possess such a notion. Thereby, each of past and future can be subdivided
into portions upon which ‘before’ and ‘after’ can also act as comparatives. Adjec-
tives such as ‘far’, ‘recent’ and ‘near’ are refinements of past and future that are
possible due to these possessing a notion of extent in time.

Furthermore, measures of extent in time—known as duration—with varying pre-
cision of definition and often geared toward convenience of people’s practical expe-
rience, are often used under such names as centuries, years, months, weeks, days,
hours, minutes and seconds. Conventional characterization of time is by values of
a single number allotted to each possible occurrence. A simple model of duration
might involve taking the differences between such times for distinct occurrences.

Other simple modelling considerations are that ‘a present’ here corresponds to
one value of a quantity, t = t0, ‘the future’ of that present consists of all values of
this number which are greater than t0 and ‘the past’ of that present consists of all
values which are smaller than t0. A present is in this sense a single instant (instanta-
neous now), whereas the past and future are each comprised of many instants. The
present separates the past from the future; it is a boundary between these that has
qualities which distinguish it from either. A further idea is that which t the present
corresponds to keeps on changing. So we live through a sequence of presents each
of which becomes a past that might be remembered. In this manner we do eventu-
ally experience some of what was a given present’s future; by this stage that present
lies to our past.

1.2 Space-Related Notions Make for Useful Comparison

Space-related notions make for useful contrast with time-related ones [397, 519,
730]; moreover in some Paradigms of Physics, the two are treated jointly.
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Fig. 1.1 A partial analogy between a) time and b) space, demonstrating a simple and intuitive
codification of some time and space concepts. Occurrences are modelled as events: with location
and dating. c) is the worldline of a particle or observer: its position in space at each value of time.
d) depicts a coincidence event, such as a particle collision or two people keeping an appointment.
e) An emission (event EA) from one worldline A and its reception (event EB ) on another world-
line B

Each ‘now’ is equipped with spatial properties. Intuitive space concepts here in-
clude ‘up’, ‘down’, ‘forwards’, ‘backwards’, ‘to the right’ and ‘to the left’. These
form, respectively, three ‘opposite pairs’ in space, in some ways (Fig. 1.1.a, b) paral-
leling past and future being such a pair in time. These names carry an ‘on-Earth’ and
‘locally flat Earth’ bias, in which context the vertical ‘up’ and ‘down’ pair is more
distinguished from the other two ‘horizontal’ pairs than the latter are distinguished
from each other. I.e. some of the local physics we are most accustomed to is not
significantly altered if we rotate ourselves—or our coordinate system—so that e.g.
what was one’s notion of ‘to the left’ is now one’s ‘forward’. Gravitation near the
surface of the Earth, on the other hand, acts specifically downwards. Overall, there
are three independent coordinates in space, whereas there is just the one for time.

‘Here’ is the location at which one’s own position lies, where ‘up’ changes status
to ‘down’, ‘forwards’ to ‘backwards’, and ‘to the right’ to ‘to the left’. As such, lo-
cation is the counterpart of ‘present’ (or the present ‘now’), and is a notion that like-
wise has Sect. 1.1’s separation property. ‘Above’, ‘below’; ‘in front of’, ‘behind’;
‘to the right of’ and ‘to the left of’ have a similar status in each spatial direction to
that of ‘before’ and ‘after’ in the temporal direction. However, one can walk to and
fro in space, but one cannot move to and fro in time.

Physics moreover concerns far more than local physics on Earth. The intuitive
difference about the vertical direction as compared to the two more similar horizon-
tal directions—due to the form taken by gravity near the surface of the Earth—turns
out not to be a deep fact about Nature after all. Nor does one need to use one verti-
cal direction and two horizontal ones. One could encode the same information using
combinations of these, such as a slanted diagonal that is part vertical and part hor-
izontal, alongside two horizontal directions. Directions used may additionally vary
from location to location.

Space is conventionally characterized by three numbers per constituent point.
E.g. values of the familiar Cartesian coordinates {x, y, z} (after polymath René
Descartes), or spherical polar coordinates {r, θ,φ}. Such coordinates can be used
to encode distinctions in location (at least in some patch in which they are well-
defined). Moreover, change of coordinates also enters modelling of time, for all that
time is characterized by only one coordinate.
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Spatial extent quantifies of the amount of space that an entity occupies. The 3-
dimensionality of space leads to distinct notions of extent in length, area and vol-
ume.

1.3 Physical Limitations on Intuitive Notions of Time and Space

Our commonplace experiences are, however, tied to living in a regime for which
the bottom edge of Fig. 1.a)’s ‘Planckian cube’ of physical theories is a good ap-
proximation. Considering a wider region of the cube by observing, experimenting,
theorizing about Fundamental Physics will cause many of these ‘commonplace intu-
itions’ to break down. We need more precision in definitions. We also need to accept
that some intuitions need to change in order to fit observational facts, for sure, and
also possibly as regards how one is to theorize in a more consistent manner.

1.4 Events

Following Albert Einstein [281], the sharper notion we introduce to build Physics
around are events. An event is now taken to mean an occurrence at a specific location
at a particular time. It turns out that particle and light flash concepts are useful in
further development of Paradigms of Physics. Figure 1.1.c)–d)’s statement that ‘this
particle collision at one location occurs to the future of the emission of light at this
other location’ gives some inkling of the codification entailed.

1.5 Philosophical Worldviews of Time

Not all time-related concepts need be realized within a given physical or philosoph-
ical perspective, whether as primary entities or at all. This book moreover distin-
guishes between philosophical worldviews and concrete Physical Paradigms which
may fully or partially realize given philosophical worldviews. Let us next give ex-
amples of philosophical worldviews; on the other hand, consideration of time in
concrete physical theories is covered throughout the rest of this book.

For instance, Timeless Solipsism is a philosophical worldview in which the
present now exists while the past and future do not. This position only recognizes
being, as opposed to any further time-related notions. This worldview goes back
to the fifth century B.C. perspective of Parmenides and his even more well-known
student Zeno, whose ‘paradoxes’ were aimed at denying the occurrence of motion.1

1If a tortoise starts one unit ahead of Achilles on a line, then by the time that Achilles reaches the
tortoise’s starting point, the tortoise is ahead by a small amount. When Achilles reaches that new
point, the tortoise is still ahead by a smaller amount, and so on. On these grounds, it may appear
that speedy Achilles can none the less never catch the tortoise. . . . See however Appendix C.
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Stark minimalistic perspective as this may be, it makes for useful contrast to many
other positions, starting with the notion of time itself flowing as envisaged by their
contemporary Heraclitus. Contrast also with philosopher Charles Broad’s world-
view [171, 274] in which the present and the past exist while the future unfolds in
time.

It is possible as well for some temporal notions to coexist within a particular
worldview but with some held to be more significant than others. E.g. in Pre-
sentism, the focus is on a sequence of distinct present instants which represent
a distinguished notion of ‘now’ that ‘moves forward into the future, leaving the
past behind’. On the other hand, in Eternalism or the Block Universe [274, 521],
all of the past, present and future are taken as given, without necessarily placing
any emphasis on the present.2 As a final example, in McTaggart’s B series [649]
Worldview, would involve the tenseless properties to entirely supplant the tensed
ones.3

1.6 Some Properties Attributed to Time

1) Physical events E(x, t) are conventionally taken to occur at a particular time t
and location in space coordinatized by x. This can be thought of as parametriza-
tion of events by three spatial coordinates and one time coordinate.

A fortiori [397], one can consider sets of events to constitute a geometriza-
tion, in which events are taken to be points that form some geometrical space
notion of space-time or spacetime. The first of these is just a joint encoding of
two geometrically separate entities: space and time, whereas the second of these
is a single common co-geometrization. Chapter 2 to 7 cover examples of this
including Aristotelian, Newtonian and Galilean notions of space-time, and Spe-
cial Relativity (SR) ‘Minkowskian’ (after mathematician Hermann Minkowski)
and General Relativity (GR) ‘Einsteinian’ notions of spacetime. Let us also use
these five adjectives to refer to corresponding often-encountered Paradigms of
Physics.

2) The notion of being at a time applies not just to events, but also to physical
properties taking particular values and to questions about physical properties
having particular answers.

2Broad’s Worldview is also known as the ‘growing block’. However, this book does not use this
term so as to avoid giving the impression that it is a subcase of the Block Worldview; Broad’s
Worldview is, rather, a distinct worldview in its own right.
3In contrast, philosopher John McTaggart’s A series allows for tensed notions of time, whereas
his C series is a particular brand of Timeless Solipsism. For readers who are interested in the
Philosophy of Time and are new to that field, some suggested reading is [171, 521, 730, 731, 906].
Given that the current book concerns the foundations of Quantum Gravity, let us caution that almost
philosophical treatises on time pre-date or elsewise fall short of treating Quantum Gravity or even,
in some cases, GR and QFT! Finally the current book makes no claim of being a philosophical
treatment of time in Quantum Gravity.
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3) Dating means assigning a real number—the date—to each event. This is not
necessarily the aforementioned parameter notion of time, since there are other
timefunctions.

4) If t1 = t2, the corresponding eventsE1 andE2 are simultaneous with each other,
i.e. forming part of a single instant whose events are all associated with a unique
value of time t1 = t2. Notions of simultaneity [521] are furthermore well-known
to differ between Newtonian Physics and SR; compare Chaps. 2 and 4.

5) ‘Before’, ‘simultaneous with’ and ‘after’ provide an ordering; see Appendix A.1
for the mathematics of such in general; moreover this case is physically a time
ordering [521, 616]. Here, in addition to the above implementation of simul-
taneity, if events E1 and E2 are at times t1 and t2 respectively for t1 < t2, then
E1 occurs before E2 and E2 occurs after E1. This notion includes time pos-
sessing a direction. What we already noted about being able to move to and fro
in space but not in time is relevant here. Furthermore, we appear to remember
the past but not the future, whereas we can remember parts of both what lies to
the right and what lies to the left.

6) Causation relates causes and effects; in Physics, this provides an ordering for
events—causal ordering—with a stronger rational and physical meaning than
temporal ordering’s: not only preceded by but also [521, 616] influenceable by.

7) Temporal logic extends more basic (atemporal) logic through possessing ex-
tra “at time t1” and “and then” constructs; see Chaps. 26 and 51 for further
discussion.

8) Duration [83, 135, 718, 906] is a quantifier for the amount of time between two
time values t1 and t2.

9) Change over time is a further notion within the perspective of time being some
kind of container: a parameter of choice with respect to which change is mani-
fest.

Related concepts concern one state of a system “becoming” [731] another,
undergoing passage, dynamics and evolution. In the last two, time plays the
role of independent dynamical variable, with the dynamics or evolution being
with respect to this variable. The notion of quantities being conserved under
such evolution also arises at this point.

Becoming is to be contrasted with [731] the more minimal notions of ‘being’
and ‘being at a time’. In Timeless Solipsism—Fullt Timeless Approaches—the
notion of being is all and there is no place, at least at the primary level, for the
notion of becoming. While minimalism may be regarded as a virtue, it does
come with the inconvenience of needing to be able to explain the semblance
of becoming at the secondary level. Chapters 26 and 51 consider approaches to
Quantum Gravity along such lines.

10) Is there time throughout the Universe? Throughout all useful models for uni-
verses? I.e. how widespread is the need for, and realization of, notions of time?

11) Moreover, is time unique?
12) Finally, the Arrow of Time [764, 931] concerns the apparently inevitable align-

ments between the directions in time of a number of areas of Physics. We post-
pone discussion of this until a suitable range of physical theories have been
introduced so as to support these processes; cf. Ex II.12 and V.22.
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Fig. 1.2 Various topologies which have been proposed for (position-independent) notions of time.
As compared to space, these are rather restricted by time being 1-d . The most obvious choice—the
real line of a)—serves as a point of departure for a number of other alternatives, as follows. I.e.
b) a half-infinite line for a universe with one of a beginning and no end—Big Bang to Heat
Death—or an end but no beginning. c) A finite interval for a universe with both a beginning and
an end: Big Bang to Big Crunch. d) One could use circular time to model a recurrent or cyclic
universe: as in Hindu philosophy, the ‘wheel of time’, or cyclic cosmological models. Time might
also branch into parallel time streams: e) to g) with subsequent compositions such as the tree h) and
more general networks involving fusion alongside fission i)

1.7 Continuum Mathematics Models for Time

We next begin to consider what range of values a notion of time can take. One pos-
sibility is every value in some continuum. Conventional Mathematics builds Geom-
etry upon assumptions of Topology. If unfamiliar with this, consult Appendices C
and D.1 for an outline. The real line R, or some interval T thereof, are simple and
commonly used continuum models for time. Figure 1.2 presents a fan of variants.
The direction of time in these models is indicated by the arrow signs. Continuum
formulations benefit from the usual continuum dynamical laws built out of the en-
tities of Calculus: differential equations, many of which are equations for evolution
in time.

1.8 Some Basic Properties of Timefunctions

Let us use the word ‘timefunction’ to carry mathematical connotations, in contrast
to ‘time’ (physical and philosophical connotations) and ‘clock’ (operational conno-
tations). We finally use ‘timestandard’ to mean a well-established timefunction that
can be read off a suitably good and at least locally realizable clock.

A timefunction may implement the previous Section’s item 1)’s ‘time as a pa-
rameter’ or have some other significance. Let us first consider how much freedom
there is to be in allocating a timefunction. There are two levels of consideration
here: 0) and 1).

0) Preliminarily, there is to be freedom in prescribing a timefunction as to firstly
the choice of ‘calendar year zero’ and secondly of ‘tick-duration’. I.e.

if t is a timefunction, so is A +B t for A, B constants. (1.1)
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This can be seen as a statement that only ratios of relative times are physically
meaningful, since
{
At1 +B − {At2 + B}}/{At3 + B − {At4 +B}}= {t1 − t2 }/{t3 − t4 }.

1) In some conceptualizations, the timefunction can be reparametrizable in excess
of 0):

t −→ f (t). (1.2)

2) Being at a time allots a specific value of the timefunction to configurations.
3) Dating in general involves a string of values in the manner of 2). See the Sum-

mary Fig. 12.4 for how timefunction, time and clock properties are inter-related.
4) Field Theories are those with space-dependent configurations as opposed to

Finite Theories of e.g. point particles. Notions of time can also be position-
dependent: t(x) for Field Theory in place of t .4 Many matter theories used in the
Special Relativity (SR) Minkowskian and GR Einsteinian Paradigms are Field
Theories. Position-dependence gives a distinct manner from Fig. 1.2 of time
acquiring a more complicated form, such as in GR’s ‘many-fingered’ notion of
times (see Chap. 8.5).

5) Timefunctions are usually taken to be a monotonic (rather than direction-
reversing) function:

t −→ f (t) with derivative df/dt > 0 only. (1.3)

This makes sense as part of modelling time as having further ordering and
causal properties. The notion of time as an ordering is e.g. readily implemented
by the parametrized real line. One can subsequently ensure that such a model
of a timefunction complies with the corresponding Paradigm of Physics’ notion
of causality.

Simultaneity concerns which physical events ‘occur at the same time’, or
‘form part of a single instant’. The relation between position dependence and
simultaneity is somewhat indirect; this is one way in which notions of simul-
taneity can become less trivial.

Monotonicity also in part underlies the Arrow of Time property, in that there
is a direction involved. The further part is that the various directions are cor-
related. 1)’s reparametrization is now restricted to those transformations which
preserve this monotonic property.

7) Duration can be evaluated from the timefunction.
8) The timefunction corresponds to the t which features in partial derivatives ∂/∂t

in the evolution equations alias equations of motion for a physical system.
9) It may be that the timefunction is a path function, which depends on past history.

10) It also makes sense for a timefunction to be operationally meaningful (com-
putable from observable quantities: tangible and practically accessible). While
Newton did not deign to define such entities as time and space, Einstein ar-
rived at quite distinct conceptualizations of these. Furthermore, physicist and

4This book’s default is straight fonts for fields and slanty fonts for finite theory quantities.
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philosopher of science Percy Bridgman presented an operationalism [168] posi-
tion to crack down on unintentionally leaving gaps in how basic physical quan-
tities are conceived of. For instance, operational considerations further enter the
discussion below of clocks and rods.

11) Upon Dynamics becoming well understood, a further dynamical issue impinges
upon choice of timefunction: we wish to use a notion of time in terms of which
[660] motions look simple. More generally, notions of time, timefunctions, and
candidate clocks, are to be judged not just on their own merits but also by the
extent of their predictive power in the study of further dynamical systems.

12) One criterion for good timefunctions is that they be globally valid [483, 586].
This refers to both over time—as opposed to the half-finite and finite interval
times unless there is a physical reason for this—and over space: in the case of
Field Theories.

13) Reconcileability of Multiplicity applies in cases in which a multiplicity of
elsewise-valid timefunctions occur. In general, if there is more than one plausi-
ble conceptual approach providing a timefunction, it is then interesting whether
the various timefunctions are aligned. They seldom are, and this can have
consequences, especially at the quantum level (see Chaps. 12, 39 and Epi-
logue III.A).

1.9 Non-continuum Modelling of Time

As a simple example, this could involve a finite (or countably infinite) number of
discrete points. One can ‘dot up’ Fig. 1.2, though the dots or the ‘time steps’ between
them might have further inherent mathematical structure. For starters, these could
be the vertices and edges of a graph (see Appendix A.6 if interested). Whichever
of vertices or edges can additionally be ‘labelled’ with structures. In this particular
case, the dots would carry an order relation, so as to model time and causal order-
ings. Indeed, Sect. 1.6’s time properties and Sect. 1.8’s timefunction properties also
have discrete time-dot or time-step counterparts.

Simple examples of evolution laws are now difference equations, or discrete
time-step probabilistic models, amongst which Markov chains (see Appendix P.1)
are the simplest.

In Fundamental Physics, using discrete time-steps (or similar, as per Ap-
pendix A.6) has the further issue of whether these reflect the actual form taken
by Nature, rather than just our own modelling assumptions. In such a case, the ‘time
dots’ might acquire a name that embodies this purported fundamentality, such as
‘atoms of time’ alias ‘chronons’.5

A more general approach, however, involves removing continuum assumptions
from one’s modelling. Previous Sections mostly assumed time to be (part of) R,
which is an example of a number of continuum notions, many of which indeed orig-

5This name follows from that of the Ancient Greek God of time, Chronos. Hence also many other
time-related words used in this book, such as chronometer, chronology, synchronization, chrono-
geometric, and achronal.
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inated from thinking about which interesting features of R can be generalized. For
instance, some of the properties by which the real line R can be modelled by Anal-
ysis (Appendix C), generalize to metric and topological spaces; R is additionally a
manifold (Appendix D). Yet features of Nature can be modelled using other topo-
logical spaces, of which Mathematics provides a vast wealth. So while ‘continuous
versus discrete’ is occasionally presented as a dichotomy, a more accurate account
is that there are vastly many intermediate possibilities if one drops some part of the
well-studied package of continuum assumptions exhibited by R.

1.10 Mathematical Modelling of Space

The long-standing model for space was 3-dimensional flat Euclidean space R3. One
way in which this can be modelled which modern Mathematics readily generalizes
is in terms of a ‘continuum equipped with a metric’. The Euclidean metric (‘matrix’)
itself takes the diagonal form δij = diag(1,1,1) in Cartesian coordinates. It can be
arrived at as a simple reformulation of the familiar dot product; both encapsulate
Euclidean Geometry’s formulae for lengths and angles. The general concept of a
metric (Appendix D.4) here is an array from which such geometric information can
be extracted.

The above useful generalization is to ‘curved spaces’. This is not an obvious
generalization, despite how curved surfaces within 3-d Euclidean space are imme-
diately apparent in Nature. It is, rather, a distinct notion of Curved Geometry that
exists in its own right which is relevant to the modelling of space. After all, the sug-
gestion is that 3-d space itself is curved rather than involving us observing curved
surfaces such as those of apples or hills within the Euclidean Geometry model of
space. This generalization was envisaged by one great German mathematician, Carl
Friedrich Gauss, and developed in further generality by another, Bernhard Riemann.
In final form, this generalization is to a topological manifold � (Appendix D.1)
equipped with a Riemannian metric M that is in general intrinsically curved rather
than flat (Appendix D.4). This notion of geometry is furthermore meaningful in
arbitrary dimension. Whereas our discussion of modelling time already mentioned
manifolds, that is the 1-d manifold case which is uncharacteristically poor, e.g. it
does not support a notion of curvature. For d ≥ 2, however, conceiving in terms of
manifolds is much richer in diversity. Gauss moreover suggested that physical space
itself might be some such curved space rather than the flat Euclidean space hitherto
assumed. To this end, he investigated whether the distances between three mountain
tops exhibited Curved Geometry between them, but found no evidence. Such vindi-
cation had to await Einstein’s work, due to the further subtleties laid out in the next
Section.

1.11 Advent of Notions of Spacetime

In a separate development, Minkowski [654] pointed out that Einstein’s SR can be
represented as a four-dimensional co-geometrization of time and space: spacetime.
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Coordinate frames in this Lorentzian sense involve specifying both time and space
as coordinates. This notion of spacetime is itself flat, but its metric ημν in its simplest
coordinate system is not diag(1,1,1,1) but diag(−1,1,1,1). I.e. the Minkowski
metric’s signature is nontrivial (see Appendix A.3). We shall see in Chap. 4 that this
encodes distinctions in physical meaning between one of the coordinates—time t—
and the other three: space xi . I.e. the array ημν has ‘chronogeometric’ significance:
it encodes both time intervals and lengths!

In conceiving of SR, Einstein [281] intended to create a Universal Paradigm for
Physical Laws, but he then found that Gravitation resisted incorporation. He subse-
quently got around this by creating GR. Here spacetime not only has the signature
distinction between space and time but is also in general a curved 4-d manifold.
Minkowski’s spacetime M4 is now but the special case in which there is no (or negli-
gible) Gravitation. In this manner, Minkowskian versus Einsteinian spacetime is the
indefinite-signature counterpart of Euclidean versus Riemannian Geometry. Flat-
ness allows for SR’s Lorentzian reference frames to be globally defined, but GR’s
more general geometry in general only permits locally defined reference frames.
Both Block and Broad Worldviews can be applied to spacetime as well as to split
space-time.

Within the Einsteinian Paradigm, space itself is also in general curved. Addition-
ally, Chap. 8 demonstrates how GR can be thought of not only in terms of spacetime
but also in terms of evolving spatial geometries. Moreover, in identifying curvature
as a gravitational effect, it is apparent that Gauss’ choice of three roughly equipo-
tential points as regards the Earth’s gravitational field was particularly unfortunate.
In any case, the Earth’s gravitational field is weak enough that direct detection of the
curvature it induces upon space lay outside of the observational capacity of Gauss’s
epoch. However, curvature effects have long since been observed, alongside other
vindications of Einstein’s GR (see Chap. 7).

Whereas space has a richer structure than time via 3-d admitting far more diver-
sity of manifold properties and of types of manifold than 1-d does, space is poorer
than time in lacking such an ordering, causality and arrow. Spacetime possesses both
of these riches. The argument about moving to and fro in space, and the Arrow of
Time issues, entail that space and time are meaningfully distinct entities, regardless
of their co-geometrization by spacetime. Co-geometrization by spacetime respects
their distinction. Existence of space allows for timefunctions of the form t = t(xi):
different times at different points, and the possibility of different observers experi-
encing different times. Finally, as we shall see from Chap. 5 onward, it is time—not
space or length—that has a peculiar role in QM.

Dimension d ≥ 1 is also richer than d = 1, as regards types of non-continuum
model (see Appendix A.6 if interested). For instance, modelling with vertices and
edges can now be supplemented with faces and so on. Such can be used to model
spacetime as well as space. Furthermore, one of space and time being discrete does
not necessarily imply that the other is. It also remains unclear whether Quantum
Gravity possesses a primary notion of spacetime. Perhaps a notion along the lines of
the evolving spatial geometries formulation of GR is more persistent in approaching
such a regime!
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Fig. 1.3 A brief history of timekeeping

1.12 ‘Measuring Time’: Extra Connotations in the Word ‘Clock’

A clock is a physical entity—whether natural or artificially built a propos—that can
be used to ‘read off’ ‘the time’. One needs a fair amount of Physics before getting a
handle on the internal workings of—and precision analyses for—some clocks. And
yet the notion of what a clock is may play a foundational role in Physics.

Let us next consider some properties of clocks; these are operational and prac-
tical in character (nor is this list claimed to be complete). If a candidate object of
subsystem is to be a good clock, it is likely that it will possess many, if not all,
of these properties. Moreover, humankind possessed both clocks and timestandards
before Newton’s understanding and predictions, for these are attainable via prac-
tical considerations. Examples of these from antiquity through to the Renaissance
include the hourglass, the water clock (Ex I.4.i) and the candle clock. Others are the
rotation of the stars—subsequently attributed to the rotation of the Earth—and the
position of the Sun or the Moon in the sky. The human pulse and the small oscil-
lations of pendulums are further such examples. See Fig. 1.3 for an outline of the
history of clocks.

1) Clocks are usually taken to count occurrences that are regular in one’s notion
of time, in particular periodic. Roughly periodic phenomena include the human
pulse, the pendulum (Ex 1.4.ii), and the position of the Sun or the Moon in
the sky. One type of exception to periodicity are those motions based rather on
repeatable processes that need re-setting, such as the hourglass and the water
clock. A uniform cross-section notched candle illustrates that regularity does not
imply periodicity for a clock.

2) Clocks are to possess a suitable reading hand. One inspects this so as to read off
the time indicated by the clock. This firstly serves to keep track of the state of the
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system. Secondly, it is for convenience: accessible and swift to read. A sundial’s
shadow is an example of an occasionally inaccessible reading hand, since this
can cease to be visible at night or in cloudy weather.

3) Multiple clocks can be available. This leads to questions about choosing which
types of clock to rely upon.

4) If one has multiple (candidate) clocks of whatever types, one finds out which
occurrences are regular or periodic by comparison between them. For instance,
Galileo noted the superiority of pendulums over pulses as clocks. Moreover, one
needs at least three candidate clocks before comparisons between them make
sense.

5) Clocks vary considerably among themselves as regards how quantitatively useful
they are. I.e. there are quantitative tolerance criteria that clocks need to pass
before some such are allotted the task of timekeeping in a given situation of
interest.

In antiquity, observation of the heavens was by far the most accurate source
of timekeeping. Sidereal time is kept by the rotation of the Earth relative to the
background of stars (of course originally interpreted the other way round). This
was a successful timestandard for nearly two millennia, from Hellenic astronomer
Ptolemy until the 1890s. This longstandingness is due to the Earth’s rotation being
reasonably stable—to 1 part in 108 (Ex 1.5.i). On the other hand, apparent solar
time is defined in terms of the solar day: the interval between two successive returns
of the Sun to the local meridian. Sundials approximately read off this time.

Quantitative usefulness and regularity are indeed distinct selection criteria for
clocks. For instance, Chap. 3 explains how astronomical timestandards are very
accurate but are none the less based on irregular motions to this level of detail. For
clocks which are based on regular motions, stability is a meaningful quantifier. In
Metrology, this refers specifically to how closely the ticks correspond to each other.

Another selection criterion for timefunctions is choice of one for which ‘motion
looks simple’. For example, uniform rotation was argued (e.g. by Aristotle) to be the
best standard due to being the simplest to keep track of. In subsequent developments,
having a firm theory of Dynamics increasing relevance of what accurately reads off
this scheme’s time. Finally, if one’s clock reads off the time with respect to which
the dynamics is simplest, then there is a sense in which it is a particularly convenient
clock to use [677].

6) Clocks should actually read the purported timefunction rather than anything else.
How this comes about (material versus spacetime property alignment) can be
unclear, with standard Physics using postulation rather than explanation. If this
substantially fails, one may have a bad clock, or a timefunction that is at best
secondary in practice (if no clock can be devised that it can be directly read off
from). In support of this concept, [168, 211, 317, 772, 906] consider whether the
clock’s read-out should correspond exactly to the dynamical time.6 Engineering

6To sufficient accuracy, dynamical time diverges from Newtonian time by SR and GR corrections
as per Chaps. 4 and 7.
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also has a clock bias concept, ascertaining the practical relevance of this point.
This refers to the difference between the observed ticks and the purported time-
standard. In Metrology, clock accuracy is used to mean specifically this.

As a simple practical example, using sidereal time as the time that features
in one’s dynamical equations is more accurate than assuming this to be the solar
time that is read off sundials.

It is also useful at this point to contrast convenient reading-hands with the
separate matter of calibration. It may be that a clock—such as a wristwatch—
only approximately marches in step with a more reliable timestandard, which
however would be much more laborious to constantly monitor, such as the So-
lar System. One would then need to occasionally check whether the convenient
reading hand’s output requires updating. A reading hand can furthermore be
highly stable as a distinct issue from whether it remains accurately attuned to
the purported timestandard.

7) Clocks should actually be useable within the regime of study. This is a second
kind of operational criterion.

A classic example concerns the portability of marine chronometers. The un-
even rocking of the boat offsets pendulum-based clocks. The goal is also for a
type of clock that does not regularly need resetting. For instance, Magellan’s
expedition circumnavigating the world used multiple hourglasses with people
stationed in shifts to turn them; see Ex I.4.iv) for practical difficulties with this.
The reading hand of a clock should furthermore be and small and robust enough
to be portable without impairment of its function. In Britain, a sizeable prize
was offered for accurate determination of longitude at sea (Ex I.4.iii), which was
claimed by Harrison’s 1761 design of marine chronometer.

8) Simultaneity is imposed in practice by setting up a synchronization procedure
for spatially separated clocks.

One can consider nonlocal synchronization procedures from a practical perspec-
tive [521]. In this manner, some understanding of clocks must precede—from an
operational perspective—the use of position-dependent timefunctions. This is as op-
posed to mere mathematical consideration of SR or GR spacetime without thought
as to how to populate them with actual clocks that observers read off from (see
Chaps. 4 and 8 for more).

Progressive improvements as regards having stable periods occurred firstly
through the introduction of quartz clocks. [These are based on piezoelectricity: elec-
tric currents resulting from placing certain types of crystal under stress.] Secondly,
atomic clocks based on quantum oscillations of e.g. caesium (Cs) atoms were in-
troduced, as further outlined in Sect. 5.5. See also Sect. 3.3 as regards astronomical
timestandards beyond the breakdown of sidereal time.

9) Longevity. This is meant here in a sense other than the resistance to the regime
at hand of the ‘useability within the regime of study’ criterion. I.e. the inclusion
of self-limitations, such as the longevity of the clock’s power supply or the rate
at which the constituent pieces of the clock wear each other out.

10) Clock readings could depend on their past history.
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We next begin to consider the definition of the time unit: the second. This was
defined sidereally until the end of the 1950s. The demise of the sidereal concept
due to its insufficient accuracy further carried over to a redefinition of the time
unit itself. This eventually settled down into using the atomic clock timestandard’s
associated unit of time. This is defined as precisely 9,192,631,770 cycles of the
radiation corresponding to the transition between the two hyperfine levels of the
ground state of Cs-133. This definition is extrapolated to absolute zero temperature;
see Sect. 7.7 for further relativistic specifications. The definition of the time unit
should not be confused with the underlying conceptual entity of time itself.

Let us end by pointing to how devices used to measure time tend to have generic
names. The Greek ‘hora’, meaning ‘Goddess of the seasons’, underlies the French
‘horloge’ and the German ‘Uhr’. Moreover, the corresponding unit—the hour—was
within the habitual accuracy of the Greco-Roman world (e.g. sundials). The word
‘clock’ itself originally meant ‘bell’ (from the French ‘cloche’), due to church clock
bells chiming hourly or quarter-hourly since the mediaeval epoch. So in each case,
as the accuracy of the devices improved, the name for the generic device remained
tied to the original level of accuracy. Through being free of such ties, ‘chronometer’
is a more meaningful name.

1.13 Measuring Length

We next consider what makes a good ‘length-measuring device’. In contrast with
‘time-measuring devices’ being termed clocks, we do not have a generic word for
‘length-measuring device’. We begin by considering features of the traditional—and
still often used—measuring rods.

A first issue is the temperature dependence of the length of material rods. This is
controlled either via fine control of the temperature or through selecting a material
of low thermal expansivity (in particular Invar: iron with 36% nickel).

Secondly, rods need to be portable, so as to conduct measurements elsewhere
than the original location of the rod. To this end, copies are made of the master stan-
dard, which are then transported elsewhere. The point of having a master standard
is keeping it under carefully controlled conditions. Because of this, it itself need not
be made of Invar, being chosen rather for chemical inertness and toughness to be
Pt-10Ir: platinum with 10% iridium. Portable copies, on the other hand, are much
more prone to accidental damage such as scratching or bending.

See also Chap. 5 for some unsatisfactorinesses with solid rods as measuring de-
vices that are rooted in QM.

Greater accuracy can be attained by use of beams of electromagnetic radiation
in conjunction with measurements made using interferometers. Astronomy involves
a wealth of further means of evaluating distance (as surveyed e.g. in [888]). E.g.
parallax based upon Trigonometry, using the width of the Earth’s orbit around the
Sun, or use of standard candles, based on the 1/r2 law for apparent brightness of
recognizable objects with reasonably well-known absolute brightness.
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In the case of length-measuring devices, the lack of a generic name reflects that
rods or rulers suffice for most everyday purposes. This is in contrast to how clocks
used for everyday purposes have undergone upgrades. Devices more accurate than
rods are not widespread enough to have acquired a generic name. Rather, scientists
and crafters use specialized jargon for elsewise infrequently used instruments, be
these interferometers or callipers.

As regards the unit of length, the metre was originally (in 1790s post-revolu-
tionary France) defined to be one ten-millionth of the distance between the North
Pole and the Equator. Prior to this, each country defined its own units (some of which
survive in terms such as ‘yard’, ‘foot’ and ‘inch’, though these are now determined
from the metre via fixed conversion factors). One passed to using carefully preserved
metre sticks from the pure Pt one of 1893 to its Pt–10Ir upgrade which was in
use until 1960. The metre then underwent a brief period being defined as equal to
1,650,763.73 wavelengths of the orange-red emission line in the electromagnetic
spectrum of the Kr-86 (krypton) atom in a vacuum, as part of the introduction of
the International System of Units (SI). However, since 1983, the metre has been
defined in terms of c, as afforded by SR’s successes being built out of assuming that
c is strictly constant. Here the metre is the path-length travelled by light in vacuum
during a time interval of 1/c := 1/299,792,458 of a second.

Let us end by pointing to Einstein’s recommendation of considering the nature
and non-primality of clocks and ‘rods’. Sects. 1.12–1.13 might be viewed as a mod-
erate preliminary in this direction, and this is discussed further at the end of Chap. 4.



Chapter 2
Time, Space and Laws in Newtonian Mechanics

2.1 Newton’s Laws of Mechanics

Galileo conceived that all uniform motions are equally simple, as opposed to rest
being simpler. This perspective enabled a major breakthrough concerning force as
a notion of a body’s departure from its ‘natural state’ due to the action of other
physical entities. The particular concept of force introduced to this end by Sir Isaac
Newton involves acceleration rather than velocity, in contrast to the latter having
been the prevalent conceptualization since Aristotle. Galileo and Newton’s concep-
tions were not priorly obvious due to friction being common in Nature: the rolling
stone comes to rest. Moreover, rest was also associated with ‘things having their
place’. Feudal powers may have favoured such a concept due to its counterpart of
‘people having their place’, in contrast to social mobility, by which hegemonies can
be challenged.

The above perspectives of Galileo and Newton can be further formalized into the
first two of Newton’s Laws of Mechanics, as follows.1

Newton’s First Law. Every body continues in its state of rest, or of uniform motion
in a right line unless it is compelled to change that state by forces impressed upon
it.

Newton’s Second Law. The change of motion is proportional to the motive force
impressed; it is made in the direction of the right line in which that force is im-
pressed.

Newton’s Third Law. To every action there is always an opposing equal reaction.
A further alias for this is, consequently, Action–Reaction Principle.

1This book capitalizes subject areas, specific laws of nature, specific theorems, lemmas and similar,
specific principles, and the names of the Problem of Time facets, underlying Background Indepen-
dence aspects and strategies for resolving these which form the main topic of this book. This is
used to keep track of which phrasings refer to specific concepts that have already been introduced
in the book, rather than being merely colloquial uses of the words in question.
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In the joint modern formulations of Calculus and vectors,2 Newton’s Second Law
can furthermore be expressed as follows. Firstly, let x be the position of a Newtonian
particle with velocity ẋ := dx/dt , where t is Newton’s notion of time (see below).
Next, Newton’s notion of momentum is

p := m
dx

dt
; (2.1)

in most applications the mass m of the particle is taken to be constant. Finally,
Newton’s Second Law now reads

(Impressed force), F := dp

dt
. (2.2)

As one consequence of this, in the absence of external impressed forces, the mo-
mentum of a body is conserved: p = constant.

2.2 Impact of Newtonian Mechanics

Since the inception of civilization, there has been practical demand for ‘Terrestrial
Mechanics’—in the form of Engineering—and for ‘Celestial Mechanics’: due to
its timekeeping. The underlying laws for these, however, were largely not under-
stood prior to Newton, especially as regards a unified theoretical Paradigm. Indeed,
Newton’s Laws of Mechanics—alongside Newton’s Universal Law of Gravitation,
outlined in Sect. 2.7—unified the previously separate subjects of Terrestrial and Ce-
lestial Mechanics. This Newtonian Paradigm also provided the practical means of
further understanding and predicting a very wide range of phenomena.

More generally, dynamical laws—of which Newton’s Second Law is an exam-
ple—have been found to be capable of underlying substantial predictions. In the
particular case of Newton’s Second Law, the corresponding predictions were ex-
perimentally vindicated for over two centuries with essentially no contradictions.
Substantial examples include accounting for the following.

i) Galileo’s constant-acceleration model for free fall and projectiles.
ii) Uniform circular motion.

iii) Angular momentum conservation under central forces, an subcase of which re-
covers polymath Johannes Kepler’s Second Law of planetary motion: ‘equal
areas swept out in equal times’. Here angular momentum is L := r ×p; total

angular momentum is LTot := L2.

Before briefly considering further examples of successes based on Force Laws, let
us first turn to how Newton considered his Laws should be interpreted in the context
of his absolute notions of time and space.

2Calculus was also founded by Newton, and concurrently by Leibniz. However, in the great treatise
Principia Mathematica [676], Newton himself proved each Mechanics proposition by pictorially
laid out rigorous Euclidean Geometry (including use of limiting processes).
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2.3 Newtonian Absolute Space

Newton conceived of this as follows [676], presenting it in contrast with his notion
of relative space. “Absolute space, in its own nature, without relation to anything
external, remains always similar and immovable. Relative space is some movable
dimension or measure of the absolute spaces; which our senses determine by its
position to bodies; and which is vulgarly taken for immovable space. . . Absolute
motion is the translation of a body from one absolute place into another: and rel-
ative motion, the translation from one relative place into another.” Newton’s ab-
solute space is continuous, infinite, imperceptible (a generalization of invisible to
all senses and sensors) and cannot be acted upon. It is mathematically modelled
by Euclidean R

3 (with fixed origin and fixed axes); this also amounts to assuming
well-definedness globally in space.

2.4 Newtonian Absolute Time

Newton also considered motion to occur in time, his principal conception of which
was absolute [676]. He explained this, in contrast with his notion of relative time,
as follows. “Absolute, true and mathematical time, of itself, and from its own na-
ture flows equably without relation to anything external, and by another name is
called duration: relative, apparent and common time, is some sensible and exter-
nal (whether accurate or unequable) measure of duration by the means of motion,
which is commonly used instead of true time.” Here ‘equably’ means ‘uniformly’.
Also note the use of Newton’s concept of duration rather than Chap. 1’s paradigm-
free version. ‘External’ is in the sense of external to the physical entities under con-
sideration. This includes Newtonian time being an external parameter rather than a
(dependent) dynamical variable. This complies with the parametrization feature of
time, but not with reparametrizability.

Newton’s absolute time is likewise continuous, infinite, imperceptible and cannot
be acted upon. Its infiniteness is mathematically modelled by R and amounts to
assuming well-definedness holds globally in time itself. The last two features run
against operational meaningfulness. Newtonian time is also unique enough to avoid
multiplicity of times, in fact for now too strongly so, out of contravening freedom
of choice of calendar year zero and of tick-duration. It is however straightforward
to incorporate these features into one’s practical physical calculations.

In the Newtonian Paradigm, absolute time is used to transform kinematic ge-
ometry into far more physically predictive Dynamics [96]. Within the Newtonian
Paradigm, this is taken to be a universal time—one time for all the bodies and all
the Laws of Physics; this precludes t being position-dependent. In fact, much of this
conception of time preceded Newton, being used in the mid 1600s by Isaac Barrow,
and Pierre Gassendi, and even as far back as the second century astronomer Ptolemy
[521].

The Newtonian Paradigm also possesses a notion of change in time. It also pos-
sesses a notion of time as a container: a parameter of choice with respect to which
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Fig. 2.1 The Aristotelian Paradigm considers a) and b) to be distinct worlds, whereas in the
Galilean Paradigm they are one and the same. This is not in accord with one of a) and b) being
privileged by its further identification with being at rest with respect to absolute space. c) contrasts
the structure of Newtonian space-time. Each instant, now, or simultaneity is labelled by a value of
Newtonian absolute time

change is manifest. Newton’s Second Law subsequently plays the corresponding
role of Dynamical Law.

Time features 1) to 11) of Sect. 1.6 are straightforwardly realized in the New-
tonian Paradigm. The following four statements about these aspects of time in the
Newtonian Paradigm are made to subsequently contrast with other Paradigms of
Physics departing significantly from these.

1) Absolute time is taken to define a sequence of simultaneities representing Nature
at each of its instants. Each simultaneity is here a copy of the apparent 3-d Eu-
clidean Geometry of the corresponding space, containing a collection of particles
(which possibly constitute extended objects).

2) Dating procedures are straightforward in the Newtonian Paradigm and enable
the establishing of a chronological ordering.

3) Causal ordering coincides with chronological ordering here.
4) Duration is here indeed just the ‘intuitive’ difference of datings: |t2 − t1 |.

2.5 Aristotelian, Galilean and Newtonian Paradigms Compared

Each of Aristotle and Newton put forward distinct absolute concepts for space and
time (Fig. 2.1). Galileo, despite preceding Newton, made a different advance: con-
trast Fig. 2.1) with Newton’s unique absolute space. In this way, the Newtonian
Paradigm also involves velocity relative to absolute space, Vabs. On the other hand,
the Galilean Paradigm is free from this, through involving instead a privileged fam-
ily of frames moving at constant velocity v relative to one another. Note that this
is a trading of one Absolute Paradigm for another: a unique absolute space and an
absolute velocity Vabs for a non-unique notion of absolute space. Galileo’s position
did become the widely accepted one, modulo the caveat presented in Sect. 3.5.

The Galilean transformations are of the form

x → x′ = x − vt (2.3)
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for constant velocity v. One may adjoin

t → t ′ = t (2.4)

to this, i.e. there is just the one t , in contrast with other standard Paradigms
of Physics’ multiplicities. The Galilean transformations interrelate the privileged
frames of reference in which Newton’s First Law holds, which are termed inertial
frames. These are at rest in absolute space or moving uniformly through it along
a straight line. The Galilean transformations are the basis of Galilean Relativity.
Frames related by this transformation can be envisaged as ‘boats’ in relative motion
with constant velocity with respect to each other; these are as good as each other for
the formulation of equally simple Laws of Physics. Indeed, Newton’s Laws of Me-
chanics obey Galilean Relativity: they are invariant under Galilean transformations
between inertial frames. On the other hand, in non-inertial frames, additional ficti-
tious forces are perceived. Finally, contrast how Aristotle did not have any widely
applicable law, without which considering simplifications in certain frames is moot.

We additionally consider additive transformations: spatial and temporal transla-
tions

x −→ x′ = x + k, t −→ t ′ = t + t0. (2.5)

This does not incur any further complications. The second of these incorporates the
desirable freedom of choice of calendar year zero. All in all, a minor modification
of Newtonian time has Sect. 1.8’s timefunction properties 1), 4) and 6), but not 2)
or 3). As regards property 5)—operational meaningfulness—Newtonian time tech-
nically does not possess this, but via the rotation of the earth (‘sidereal time’) being
identified in practice with Newtonian time, this property is in effect acquired.

The second Eq. (2.5) in is the corresponding freedom of choice of origin for
absolute space. In fact, Newton himself identified absolute space in terms of the
centre of mass of the solar system being at rest.

The issue of spatial rotations is, however, more involved; the transformation here
involves a unit-determinant orthogonal matrix

x −→ x′ = Rx. (2.6)

The full set of translations and rotations constitute the kinematical group [814] of
transformations between pairs of frames. Two particular cases are constant k and
R in the Newtonian kinematical group and time-dependent ones in the ‘Leibnizian
kinematical group’ [278]. In the current setting, translations and rotations originate
from modelling space as R

3, for which these are rigid symmetries; see Sect. 2.12
for further discussion. The (infinitesimal) actions of the generators of these on a
velocity vector are

TV : ẋ −→ ẋ + V , RΩ : ẋ −→ ẋ −Ω × x. (2.7)

Using the above infinitesimal rotational action twice, the real acceleration relative
to an inertial frame is related to the apparent acceleration in a rotating frame by

ẍ = ẍapparent + 2Ω × ẋ + Ω̇ × x + Ω × {Ω × x}. (2.8)
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The fictitious terms here are, respectively, the Coriolis, Euler, and centripetal accel-
erations; see Ex I.4 for more.

2.6 Newton’s Bucket

Rotations are less straightforward to handle and indeed led historically to complica-
tions. In particular, Newton used rotations in the argument in his Scholium [676] by
which he became convinced to the reality of absolute space. “If a vessel, hung by a
long cord, is so often turned about that the cord is strongly twisted, then filled with
water, and held at rest together with the water; thereupon, by the sudden action of
another force, it is whirled about the contrary way, and while the cord is untwisting
itself, the vessel continues for some time in this motion; the surface of the water
will at first be plain, as before the vessel began to move; but after that, the vessel,
by gradually communicating its motion to the water, will make it begin sensibly to
revolve, and recede by little and little from the middle, and ascent to the sides of the
vessel, forming itself into a concave figure (as I have experienced), and the swifter
the motion becomes, the higher will the water rise, till at last, performing its revolu-
tions in the same times with the vessel, it becomes relatively at rest in it. This ascent
of the water shows its endeavor to recede from the axis of its motion; and the true
and absolute circular motion of the water, which is here directly contrary to the rel-
ative, becomes known, and may be measured by this endeavor. . . . There is only one
real circular motion of any one revolving body, corresponding to only one power of
endeavoring to recede from its axis of motion. . . And therefore in their system who
suppose that our heavens, revolving below the sphere of the fixed stars, carry the
planets along with them; the several parts of those heavens, and the planets, which
are indeed relatively at rest in their heavens, do yet really move.” We return to this
analysis in Chap. 3.1 with some historically-posterior arguments.

We next consider Force Laws within the Newtonian Paradigm.

2.7 Newtonian Gravity

Newton’s Universal Law of Gravitation. The gravitational force between two parti-
cles with masses mI at positions xI is3

Fg
12 = −Gm1m2

r2
12

r̂12, (2.9)

where G is Newton’s universal gravitational constant. Combining (2.9) with New-
ton’s Second Law, gives the equation of motion for a particle in a gravitational field.
In particular, this framework accounts for the following.

3Let us use I -indices to run over particle labels, currently 1 and 2, and rIJ := xI − xJ , and small
hats for unit vectors.
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1) Kepler’s other two Laws of Plantary Motion: that the planets move on ellipses
with the sun at one focus and with (orbital period) ∝ (semi-major axis)3/2.

2) Gravitation near the surface of the Earth. Thereby, Newton unified Terrestrial
and Celestial Mechanics. Indeed, Newtonian Gravitation has considerable fur-
ther success at accounting for Solar System motions, e.g. in modelling perturba-
tions due to interactions between planets.

By the 19th century, physicists began to favour the description of forces in terms
of fields pervading space. In other words, they began to consider Field Theories.
From this perspective, the Newtonian gravitational potential is a scalar field: the
gravitational potential φ12 := m2/|r12 | at x1 due to the particle of mass m2 at x2. In
terms of this, Fg

12 may furthermore be written as Fg
12 = −m1∂φ12. The gravitational

vector field g = −∂φ is also useful in the discussion below. Near the surface of the
Earth, the magnitude of this is the familiar ‘terrestrial gravity’ g, whose direction is
‘downwards’. Conversely, φ is said to be a scalar potential for g.

Newtonian Gravity is linear, so the Superposition Principle applies as regards
building up the gravitational field at each location x from each material point source.
The total gravitational force due to all of a system’s particles is Fg(x) = −m{∂ φ}(x).
In the Field Theoretic formulation, the combination of Newton’s Second Law and
(2.9) gives ẍ = −{∂φ}(x). Consider the particular case of this for two neighbouring
particles at positions x and x + 	x. By subtraction and the definition of derivative,
one arrives at the tidal equation

	ẍ = −∂{∂ · 	x} (2.10)

for the relative acceleration of the two particles. This equation indeed accounts for
the tides of the sea in terms of the position of especially the Moon and also the
Sun. Moreover, this is but the most familiar of many such effects, and the relative
acceleration concept is accorded further theoretical significance in Chap. 7.

A field equation—describing how Gravitation is sourced by masses—is also re-
quired. In differential form, this gives Poisson’s Law

−∂ · g = �φ = 4π Gρ, (2.11)

where ρ is the mass density. (2.9) is then recovered as the fundamental solution
[220] corresponding to the 3-d Laplacian operator.

A small (43 seconds of arc per century) anomalous perihelion precession of Mer-
cury was detected in the late 19th century. At first, this was attributed to a pertur-
bation caused by a ‘planet Vulcan’ (and then to a cloud of smaller bodies) in close
proximity to the Sun. We shall see however in Chap. 7 that Einstein gave an entirely
different explanation for this effect, and indeed no ‘planet Vulcan’ has ever been
seen.



26 2 Time, Space and Laws in Newtonian Mechanics

2.8 Electrostatics

In this book, we do not take ‘Newtonian’ to mean ‘posited by Newton’ but rather
‘within Newton’s Paradigm for Physics as a whole’. This covered all the Physics
that was known for over two centuries after Newton’s formulation and remains an
excellent approximation for many practical purposes. Within this Paradigm, the next
three sections consider further Force Laws that turn out to be based upon fundamen-
tal forces.

The phenomenon of static electricity, in the form of rubbing amber with cloth,
has been known since the Ancient Greeks. Experimental confirmation of the
corresponding force law did not however come until physicist Charles-Augustin
Coulomb’s work in the 18th century. Coulomb’s Law for the force between two
charges qI at positions xI is

F12 = K
q1q2

r2
12

r̂12. (2.12)

K is here Coulomb’s constant; this has been subsequently interpreted as 1/4πε0
for ε0 the permittivity of space (the value of this quantity is given and explained in
Chap. 3.5).

The development of Field Theory was particularly significant for the study of
Electricity and Magnetism and their eventual unification. Vector Calculus subse-
quently provided an efficient language for this. For now, Coulomb’s Law can be
recast as a particular case of Gauss’ Law, in terms of a vector electric field E or a
scalar potential� such that E = −∂ �. The differential form of Gauss’s Law is now

−�� = ∂ · E = ρe/ε0 (2.13)

for ρe the charge density. The passage from the 3-d Laplacian to the inverse-square
fundamental solution is just a mathematical reworking, by which Coulomb’s Law is
recovered analogously to how Newton’s Universal Law of Gravitation is retrieved
from Poisson’s Law in the previous section. Working in terms of � superposition is
again immediate, so Gauss’s Law readily covers a wider range of configurations of
charges.

2.9 Gravitation and Electrostatics Compared

Let us comment further here on the extent of the similarity between Coulomb’s Law
and Newton’s Universal Law of Gravitation. Both are inverse square laws between
‘charges’ that feel the force in question; here these are electric charges, whereas for
Gravitation they are masses. We shall see in Chaps. 3 and 7, however, that the above
similarity turns out to be a coincidence of simplified regimes rather than some deep
inter-relation. Moreover, electric charges come with two possible signs: positive
and negative, whereas Gravitation has only one sign of ‘charge’: positive mass. Nor
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need all macroscopic bodies possess any electric charge, whereas they do all possess
mass. Finally note that it is unclear at this stage that Gravitation will turn out to
be very significant for further theoretical reasons beyond Newton’s unification of
Terrestrial and Celestial Mechanics.

Also N.B. that

Gravitation is 1040 times weaker than electrostatic attraction. (2.14)

This is a rough order of magnitude estimate, which holds for the range of constituent
elementary particles of ordinary matter.

Moreover, mass already featured in a different manner in the conceptualization
of Newtonian Mechanics. This might be interpreted as mass being a two-use con-
cept, or as there actually being two different concepts of mass [520] that are not a
priori to be assumed to be the same. I.e. inertial mass in Newton’s Second Law and
gravitational mass in Newton’s Law of Gravitation. The latter can furthermore be
split into active and passive subcases [520].

Let us next consider Newton’s Second Law in a rotating rather than inertial
frame. Dividing by the inertial mass mi, this is [814]

ẍ = a + mg

mi
g + 1

mi
F − {2Ω × ẋ + Ω̇ × x + Ω × {Ω × x}}, (2.15)

since nothing can shield gravity, and where a = a(x, ẋ) is an acceleration field.
It has additionally been noted experimentally (in e.g. ‘Eötvös-type’ experiments
[910], named after Baron Roland von Eötvös) that mg

mi
cannot be measured, i.e. that

this happens to be independent of material composition. Furthermore, elevating this
from an experimental summary to a physical principle constitutes a type of Equiv-
alence Principle:4 a significant matter to which we return in Chap. 7. On the other
hand, distinct electric charge-to-mass ratios are readily observed.

We end this discussion of mass with how the unit of mass—the kilogram—has
been defined since 1889 as the mass of some carefully preserved lump of metal. It
is presently a surface area minimizing cylinder of the Pt–10Ir alloy.

2.10 Magnetostatics

For now, take magnets to concern a further force known since antiquity to be exhib-
ited by a few minerals such as lodestone, to be transferable unto some metals, and
to be pervasive as some kind of weak background. E.g. the compass was invented
in Ancient China as a tool of navigation; the background it picks up is now known
to be sourced by the interior of the Earth. Magnetism was found to be sourced by
electric currents; the steady-current regime case of this began to be understood as a

4This contradicts the Aristotelian doctrine that heavy bodies fall faster than lighter ones. On the
other hand, another Ancient Greek philosopher—Epicurus—did entertain such a concept [520].
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Force Law between wires due to Biot and Savart in the early 19th century. E.g. for
wire elements dlI carrying steady currents II at positions rI ,

F12 = μ0

4π

I1dl1 · I2dl2
r2

12

r̂12. (2.16)

Here μ0 is the permeability of space, which is defined to take the exact value 4π ×
10−7ampère metres. Formulating the above in Field Theoretic terms gives Ampère’s
Law

∂ × B = μ0j. (2.17)

Equation (2.16) is now readily recovered as a particular solution of this.
Magnets have two kinds of poles—termed North and South. No pole of one kind

has ever been observed in the absence of an opposite pole, e.g. bar magnets are
observed to have a North pole at one end and an equal-strength South pole at the
other. If a bar magnet is split into shorter bars, each piece has one of each kind
of pole, so one cannot consider a region of space containing one kind of pole but
not the other. This ‘non-observation of magnetic monopoles’ is encoded as a further
Law,

∂ · B = 0. (2.18)

Compare this with Gauss’s Law (2.13), which in general has a non-zero source
charge term on its right hand side. Magnetism has no such thing as a source pole
term!

2.11 Light Flashes

For now, let us consider these just in Newtonian terms so as to enable their use as
thought-experiment probe devices so as to compare [831] Newtonian Mechanics
and SR in Chap. 4.

2.12 Cartesian and Curvilinear Tensors Within the Newtonian
Paradigm

R
p can be viewed5 as an inner product space or normed space (Appendix A.3)

associated with a matrix I whose components are δij (the Kronecker delta symbol).
This is an efficient way to encode length of a vector ‖v‖, distance between points

5Most usually this is R3, but some issues are sufficiently well-illustrated by R or R2, and R
p for

p > 3 also enter at the level of configuration space. Moreover, there is no extra complication in
treating this in arbitrary dimension.
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with position vectors q
1

and q
2
: ‖q

1
− q

2
‖, ratios of lengths ‖v‖/‖u‖, and angles

between vectors, arccos( v·u
‖v‖‖u‖ ). One can now treat (the p-dimensional version of)

Euclidean Geometry in these more modern terms.
The transformations preserving ( , ), ‖ ‖ or I are translations Tr(p), rotations

Rot(p) and reflections Ref . These form a group of Euclidean transformations; we
focus on the case without reflections, for which we denote the group by Eucl(p).6

Cartesian coordinate systems on R
p are interrelated by x̄i = Rijxj + Ti . For

rotations Rij and translations Ti , considering vectors on R
p is natural because in-

ner product spaces are vector spaces; vectors are furthermore well-known to model
many physical quantities. Under rotation of frames, vectors transform as

v̄i = Rijvj . (2.19)

‘Vector proportionality laws’, such as Ohm’s Law j = σE for electrical conductivity
tensor σ, end up taking forms such as ji = σijEj : laws involving ‘matrix valued’
quantities. This leads to one asking how such a σij itself transforms under the group
under which the vectors were already held to transform. One can keep on repeating
this process for objects with increasing numbers of indices. The most well-known of
these is probably sij = Cijkleij from elasticity theory, for s the stress, e the strain and
C the elasticity, i.e. a tensorial rendition of Hooke’s Law. Additionally, the tensor
transformation law for the 2-index object is

T̄ij = RilTlmR
T
mj = RilRjmTlm. (2.20)

Tensors are of wide importance in Physics. Within this framework, the Quotient
Theorem furthermore gives back that ‘(tensor) = (unknown) · (tensor)’ implies that
the unknown entity also transform as a tensor, justifying the above means of envis-
aging the need for tensors as well as just vectors.
δij itself is a special such tensor, blessed with isotropy. This means that the entity

is the same in all directions, in the case in which R
n is being interpreted as space,

this property is a significant postulated attribute. This is in contrast with all other
2-tensors, which exhibit preferred directions as per the previous paragraph’s argu-
ment. Having preferred directions corresponds to exhibiting anisotropy. A notable
example of this is the electrical conductivity of graphite, which is large in a plane
of directions and small in the perpendicular direction. Since observing this, it has
been found out to result from a parallel-layer structure on the slightly larger than
atomic scale. It is later also further insightful to identify δij as a metric (indeed, it
is a metric tensor and the associated distance is the basis of a metric space). This is
specifically the Euclidean metric, and the rigid transformations Tr(p), Rot(p) and

6See Appendix A.2 for an outline of Group Theory. Tr(p) and Rot(p) are continuous transfor-
mations. Ref are discrete. Let us call Eucl(p) as defined here the proper alias special Euclidean
group, whereas including Ref would involve a full Euclidean group) ‘Proper’ and ‘special’ are
more widely used of cases excluding discrete reflection transformations. See also Appendix B as
regards other types of Flat Geometry corresponding to the preservation of other combinations of
the previous paragraph’s quantities.
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Ref are now the corresponding isometries: metric-preserving transformations (see
Appendix B). The word ‘metric’ indeed means a measurer of the basic geometrical
entities: the above expressions for lengths, distances, ratios of distances and angles.
The corresponding line element is

ds2 = ‖dx‖2 = dr2 + r2dΩ2, (2.21)

for dΩ2 the {d − 1}-sphere line element; in particular dΩ2 = dθ2 + sin2θ dφ2 for a
2-sphere in 3-d .

The second form of this is in curvilinear coordinates (in this case spherical polar
coordinates). Some problems (or models) match some curvilinear coordinate sys-
tem well in symmetry, and some workings are solvable in particular coordinates. In
general distinction between upstairs (contravariant) and downstairs (covariant) in-
dices is required (see Appendix D.2 for more). The coordinate transformation now
involves

Ji j := ∂x̄i

∂xj
(2.22)

—the Jacobian (transformation) matrix—in place of Rij . See Appendix D.2 for a
more general treatment of coordinate transformations and consequently of tensors.
Rij and Ji j are but the first two cases of this encountered in this book. Each case has
a concept of tensor transformation law as associated with the corresponding group
of transformations. So e.g. a Cartesian tensor is really a [Rot(p) = SO(p)]-tensor
for SO(p) the d-dimensional special orthogonal group: see Appendix E). The group
corresponding to Ji j itself will be introduced in Chap. 7.

Moreover, Rij maps simple cases to simple cases within the Newtonian
Paradigm, but that Ji j seldom preserves simplicity. This is useful in those few
problems which admit judicious choices of simplifying coordinates. Also note the
difference between ‘laws are simple in these restricted frames’ and ‘this specific
example’s mathematics is simple’.

We finally point to curvilinear transformations are in general not valid over the
whole of Rn. For instance, polar coordinates are not valid at the origin since φ is
undefined there. This is accompanied by a breakdown in the Ji j in moving from
coordinates valid in some region to coordinates invalid there. The absolute value of
the determinant of Ji j—the Jacobian J itself—furthermore features as a factor in
integrands. The familiar Vector Calculus is the most common and simple case of
Tensor Calculus, and is used in both the Cartesian and curvilinear contexts.

2.13 Principles of Dynamics (PoD) formulations of Mechanics

Other than in the case of a single particle, instantaneous configuration of a system is
a distinct notion from space. In the former, a system’s configuration is represented
by a single point in configuration space q, and the evolution of a system by a sin-
gle curve therein. E.g. for N particles in d-dimensional space R

d the configuration
space [598] is RdN [598].
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Theoreticians can moreover choose to describe the position of a particle in (ab-
solute) Euclidean 3-space R

3 by 3 curvilinear coordinates. It is convenience, rather
than any physical reality, which underlies which particular choice is made.

Configuration spaces are a starting point for the Principles of Dynamics (below),
and are also central to Presentism and Fully Timeless Approaches. Mechanical sys-
tems are usually taken to be second order, so that the initial position of the particle
does not suffice to determine the motion. One requires also such as the initial veloc-
ity or the initial momentum. ForN particles in R

d , naïvely one requires the prescrip-
tion of dN coordinates to describe their positions. However, the particles may not
be free to move in all possible ways, e.g. some of them could be attached by means
of strings, springs or rods. Such constitute constrained mechanical systems, which
can be described in terms of less than 3n independent coordinates, QA.7 Whereas
one may attempt to study such particle systems directly using Newton’s Laws, this
may be cumbersome and requires knowledge of all the forces acting at each point
in the system.

A method based on energy considerations, which is often of computational value
and extends to Field Theory, was formalized by Euler and Lagrange in the 18th
century: the Principles of Dynamics (Appendix J). Firstly, one considers a system’s
potential energy V = V (Q) and kinetic energy T . A typical form for the latter is
MABQ̇

AQ̇B/2 := ‖Q̇‖2
M/2. MAB is here the configuration space metric, the most

common case of which is the kinetic mass metric mIδij δIJ for I = 1 to N particles
in d-dimensional space. This indicates that configuration spaces are geometrical
entities: a theme developed in Appendix G. ‖ ‖M is a usefully concise notation
here, as per Appendix A.3. One next forms the Lagrangian L := T − V : a single
function, knowledge of which permits one to write down a set of equations of motion
equivalent to Newton’s. Consult Appendices J.1-4 as regards subsequent significant
developments.

In the present case, the Principles of Dynamics’ generalized momentum produces
the vectorial approach’s usual notion of momentum (2.1), and the Euler–Lagrange
equations amount to a recovery of the vectorial approach’s Newton’s Second Law.
Some significant Mechanics examples of Poisson brackets evaluations are the fun-
damental bracket

{
qi,pj

} = δij , (2.23)

and the angular momentum bracket

{Li,Lj } = εij
kLk,

{
qi,Lj

} = εijkq
k, {pi,Lj } = εij

kpk. (2.24)

The first Poisson bracket in (2.24) signifies that angular momentum corresponds to
the SO(3) group of rotations (Appendix E), and the second and third that qi and pi
are good objects—vectors—under SO(3) transformations.

7My capital sans-serif indices are general indices, many of which are reserved for particular uses
in this book. This book also uses bold font for index-free presentations, so e.g. the QA are denoted
more succinctly by Q.
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In conclusion, the Principles of Dynamics readily extends to formulation in
curvilinear coordinates: these last two sections on ‘useful tools’ additionally com-
bine well. These lie at the root of much efficient problem-solving within the New-
tonian Paradigm. Additionally, this is not their only purpose, for they are built out
of concepts that extend much further across Physics, Via a large family of Ten-
sor Calculi and of metric geometries, and by Principles of Dynamics approaches
applying to all branches of Classical Physics—involving such as fields as well as
particles—such tools apply in whichever Paradigm of Classical Physics rather than
just Newton’s.



Chapter 3
Absolute Versus Relational Motion Debate

This debate has been ongoing at least since the inception of Newtonian Mechanics.1

Newton’s bucket (Sect. 2.6) thought experiment served to convinced him that abso-
lute space was real. Moreover, observed Physics was well accounted for by New-
tonian Physics until the end of the 19th century. Around then, evidence for further
Physics began to accumulate and be noticed; this led to QM, SR and GR. The issue
presently at stake, however, is whether Newtonian Mechanics has a conceptually
and philosophically solid basis.

3.1 Two Centuries of Critique of the Newtonian Paradigm

The immovable external character of the absolute space and time—which the New-
tonian Paradigm assumes—is abhorred by relationalists. These include the famous
polymath Gottfried Wilhelm Leibniz and the noted physicist, philosopher and con-
ceptual thinker Ernst Mach. An alternative Relational Paradigm could start along
the following lines. [A mathematically precise formulation of this is postponed to
Chap. 9.]

Relationalism-0) Physics is to solely concern relations between tangible entities.

Moreover, this is a statement universal to all of Physics rather than just concerning
Mechanics. Indeed, this book uses ‘tangible entities’ rather than ‘material objects’
to include fields and ‘force mediators’ as well as ‘matter building blocks’, as befits
modern Physics. Key properties of ‘tangible entities’ are as follows.

Relationalism-1) These act testably and are actable upon. [Einstein attributed this
to Mach.]

1Note moreover that some of the literature can cause confusion on this matter due to using the
word ‘relative’ instead of ‘relational’, which may subsequently be conflated with, or left open to
confusion with, Relativity Theory.
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Things which do not act testably or cannot be acted upon are held to be physical
non-entities. [These can still be held to be a type of thing as regards being able
to philosophize about them or mathematically represent them. Absolute space is an
obvious archetypal example of such a non-entity.] The intuition is that imperceptible
objects should not be playing causal roles influencing the motions of actual bodies.
As a first sharpening of this, in foundational physicist James L. Anderson’s [13]
view “the dynamical quantities depend on the absolute elements but not vice versa”,
and an absolute object “affects the behavior of other objects but is not affected by
these objects in turn” [60]. Background fields are intuitively fields that violate the
Action–Reaction Principle.

Relationalism 2) Following Leibniz [3], any entities which are indiscernible are
held to be identical.

I.e. Relationalism posits that physical indiscernibility trumps multiplicity of mathe-
matical representation. Such multiplicity still exists mathematically, but the mathe-
matics corresponding to the true physics in question is the equivalence class span-
ning that multiplicity. One would only wish to attribute physical significance to cal-
culations of tangible entities which are independent of the choice of representative
of the equivalence class. By this e.g. our Universe and a copy in which all mate-
rial objects are collectively displaced by a fixed distance surely share all observable
properties, so they are one and the same. The archetype of such an approach in
modern Physics is Gauge Theory (see Chap. 6). This additionally carries the major
insight that a mixture of tangible entities and non-entities is often far more straight-
forward to represent mathematically.

For now, consider separate treatments of space and instantaneous configurations
on the one hand, and of time on the other. This befits the great conceptual hetero-
geneity between these which Chap. 1 began to present. Once this is understood,
relational postulates can be stated, and a coherent subset of these are sharply math-
ematically implementable.

Leibniz’s Space Principle is that space is the order of coexisting things [3].
Leibniz’s Time Principle is that time is the order of succession of things [3]. In

discussing this, Leibniz’s context was whole universes and part of the point he was
making is there being no meaningful notion of time with a separate existence in such
a setting. I.e. the existence of the events is independent of absolute time, so that the
only notions of time left are relational ones. On these grounds, one can infer the
position held in this book that ‘there is no time at the primary level for the Universe
as a whole’. (See also [98] for somewhat similar positions, and the discussion of
the Frozen Formalism Problem in Sects. 9.7, 9.10 and 12.1.) Note moreover that
Leibniz acknowledged time’s ordering property but not its metric property.

Leibniz’s Perfect Clock is the distinct suggestion that the whole Universe is the
only perfect clock. (See [104] for perfect clocks without mention of Leibniz, and
around p. 41 of [906] for details.)

This is to be contrasted with Newton’s position that the Universe contains clocks,
which are regarded as substantially localized objects such as a pendulum clock.
[These are placing importance respectively on calibration, and on reading-hand and
stability aspects.]
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Four objections to Leibniz’s Perfect Clock are as follows.

1) It would be operationally impractical to use the whole Universe as a clock. This
is because it would take a considerable effort to monitor the whole Universe and
one only has very limited knowledge of many of its constituent parts. Including
scantly known information from remote parts of the Universe would lower the
accuracy of one’s timestandard.

2) Suppose one were to go so far as to include the entirety of the Universe’s contents
in one’s quest to ‘perfect’ one’s clock. In this case, one would be treating the
entirety of a closed system, at which point apparent frozennesses materializes as
per Leibniz’s Time Principle.

3) Adopting this principle would additionally open Pandora’s box as regards how to
reconcile Leibniz’s meaning of ‘Universe’ with that of modern GR’s Cosmology
[702, 888]. I.e. since the Leibniz’ Perfect Clock concept’s intent is constructive,
it would require making active use of the meaning of the word ‘Universe’ in its
statement. [In contrast, Leibniz’s Time Principle is not constructive.]

4) In any case, we shall see in Sect. 5.4 that perfect clocks are not possible in QM.

By these arguments, in this book we do not adopt this perfect clock concept. In
Sects. 3.3, 5.4 and 7.7, however clocks that are considerably more extensive than
a pendulum clock, pocket watch or atomic clock—such as those which are based
on the Solar System—are considered, at least for calibration purposes. These can
be taken to carry some vestige of the ‘perfect clock’ concept, but now realistically
balanced with how Physics is about precision rather than about perfection.

Mach pointed out some flaws in Newton’s bucket argument. The rotation is with
respect to the ‘fixed stars’, pointing to the hitherto tacit inclusion of the effects of dis-
tant matter. Mach furthermore noticed that allowing for the bucket to be materially
significant—“several leagues thick” [632]—is outside of the situation overruled by
observation. This led on to various statements concerning the hypothetical origin of
inertia, along the lines of ‘the distribution of masses in the Universe determines in-
ertia at each point’. Although such a ‘Mach’s Principle for the Origin of Inertia’ is
Mach’s best-known insight in the foundations of Mechanics, it plays a limited role
in this book. Mach’s foundational suggestions are, moreover, somewhat disjoint; the
ones that this book does build upon are, rather, the following.

Mach’s Space Principle is that [632] “No one is competent to predicate things
about absolute space and absolute motion. These are pure things of thought, pure
mental constructs that cannot be produced in experience. All our principles of me-
chanics are, as we have shown in detail, experimental knowledge concerning the
relative positions of motions and bodies.”

Mach’s Time Principle, on the other hand, is that [632] “It is utterly beyond
our power to measure the changes of things by time. Quite the contrary, time is
an abstraction at which we arrive through the changes of things.” I.e. ‘time is to
be abstracted from change’. Indeed, it is change that we directly experience, and
temporal notions are merely an abstraction from that, albeit a very practically useful
abstraction if chosen with due care.

A further inter-connection is that Mach’s Time Principle resolves Leibniz’s Time
Principle’s timelessness; this is further developed in Chaps. 9, 12 and Parts II and III.
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Let us end by pointing to Broad’s caution [171] that time and change are “the hardest
knot in the whole of philosophy”.

3.2 Concrete Example of Relational Particle Mechanics (RPM)

Historically, however, there was a lack in viable relational theories or formulations
of Mechanics. The comparatively recent Relational Particle Mechanics (RPM) the-
ories, starting with that of Barbour and Bertotti (1982) [105] has made up for this
deficiency. This is named after foundational physicist Julian Barbour and physicist
Bruno Bertotti, and is based on the Leibniz group of the transformations (2.5), (2.6)
with label time dependent k and R in the role of kinematical group. See Chap. 9 for
a brief outline; such models are used extensively as examples in Parts II and III.

3.3 Ephemeris Time as a Realization of Mach’s Time Principle

Around the turn of the 20th century, departures from predicted positions of celestial
bodies were noted, especially for the Moon. These were moreover most succinctly
accounted for not by modifying lunar theory but rather by considering the rotation
of the Earth to inaccurately read off the dynamical time. Physicist Willem de Sitter
[231] explained this as follows. “The ‘astronomical time’, given by the Earth’s rota-
tion, and used in all practical astronomical computations, differs from the ‘uniform’
or ‘Newtonian’ time, which is defined as the independent variable of the equations
of celestial mechanics.” This is a major example of clock bias and calibration.

This was then addressed by using the Earth–Moon–Sun system as providing a
superior timestandard. Here, astronomer Gerald Clemence’s eventual proposal in
1952 [211] involved a particular way of iteratively solving for the Earth–Moon–
Sun system for an increasingly-accurate timestandard that came to be known as
the ephemeris time. This can be viewed as an improved realization of the time of
Newtonian Mechanics.

Whereas such an ephemeris time has long been in use, its Machian character has
only relatively recently been remarked upon (see Chaps. 15 and 23 for details).

Ephemeris time is also interesting as a notable exception to basing clocks upon
periodic motions. This is through its incorporating irregularities. It is also an exam-
ple of a highly accurate but inconvenient primary process, as opposed to consulting
a convenient ‘reading hand’.

Finally, one passed from a sidereal time based time-unit followed suit in the late
1950s. In 1967 the time-unit was redefined so as to bring it in line with the atomic
clock timestandard (Sects. 1.12 and 5.5).
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3.4 Universality of Relational Thinking

Furthermore, the arguments of Leibniz and Mach are philosophically compelling
enough that they should apply to not just Mechanics but to Physics as a whole.
I.e these form a universal position over the set of laws of Physics. As subsequent
Chapters shall reveal, this was a significant aspect of Einstein’s thinking in develop-
ing SR and GR. See Chaps. 4 and 9 for the extent to which SR and GR succeed in
addressing and resolving the absolute versus relational motion debate.

3.5 Electromagnetic Unification and the Luminiferous Aether

The last—and most historically substantial—issue to discuss arises from consider-
ing Electromognetism as unified by noted physicist James Clerk Maxwell.2

Let us first consider Electromagnetism in non-steady situations (i.e. beyond those
in Chap. 2). The E and B fields are furthermore interrelated by the

Faraday–Lenz Law, ∂ × E = −Ḃ. (3.1)

Maxwell subsequently found a displacement current μ0ε0 Ė, which modifies Am-
père’s Law to the

Ampère–Maxwell Law : ∂ × B = μ0 j + μ0ε0 Ė. (3.2)

By this, there is a reverse coupling between the E and B fields. This completes
electromagnetic unification. One immediate and significant consequence of this was
theoretical justification of light being electromagnetic radiation in vacuo (ρe = 0,
ji = 0) with propagation speed

c = 1/
√
ε0μ0. (3.3)

[Also by this relation, ε0 takes an exact value,

8.8541878176 . . .× 10−12 A2 s4 kg−1 m−3,

since c and μ0 are themselves defined to be exact.] Maxwell’s displacement cur-
rent is clearly crucial in this regard, since it alone carries the ε0μ0 factor involved
in the propagation. Indeed, that B obeys the wave equation in vacuo follows from
B̈ = −∂ × Ė = − 1

μ0ε0
∂ × {∂ × B} = 1

μ0ε0
�B, the second equality of which involves

Maxwell’s displacement current. On the other hand, that E obeys the wave equa-
tion in vacuo follows from Ë = 1

μ0ε0
∂ × Ḃ = − 1

μ0ε0
∂ × {∂ × E} = 1

μ0ε0
�E, where the

2This is the only part of Chap. 3 that is used in the standard development of Physics (Chaps. 4 to
7). The other parts feed into Chaps. 9 to 12’s account of classical Background Independence and
Quantum Gravity.
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first equality involves Maxwell’s displacement current. Both additionally contain the
wave operator � := −c−2∂t

2 + �. Furthermore, oscillations in these fields sustain
each other, so light just continues to propagate in vacuo.

One can automatically take into account the homogeneous Maxwell equations
(2.18), (3.1) by formulating Electromagnetism in terms of a vector potential A such
that B = ∂ × A and a scalar potential � such that E = −∂�− Ȧ. This leaves us with
two inhomogeneous (charge or current sourced) equations (3.1), (3.2) in terms of A
and �.

To have a full grasp of Electromagnetism, we also require a law to compare the
motion of (constant mass) charged and uncharged particles in the presence of an
electromagnetic field. This is provided by the Lorentz Force Law,

ẍ = e

m
{E + ẋ × B}. (3.4)

Note also that Maxwell’s equations do not specify with respect to which frame
c is the speed of light. Contemporary experience with other types of waves in the
19th century suggested that light should be the excitation of some medium: the
‘luminiferous Aether’.

Let us finally consider another significant consequence of Maxwell’s unification
of Electromagnetism, which took longer to notice and be appreciated as theoretically
significant. Namely, that the set of equations (2.18), (3.1), (2.13), (3.2) have ceased
to be invariant under the Galilean transformations. Instead, they are invariant under
the Lorentz group, which consists of the ordinary rotations and boosts (see also
Appendix B.2). Without loss of generality by choice of coordinate system,

t −→ t ′ = γ
{
t − vx/c2}, x −→ x′ = γ {x − vt},

y −→ y′ = y, z −→ z′ = z
(3.5)

is the boost for passing from a rest frame to one moving with constant velocity v in
the x direction. Here, the gamma factor γ := 1/

√
1 − {v/c}2. For other directions

of motion, rotate the axes, apply (3.5) and then rotate back. To further establish
that this change of invariance group is tied to Maxwell’s displacement current, one
check that the system of equations without this still possesses Galilean invariance
(Ex I.11).

Assuming the existence of the Aether, its rest frame would be expected to be
privileged by Maxwell’s equations, by which the lack of Galilean invariance was
not perceived as an immediate impasse. This led to the proposal that, out of Elec-
tromagnetism not being Galileo-invariant, experiments involving it could be used to
determine motion with respect to the Aether rest frame. There was moreover specu-
lation that this Aether rest-frame might coincide with Newton’s absolute space (see
e.g. p. 3 of [736]). However, the Michelson–Morley experiment (Ex I.9) gave a null
result3 for the velocity of the Earth relative to the Aether. Within the framework

3Today this is known to be null to 1 part in 1017 [447].
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of Aether theory, this was in contradiction with observations of stellar aberration
(Ex I.8) implying the Earth’s motion through the Aether.

George Fitzgerald and Lorentz attempted to explain the above observations con-
structively in terms of the inter-particle distances for particles travelling parallel to
the Aether flow being somehow contracted.

In contrast, Albert Einstein had a different, axiomatic strategy. This is akin [284,
285] to the more well-known case of how Thermodynamics can be based on the
non-existence of perpetual motion machines. Following Einstein’s approach, the
outcome of the Michelson–Morley experiment can be elevated from a null result
about motion and Electromagnetism to a universal postulate. Rather than there being
Galilean invariance for Mechanics, Lorentz invariance for Electromagnetism and
whatever other invariance for other branches of Physics, he gave the next Chapter’s
postulates.



Chapter 4
Time, Space, Spacetime and Laws
in Special Relativity

4.1 Special Relativity (SR)

The Relativity Principle [281, 718, 736] is that all inertial frames are equivalent for
the formulation of all physical laws.

This is intended to be a universal statement. There is however a source of
nonuniqueness in the definition: different theoretical frameworks can have different
notions of ‘inertial frame’. The Relativity Principle translates to the laws of Nature
sharing a universal transformation group under which they are invariant; it remains
to be determined which transformation group is involved. There are two obvious
physical possibilities, distinguished by whether the laws of Nature involve finite or
infinite maximum propagation speed, cmax.

If existence of absolute time is adopted as a second postulate—the Galilean Rel-
ativity Principle—the infinite case is selected. Universally Galileo-invariant Physics
ensues, as presented in Chap. 2. On the other hand, the Lorentzian Relativity Princi-
ple—that light signals in vacuo are propagated rectilinearly with the same velocity
at all times, in all directions, in all inertial frames—is adopted, the finite case is
selected.

Moreover, the chosen speed serves universally, so it is unique (over all matter
species)1 So cmax can take the value c—the speed of light—without loss of general-
ity. This gives a universally Lorentz-invariant Physics.

In the infinite case, Electromagnetism would need to be corrected, whereas, in the
finite case, Newtonian Mechanics would need to be. Einstein chose the latter. N.B.
that this choice involves following a Law of Nature rather than some postulated
absolute structure. Also, whereas experimental evidence for Electromagnetism was
already ample, that for Newtonian Mechanics was at that point confined to the low
velocity (v � c) regime, in which Galilean transformations are a very good approx-
imation to Lorentz ones. γ � 1 + 1

2 { v
c

}2, as is the correction term to t , so e.g. for
the motorway speed limit, { v

c
}2 is 1 part in 1014. For the fastest planes, this is still

within around 1 part in 1011.

1See also Fig. 4.1 in this regard.
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Fig. 4.1 a) Particle emissions as seen from an observer’s frame differ between emission frames.
b) Light emissions, however, are in each case the same. The universality of b) contributes to light
signals being appropriate building block [349] for a universal—i.e. matter species independent
—Theory of Relativity

Indeed the investigation of the high-velocity regime eventually verified Einstein’s
corrections to Newtonian Mechanics. This example of the great predictive power
of SR is furthermore compounded by universality. In this way, for each branch of
Physics, specific corrections are obtained by requiring the corresponding laws to
be Lorentz-invariant. The concept of non-materially substantiated media and the
proposal at the end of the previous Chapter were dismissed in this manner. Physics
was subsequently rebuilt on the premise that no branch of the subject should have
any room for concepts along such lines.

Galilean Relativity (Chap. 2.5) can now also be viewed as the cmax = ∞ limit of
the above. Carrollian Relativity is the less well-known opposite limit cmax = 0: see
[84, 619] and Fig. 4.4.c). This is named after Lewis Carroll, for the Red Queen’s
musing “Now, here, you see, it takes all the running you can do, to keep in the same
place” [196].

These limits can be viewed as cases of group contraction (Appendix E). Finally,
Bacry and Levy–Leblond’s [84] generalized axiomatization leads to an extended set
of eleven relativities (six based on relative notions of time and five on absolute time).

4.2 Invariant Interval, Indefinite Metric and Proper Time

We next introduce the metric as the invariant corresponding to the Lorentz and
Poincaré transformations (named after noted physicist Hendrik Antoon Lorentz and
renown mathematician Henri Poincaré). This is encoded by the Minkowski metric η

with components ημν , which can always be put into the form diag(−1,1,1,1) with
respect to some basis.2 This realizes a type of Flat Geometry. The line element takes
the form

ds2 = −c2dt2 + ‖dx‖2 = −c2dt2 + dr2 + r2dΩ2. (4.1)

Similarly to in Euclidean space, ‘lengths’ and ‘angles’ can be characterized in terms
of a corresponding inner product. There is however now a physical distinction be-

2This is using the [ct, x] version of dimensionally-homogeneous coordinates.
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tween time and space that is implemented mathematically via the indefinite signa-
ture of the metric. So in this context, one ‘length’ concept is replaced by lengths or
times, and one ‘angle’ concept by angles or boost parameters.

Measuring the general interval, moreover, requires both rods and clocks.
Thereby, spacetime co-geometrization does not extend to the operational level: de-
vices which measure extent in space and duration in time remain distinct. How-
ever, synchronization procedures now non-trivially involve spatial measurements,
by which there is some loss of independence between spatial and temporal measur-
ing procedures.

Whereas nonzero vectors in R
3 space always have positive norms |x|2, there are

three types of nonzero vector in Minkowski spacetime M
4. Those with negative

norm are called timelike, with zero norm, null, and with positive norm, spacelike.
The existence of the three types of SR spacetime vector is central to the physical
interpretation of SR. Namely (and with reference to Fig. 4.3’s concept of worldline
of a particle) massive particles follow timelike worldlines. Massless particles follow
null worldlines. Finally, no physical form of particles follow spacelike worldlines.

Let the frame F ′ with coordinates t ′, x′, y′, z′ be related to the frame F with
coordinates t , x, y, z by uniform relative motion with velocity v such that, firstly,
the x and x′ axes coincide. Secondly, the primed origin runs along the unprimed
x-axis. Finally, the y, y′ and z, z′ axes are pairwise parallel.

For a rigid rod of length 	x′ lying at rest in frame F ′ on the x′-axis, an observer
in frame F envisages the rod to be of length

	x = 	x′/γ (length contraction). (4.2)

Also a clock ticking out a time interval 	t ′ while at rest in frame F ′ is observed,
from another frame F , to tick more slowly: in accord with

	t = γ 	t ′ (time dilation). (4.3)

The above two results follow from (3.5) algebraically, or graphically from
Figs. 4.2.b) and c) respectively.

Proper time elapsed along an arbitrary wordline is given by

	τ :=
∫ τfin

τin

dτ =
∫ tfin
tin

dt/γ, (4.4)

for t the frame in question F ’s time and γ built out of the velocity in F . This is just
the rest-frame case of the relativistic interval.

Associated ‘paradoxes’ are as follows. Firstly, in the ‘twin paradox’, one twin
stays at home and the other going on a return trip through space. Computing the
proper time along each twin’s worldline (Fig. 4.3.c) points to the travelling twin
being younger upon arrival. But did the other twin not move in the same manner
relative to the travelling twin, by which their ages should remain the same? This
is the prima facie ‘paradox’, but it has the status of a resolved ‘paradox’ because
under more careful consideration, it is not a symmetric situation. For the twin who
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Fig. 4.2 Minkowski spacetime diagrams. a) Transforming between Lorentz frames. Each frame
can be envisaged as populated by a fleet of observers. Subsequent thinking in terms of families
rather than individual observers becomes more meaningful as notions of frame become more gen-
eral. For now, the Lorentz transformation generates a boost, which corresponds to tilting, both of
the foliation by space and also of the corresponding time direction. Moreover, it is not physically
possible for tilting to extend until the spatial and temporal directions coincide at the 45 degree null
line in the figure. [The 45 degree line is singled out as this physically unattainable limit of these
axis rotations.] b) and c) are spacetime diagrams displaying length contraction and time dilation
respectively

Fig. 4.3 a) Worldline concept, presented with decoration by null cones at each of its points. For
extended objects, worldsheets, worldvolumes. . . are defined similarly. b) Worldlines 1 and 2 with
event p on worldline 1 able to influence event q on worldline 2. c) The worldlines for the twin
‘paradox’, and the naïvely symmetric situation that does not actually model the physics experi-
enced by the two twins

stayed at home remained in an inertial frame F , whereas the travelling twin expe-
rienced acceleration. Secondly, the length contraction ‘paradox’ can be phrased in
terms of whether one can get a fast-moving long pole into a narrower garage. Non-
inertialness is one key issue here again: upon the front end crashing into the back
wall of the garage. The second key issue is that, signalling speed is finite, by which
the back end of the pole does not yet know what has happened to the front end, so it
continues for a while to move into the garage undisturbed (Ex I.7).

4.3 Minkowski Spacetime’s Geometrical Structure
and Its Physical Meaning

In the new Minkowskian Paradigm, space and time can be co-geometrized as space-
time. Time is here a coordinate on spacetime; contrast with the absolute time of
Newtonian Physics’s external character. Time has moreover been described as ‘just
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another’ coordinate on spacetime, indicating that time and space are less distinct
in Minkowski’s Paradigm than in Newton’s. This has drawn some comparison (see
e.g. [596]) with how the ‘vertical direction’ ceases to be special in passing from
near-Earth to universal Gravitation. See however Sect. 4.6 as regards limitations on
loss of distinction between time and space in SR.

Upon shifting from the Newtonian to the Minkowskian Paradigm, Newton’s no-
tions of absolute space and time cease to apply. For instance, one can no longer as-
sume privileged spatial surfaces of simultaneity. The privileged surfaces are, rather,
light cones, on which the free motion of light occurs. Moreover, these surfaces are
shared by the free motion of all other massless particles, by Einstein’s postulates:
there is a universal null cone structure in Classical Physics. Additionally, massive
particles are permitted only to travel from a spacetime point (event) into the interior
of the future null cone of that event. Of particular significance, in free ‘inertial mo-
tion’ in SR, all massive particles follow timelike straight lines whereas all massless
particles follow null straight lines.

Having brought in the first paragraph’s co-geometrization, it makes sense to im-
plement the Laws of Physics in terms of the 4-tensors corresponding to Minkowski
spacetime M

4 (see Sect. 4.4 for more).
From a geometrical perspective, it is notable that Minkowski spacetime M

4 is
flat; in contrast GR’s notion of spacetime is in general curved. M4 is also absolute,
in the sense of being a back-stage the Physics occurs on.

Causality Theory in SR [736]. All events on and within the future null cone of
a spacetime point P can be influenced by P via receiving signals from P. This con-
stitutes the causal future of P. This is an absolute structure in the sense that all
observers agree on it. Similar statements can be made about the past null cone. For
any spacetime point Q in the region not in either cone, one can always find an iner-
tial frame in which Q is simultaneous with P. In this manner, it is appropriate to call
all of this region the causal present of P.

Null cones indicate which events can be reached from a given event, and which
can be communicated with. These are a different kind of absolute surface of sig-
nificance within SR. Note also that the cones degenerate to the squashed-plane and
squeezed-line limits in the cases of Galilean and Carrollian Relativities respectively
[Fig. 4.4].

For the usual Lorentzian SR case, the causal future of a region R of spacetime
m is

J+(R) := {P ∈ m| ∃ a future directed timelike or null curve from R to P}.
The chronological future is

I+(R) = {P ∈ m| ∃ a future directed timelike curve from R to P},
R is achronal if � ∃ P,Q ∈ R such that Q ∈ I+(P), i.e. I+(R)∩ R = ∅.

The domain of dependence is D+(R) := {P ∈ m| every past inextendible causal
curve through P intersects R}. (The above causal notions retain their usefulness in
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Fig. 4.4 Causality Theory. a) Past, present and future of an event p in Newtonian Mechanics.
b) Past and future null cones of an event p in Minkowski spacetime M

4. a) is the Galilean limit of
b) in which the null cone is squashed into a plane. c) is the opposite Carrollian limit of b) in which
the null cone is squeezed into a line. d) The approximate now, tied to ‘almost all pairs of events
observed in practice are timelike related: see p. 108 of [349]. This gives some idea as to how the
Galilean view is fine for the purpose of commonplace experiences. So e.g. for the timescales of
1 ms through to 0.1 s of relevance to the ‘specious present’ experienced, one’s SR instant can only
be 600 to 60000 km across. e) The future domain of dependence D+(S) of a spatial region S in
SR. The idea is, given a region S, to find the region that is entirely controlled by the information
in S alone. The wavy arrow cannot pierce D+(S) with information from outside of S. There is no
notion of domain of dependence in Newtonian theory due to c = ∞ meaning that any point can
influence any other. However, there is a domain of dependence notion of a different shape in the
c = 0 limit, f)

the more general setting of GR spacetimes [874], but can indeed already be intro-
duced at the SR level.)

The notion of simultaneity (and how to set up simultaneity conventions) changes
in passing from Newtonian Mechanics to SR [521]. Newtonian-type universal slices
of simultaneity cease to apply; they are replaced by attributing physical significance
to fixed null cones.

Isometries of Minkowski spacetime M
4. These are those motions (‘rigid mo-

tions’) which leave invariant the Minkowski metric η. They are comprised of stan-
dard rotations, boosts (Fig. 4.4.a), and space- and time-translations. The rotations
and boosts themselves form the special Lorentz group SO(3,1). Together with the
space- and time-translations, they form the Poincaré group3 Poin(4) of transforma-

3Time reflections are usually physically undesirable. Space reflections are usually included (see
Appendix E).
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tions of the form

Aμνx
ν +Bμ (4.5)

for Aμν antisymmetric (see also Ex I.6). Since these transformations map between
this Paradigm’s privileged frames, they assume the role of kinematical group. The
action of the generators on Minkowskian 4-vectors X = [t, x] is analogous to (2.7).

4.4 Lorentzian Tensors (Alias 4-Tensors)

Unlike multiplying by the Euclidean metric δ, multiplying by the Minkowski metric
η changes entities by bringing in a minus sign, so this is another setting in which
we need to distinguish between covariant and contravariant indices. A contravariant
Lorentzian tensor has transformation law

Tμν...ρ = LμμL
ν
ν . . .L

ρ
ρTμν...ρ, (4.6)

whereas a covariant one has

Tμν...ρ = LμμL
ν
ν . . .L

ρ
ρTμν...ρ . (4.7)

In general, T can have a mixture of upstairs and downstairs indices, and transform
in the corresponding mixed manner.

η itself is a special such tensor to which the Minkowskian Paradigm’s chronogeo-
metric significance is pinned. The Lorentz group is indeed the group underlying this
tensor transformation law. See Chap. 7 of [736] for more about Lorentzian tensors.
We finally point to SR giving a further reason for considering tensors in Physics:
some hitherto 3-d entities can be packaged together as 4-tensors; see the next Sec-
tion for examples.

4.5 Minkowskian Paradigm of Physics

First reconsider Electromagnetism in this framework. In this special case the main
laws (Maxwell’s equations) are already Lorentz-invariant, so they require no cor-
rections. Moreover, these laws can be cast in an elegant spacetime notation, and the
new conceptual framework greatly facilitates the study of Electrodynamics [281].
Introducing the electromagnetic field strength tensor Fμν (such that Fa0 = Ea ,
Fap = εapcBc) the Maxwell equations are

∂μFμν = −μ0jeν, (4.8)

∂[μFνρ] = 0. (4.9)
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If one uses an electromagnetic 4-potential Aμ = [−�,Ai] such that4

Fμν = 2∂[μAν], (4.10)

then (4.9) holds trivially and one is left with

�Aμ − ∂μ∂νA
ν = −μ0 jμ, (4.11)

where the electromagnetic current 4-vector jμ := [ρe, ji].
Next, universality required changing the forms of all the other laws of Nature.5

For Newtonian Mechanics, Newton’s Second Law and the definition of momentum
are still correct, provided that proper time is employed. The relativistic laws of Na-
ture are a great success. Indeed in many applications a major step toward proposing
new laws of Physics is to consider only the Lorentz-invariant possibilities. However,
Einstein found that attempting to accommodate Gravitation in this scheme presented
significant difficulties (see Chap. 7).

Experimental evidence for SR comes from [736] 1) Electrodynamics, 2) nuclear
power based on energy extracted as envisaged by Einstein’s ‘mass–energy equiva-
lence’ relation

E = mc2 (4.12)

(this is its rest frame form), 3) a large number of results on SR quantum theory that
are outlined in Chap. 5. This evidence reflects that it is far more common for very
small quantities of matter to attain relativistic speeds.

The Principles of Dynamics has the further virtue of readily extending to Field
Theory (see Appendix K.1 for the Principles of Dynamics for fields in general). As
a particular example, Electromagnetism’s manifestly special-relativistic spacetime
Lagrangian is

LA
em = − 4

μ0
FμνF

μν. (4.13)

Moreover, this can be arranged to a non-manifestly SR split spacetime Lagrangian

L = {{ε0Ȧ + ∂�}2 − B2/μ0
}
/2 = {ε0E2 − B2/μ0

}/
2, (4.14)

which is useful in dynamical and some quantum contexts (see Chap. 6.3).

4.6 More on Time and Spacetime in the Minkowskian Paradigm

1) Time as a parameter is here manifested by fixed background spacetime. Fur-
thermore, SR replaces Newtonian Mechanics’ unique timelike direction with an
isotropic continuum of such [596].

4[ ] denotes antisymmetrization of the enclosed indices and ( ) denotes symmetrization.
5Since this occurred in 1905, we mean all the other classical laws of Nature known at that point.
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2) Dating is more contentious in relativistic theories than in Newtonian ones, due
to multiplicity of times becoming available.

3) In SR, timefunctions become locally-valued, e.g. in the sense of there being a
proper time corresponding to each observer. Proper time is furthermore opera-
tionally meaningful.

4) SR has a markedly different notion of simultaneity. In contrast with Newtonian
Physics (Sect. 2.4’s Item 1), in SR each simultaneity does still remain a copy of
the apparent Euclidean Geometry of the corresponding space, in the case of iner-
tial frames. Accelerated frames, however, are another story entirely (see Chap. 8
for further details). SR also involves null cones—and so also the causal struc-
ture—to the forefront. For SR, chronological and causal orders are not in general
coincident [596] [cf. item 2) of Chap. 2.4].

5) The SR notion of duration is not a difference of datings as per Newtonian Me-
chanics [item 4) of Sect. 2.4] but rather a function of the past history of the
material worldline. This is clear from the twin paradox and requires update of
the intuition in Sect. 1.1. Observables and histories issues carry over from the
Newtonian case.

6) Global existence of timefunctions also continues to be permitted in SR. SR ex-
hibits some multiplicity of times, albeit of a rather superficial kind: the multi-
plicity of inertial frames are interrelated by the Poincaré transformations.

7) Concerning the status of Minkowski spacetime M
4, on the one hand it is often

argued that in SR space and time can or must be regarded as fused into SR space-
time. Minkowski himself argued that the individual notions of time and space
were “doomed to fade away” [654]. On the other hand, Broad [171] retorted
that SR breaks only isolation of space and time, not their distinction (as separate
notions, each with their own distinctive properties). E.g. signature continues to
distinguish timelike and spacelike directions, whereas time retains many of its
specific properties that space does not possess.

Although the above Paradigm Shifts in passing to SR are nontrivial [169, 521,
596], they are relatively minor compared to the advent of GR. In particular, time
and space in SR are also external and absolute in the sense of SR having its own
presupposed set of privileged inertial frames. Objections to absolute space of acting
but not being actable upon continue to afflict SR by applying just as well to its class
of inertial frames) [736]. Chapters 7, 9 and 10 subsequently argue that passing to
GR is a more major Paradigm Shift in this sense.

As regards trading absolute structures, one has gone from separate absolute t
and δij to a unified absolute ημν . We also recognize that this comes with a metric
connection, and then notice that Newton and Galileo’s Paradigms also happen to
possess a different type of connection. So we pass from four absolute structures in
Newton’s own view (the fourth is Vi relative to absolute space) to three in Galileo’s
(Vi removed) and to a single but larger one in SR [279]. We subsequently detail how
GR removes this last one.

The new privileged structures are underlied by SR’s Minkowski spacetime M
4

possessing suitable Killing vectors (see Appendix E.2 for this concept). A fortiori,
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M
4 possesses the maximal number of Killing vectors (10 in 4-d). These correspond

to the (time and space) translation, rotation and boost generators of Poin(4).
Let us end by pointing out that this Sec’s argument is continued at the level of

GR in Chaps. 7 to 10; see also [553] in this regard.

4.7 More on SR Clocks

Each observer has their own proper time that depends on the past history of the clock
they are carrying. If one start with two clocks calibrated side by side, if each is taken
on a trip, synchronization will not in general be maintained. So for relativistic-level
accuracy—which starts at around 1 part in 1012 for typical macroscopic occurrences
in life on Earth, such as taking a clock on a transcontinental flight – one needs to
say where the clock is and how it is moving.

This accuracy moreover exceeds that which was possible when ephemeris time
was introduced in 1952, but such accuracy was not attained until the late 1970s. This
is to be contrasted with sub-relativistic accuracy ephemeris: in using this as deduced
from the Solar System, it does not matter at which stable position therein one is
allotting a timestandard to. So e.g. Clemence did not specify ‘on Earth’, much less
‘in New York’ in defining ephemeris time; the question of where the timestandard
applies was neither posed nor practically relevant until the late 1970s.

Also ‘how the clock moves’ involves velocity via the time dilation formula; it
would in general, and unavoidably to sufficient accuracy, also involve the effects of
acceleration on the clock’s internal structure. However, e.g. James L. Anderson [13]
and Rindler [736] subsequently emphasized the definition of an ideal clock as one
whose internal structure is completely unaffected by acceleration. In such a case,
the clock would measure

∫
dτ , so knowledge of velocity in the relevant portion of a

worldline would suffice to determine the reading on such a clock.
N.B. that synchronization includes measurement of spatial quantities as well

[168, 521].
Clocks subjected to substantial accelerations have a physically understood ratio-

nale for clock bias to occur. There is also a tension between the above (SR) ideal
clocks and the reality of the practical problems with portable clocks; see also Ex
I.13.

Finally, we turn to a conceptual construct. Einstein’s light clocks—based on re-
flecting light rays off mirrors—were useful in developing the SR, and indeed GR,
notions of spacetime. The particle species independence of light pulses (see Fig. 4.1)
ensures this set-up to be suitably universal. A specific construction of such a clock
is due to physicist Robert Marzke and physicist and noted conceptual thinker John
Archibald Wheeler [645] (Fig. 4.5) and is also discussed e.g. in [13]. See Chap. 7.7
for applications of this idea to currently planned space missions.
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Fig. 4.5 Marzke and
Wheeler’s more concrete
construction for a clock based
on mirrors and light rays

4.8 Length Measurement in SR

Laser interferometers are preferable [349] to rods at this level; cf. also the
Michelson–Morley experiment’s set-up and a composition of Marzke–Wheeler
clocks. Note in particular how lengthstandards passed from involving a platinum
rod to a property of a light beam. None the less, the Michelson–Morley interferom-
eter arms behave as if they were a rigid rod [13]. Space based laser rangings and
future interferometers between probes such as in eLISA6 go one step further in not
having solid support for the arms along which the beams run. Moreover, realistic
cases (as opposed to the Marzke–Wheeler point-particle idealization) involve finite
solid contraptions at the end of each beam, emitting, reflecting or absorbing.

4.9 Einstein’s Eventual Opinion on the Theoretical Status of
Clocks and Rods

Einstein’s eventual position on this [285] came to be “One is struck that the the-
ory [SR] . . . introduces two kinds of physical things, i.e. (1) measuring rods and
clocks, (2) all other things . . . This in a certain sense is inconsistent; strictly speak-
ing measuring rods and clocks would have to be represented as solutions of the basic
equations (objects consisting of moving atomic configurations), not, as it were; as
theoretically self-sufficient entities. However, the procedure justifies itself because it
was clear from the very beginning that the postulates of the theory are not strong
enough to deduce from them sufficiently complete equations . . . in order to base
upon such a foundation of a theory of measuring clocks and rods . . . But one must
not legalize the mentioned sin so far as to imagine that intervals are physical enti-
ties of a special type, intrinsically different from other variables (‘reducing Physics
to Geometry’ etc.)” Bridgman [169] in particular laid out further support for this
position. Einstein’s earlier position in this regard [286] is also worth noting. “The
solid body and the clocks do not in the conceptual edifice of physics play the part
of irreducible elements, but that of composite structures, which must not play any
independent role in theoretical physics. But it is my conviction that in the present

6This is the European continuation of the Laser Interferometer Space Antenna (LISA) project: an
upcoming space mission to probe for gravitational waves; see Chap. 7 for more.)
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state of development of theoretical physics these concepts must still be employed as
independent concepts; for we are still far from possessing such certain knowledge
of the theoretical principles of atomic structure so as to be able to construct solid
bodies and clocks theoretically from elementary concepts”.

4.10 Exercises I. Time in Mechanics and SR

Background Reading 1) The particularly dedicated reader might complement
Chaps. 1 to 3 with philosophical accounts of time such as [730, 906]. Consider also
[349]’s comparison of the Aristotelian, Galilean, Newtonian and Minkowskian
Paradigms, and physicist and philosopher of physics Max Jammer’s [521]’s ac-
count of simultaneity. Enthusiastic students who have not studied SR and GR in
detail yet can also improve their understanding of these from [349] without in-
vesting in any more mathematics than is taught at high school. This book expands
on [349]’s account—and not just in the directions already taken in [874]: toward
GR—but also toward time in QM and in Quantum Gravity. It also expands on [521]
by beginning to lay out other aspects of time aside from the simultaneity exposited
so well there, though the current book in no way claims to provide a similar level
of philosophical or historical detail. SR can be learned well by working through
pp. 1–162 of [736].

Source of Projects 1) The more keen or seasoned readers of foundational or philo-
sophical persuasion might write books comparably detailed to Jammer’s on a num-
ber of aspects of time in Physics other than his treatise on simultaneity. E.g. on
causality, or a spacetime structure sequel to both his book on simultaneity and his
book on space [519].

Exercise 1) [Relative coordinates.] i) Take out the centre of mass by passing from
point-particle coordinates q

I
to relative separation vectors rIJ := q

J
−q

I
. ii) With

i) causing one to cease to have a diagonal kinetic term, show explicitly in the 3-
particle case that a such can be reinstated by taking linear combinations of the rIJ ;
these are known as Jacobi coordinates.

Exercise 2) Assuming Newtonian Mechanics, what shape does the surface of the
water in Newton’s bucket form?

Exercise 3) [Fictitious forces.] i) Show that a frame moving with velocity V (t) in
the Newtonian Paradigm experiences a fictitious force −V̇ − V . ii) Show that a
general frame in Euclidean space experiences this, the usual rotational fictitious
forces of (2.8) and a mixed term Ω ×V . iii) Consider the hypothetical situation
of invariance under the 3-d similarity group Sim(3), with infinitesimal dilational
correction ẋ −→ ẋ − θx. Show that in the general Sim(3)-frame all of the above
are experienced, alongside {θ2 − θ̇}x − 2 θ̇ x + θ V + 2 θ Ω ×x. iv) Interpret all of
the above fictitious forces.

Exercise 4) [Terrestrial timekeeping methods.] i) If a water clock is conical (with
vertical axis), how should equal-time notches on it be spaced? What surface of
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revolution should a water clock be for the notches to be evenly spaced? [Assume
water is a perfect fluid throughout.] ii) Estimate how accurately time can be kept by
a pendulum which fits inside a house. iii) What was problematic about evaluating
longitude at sea? Estimate the error in timekeeping, and consequently in longitude,
during Magellan’s voyage a) neglecting human errors and storms and b) including
these.

Exercise 5) Derive the Poincaré algebra’s nontrivial commutation relations (6.25)–
(6.26).

Exercise 6) [SR time and length effects.] i) Estimate the time dilation for cosmic
muons. ii) Derive aberration and Doppler redshift formulae for the Newtonian and
Minkowskian Paradigms, including deriving the former’s as a limiting case of the
latter’s. iii) Account for the factors of γ which occur for quantities in synchrotron
physics, for instance the γ 2 in the formula for power radiated, or the γ 3 factor
in the ultrarelativistic case’s frequency iv) Interpret the Michelson–Morley experi-
ment’s set-up, including in terms of the 1-way and 2-way travel times exposited in
[169]. v) How long a pole one can get into a garage of depth w by entering with
it at uniform speed v? [Treat this as a 1-d problem; firstly assume that the shock
wave travels at speed c, and next build in that these travel at speed cshock < c].

Exercise 7) [Future improvements in measurements ofG.] From the perspectives of
error analysis and expected technological improvements, what arguments can be
put forward for the future superiority of estimatingG using interferometer methods
rather than Cavendish balances?

Exercise 8) [Simpler cases of the Euler–Lagrange equations.] Work through Ap-
pendix J’s 3 simplifications of the Euler–Lagrange equations, Legendre transfor-
mations in general and the specific ones involved in passage from the Lagrangian
to each of the Hamiltonian and the Routhian. If L is homogeneous of degree 1,
show that H = 0.

Exercise 9) [The Brachistochrone.] Given a fixed starting point (x, y) = (1,0) and
a fixed end-point (x, y) = (0,1), calculate what shape of wire joining these is to
have for a bead threaded upon it to take the least time to travel between the end-
points. (Assume Newtonian Gravity in the local ‘vertical’ approximation.)

Exercise 10) Demonstrate that Maxwell’s displacement current is crucial for the
mismatch in relativities which led to Einstein’s SR, by showing that the Maxwell
equations in the regime without displacement current (name regime) are Galileo
invariant.

Exercise 11) From first principles, find spacetime action principles for the motion
of a relativistic particle, and, assuming that the particle is charged, for its motion
coupled to Electromagnetism. Also show that the Lorentz Force Law (3.4) in 4-
tensor notation becomes

d2xμ

dτ 2
= e

m
Fμν

dxν

dτ
, (4.15)

where τ is the proper time.
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Exercise 12) The energy–momentum–stress tensor of Electromagnetism is

Tμνem = 1

μ0

{
FμρFνρ − 1

4
ημνFγ δF

γ δ

}
. (4.16)

Show that this is symmetric and conserved. What statements in terms of E and B
does this conservation encapsulate? What is the interpretation of the E × B quantity
arising in this manner?

Exercise 13) [Space Chronometer.] In this case there is no constant rocking by wa-
ter waves, and one would usually be able to confine travel to be away from strong
astral winds. i) Suppose we lived in a Newtonian universe. Estimate the minimum
time it would take for a spaceship of massM containing ejectable gas of massm to
reach α-Centauri by application of piecewise constant accelerations of magnitude
≤ a. What if we require the spaceship to end up there, rather than just fly past?
ii) Repeat these calculations in an SR universe, computing now both the proper
time aboard and how much terrestrial time would have elapsed between takeoff
and the receipt of signals from the probe upon arrival α-Centauri. iii) Pass from
parametrized to specific numerical estimates by use of current-era rocket engines,
fuel to payload ratios and the maximum acceleration sustainable by the crew. iv)
For various standard aerospace construction materials, estimate at which velocity
substantial damage would be imparted by collision with a dust grain: a significant
issue as pointed out e.g. in [831]. v) Estimate tolerance bounds on the accelera-
tions and shocks sustainable by the on-board clocks hitherto used by space probes.
Compare these with what crew members could sustain.

Exercise 14) Show that a Galilean frame can always be found such that ∂iφ = 0,
whereas ∂i∂jφ remains invariant. Interpret these results both geometrically and
physically.



Chapter 5
Time and Ordinary Quantum Mechanics (QM)

If atoms were classical objects, their observed stability would be in discord with
their energy losses due to electromagnetic radiation (Ex VI.5.d). Interpreting this—
alongside black body radiation, the photoelectric effect and accounting for atomic
spectra—pointed the way to [889] the strange new physics of Quantum Theory.

5.1 A Simple Axiomatization of QM

For now, we consider Ordinary—Nonrelativistic, Background Dependent—QM.1

QM Postulate I) The state of a system is now taken to be a complex-valued wave-
function ψ belonging to a Hilbert space, Hilb.2 This is a complete (Appendix C)
complex inner product space (Appendix A.3). 〈 | 〉 denotes this inner product; the
ψ are required to be normalized with respect to this: 〈ψ|ψ〉 = 1.

QM Postulate II) Any observable3—meaning here any physical quantity whose
value can be measured at a given time—can be represented by some linear op-
erator Â that acts on the wavefunctions and is self-adjoint (Appendix A.3) with
respect to the inner product,

〈
Â†ψ1

∣∣ψ2
〉= 〈ψ1 |Âψ2 〉 (5.1)

(this acts as a guarantor of real eigenvalues).

1If unfamiliar with any of the non-temporal material in this Chapter, see e.g. [487, 599]; some of
this Chapter’s material on time in QM may however be new. See the start of Part III if interested in
a more general and detailed treatment of Quantization.
2This is a complete inner product space (see Appendices C.2 and H.2 for a bit more mathematical
context for this). This term is often used to mean the infinite version, but the current use covers
the finite version as well. The lack of physical distinctions between |�〉 and the phase-shifted
exp(iφ)|�〉 results in the Projective Geometry notion of a ray in Hilbert space is a further suitable
means of modelling quantum wavefunctions.
3For unconstrained theories, the corresponding notion of (for now unconstrained) classical observ-
able is entirely trivial: any function of the classical variables A = A(Q,P ) is a classical observ-
able; see Chaps. 9, 25 and 50 for the constrained case.
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In considering multiple classical quantities F and G, commutation FG = GF

trivially holds. On the other hand, noncommutation is a basic and essential property
of the quantum world. F and G are now replaced by quantum operators F̂ and Ĝ
which do not in general commute; their commutator

[F̂ , Ĝ] := F̂ Ĝ − Ĝ F̂ �= 0 (5.2)

indeed serves as a measure of their noncommutation. Additionally, the Correspon-
dence Principle is that one part of Quantization may be thought of as passage
from classical Poisson brackets to commutators of the corresponding quantum-
mechanical operators:

{F ,G} −→ �

i
[F̂ , Ĝ]. (5.3)

The fundamental commutator is

[̂xi, p̂j ] = i � δij . (5.4)

On the other hand, the angular momentum operators4 obey

[Ĵi, Ĵj ] = i � εij
kĴk, [Ĵi, x̂j ] = i � εi

j
kx̂
k, [Ĵi, p̂j ] = i � εij

kp̂k. (5.5)

I.e. the SU(2) [= locally SO(3): see Appendix E] structure constants and the condi-
tions that xi , pi are vectors under the SU(2) transformations. Note the close parallel
with the algebraic form of the classical Poisson brackets (2.24). However, in the gen-
eral case we would need to construct the objects that play an analogous role to the
above operators. This is under-emphasized in most QM textbooks, which often just
take the q̂i , p̂i and Ĵi for granted. Moreover, the algebraic structure the commuta-
tors form would not necessarily coincide with some classical precursor’s Poisson
one. These more general considerations are termed Kinematical Quantization (see
[475], or Chap. 39 for an outline).

One consequence of noncommutation is that ‘promoting classical quantities to
quantum operators’ involves choosing how to operator-order them. E.g. is the clas-
sical pq to be represented by p̂ q̂ or q̂ p̂ now that these are inequivalent, or possibly
some other expression such as the symmetric operator ordering {p̂ q̂ + q̂ p̂}/2.

Heisenberg’s Uncertainty Principle (named after noted physicist Werner Heisen-
berg) is a fundamental limitation upon how accurately one can know a particle po-
sition and its conjugate momentum:

	q	p ≤ �

2
. (5.6)

One consequence of this is the replacement of the worldline concept for a particle
by the more diffuse and generally unstable wavepacket concept (Fig. 5.1).

4See Sect. 5.2 for why we use Ĵi in place of L̂i here.
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Fig. 5.1 The classical
worldline a) becomes a
spreading wavepacket b)
[899]

The Generalized Uncertainty Principle is

	A	B ≥ 1
2 |〈[Â,B̂]〉| : (5.7)

uncertainty is tied to noncommutativity. The Angular Momentum Uncertainty Prin-
ciple 	Jx	Jy ≥ �

2 |〈Ĵz〉| is another well-known subcase of this.

QM Postulate III) Only inner product combinations are physically meaningful. The
quantity which is physical is in general an inner product with operator insertion

〈ψ1 |Ô|ψ2 〉. (5.8)

Some special cases are the expectation of operator Ô in state ψ1, 〈ψ1 |Ô|ψ1 〉, and
the overlap 〈ψ1 |ψ2 〉 between states ψ1 and ψ2.

It is these inner product combinations that arise from measurements, and pre-
dictions based thereupon happen to be inherently probabilistic. I.e. observations
are consistent with QM systems not possessing certain properties, but rather the
measurements one makes yield an eigenvalue that can in principle only be pre-
dicted probabilistically. In particular, if a system is in a quantum state ψ(x) =∑∞
i=1 onψn(x)—an eigenfunction expansion form guaranteed5 by the complete-

ness—then the probability that a measurement produces a particular eigenvalue on
is

Prob(O = on | state is ψ) = |on|2 (Born Rule), (5.9)

after physicist Max Born. Note that QM probabilities do not obey all of the classi-
cal probability axioms (if interested, consult Appendix P.1), in particular due to the
overlaps. Negative probabilities are also at least contemplated in setting up Quantum
Theory, even if the presence of these has been used to select against the interpreta-
tional proposals these arise for.

Moreover, the outcomes of measurements are known to be real, so if these are
to be eigenvalues, it is crucial for the eigenvalues to be real, as guaranteed by the
self-adjointness of physical operators.

If ψ → Uψ and Ô → UÔU† for U a unitary transformation (U† = U−1), then
〈ψ1 |Ô|ψ2 〉 → {〈ψ1 |U† }{UÔU† }{U |ψ2 〉} = 〈ψ1 |{U†U}Ô{U†U}|ψ2 〉 = 〈ψ1 |Ô|ψ2 〉.
Clearly an antiunitary operator—such that U† = −U−1—also satisfies the above.

5The guarantee here is actually for an operator whose eigenvalues form a discrete and non-
degenerate set, but one can more laboriously generalize one’s way round these limitations [487].



58 5 Time and Ordinary Quantum Mechanics (QM)

Moreover, a Theorem of physicist Eugene Wigner’s6 guarantees there are no other
possibilities.

QM Postulate IV) The wavefunction ψ obeys a quantum wave equation: for now,
this is the time-dependent Schrödinger equation (after noted physicist Erwin
Schrödinger)

i �
∂ψ
∂t

= Ĥ ψ. (5.10)

The time-independent Schrödinger equation

Ĥ ψ = Eψ (5.11)

then arises when the separation ansatz �(x, t) = exp(iEt/�)ψ(x) applies.

The Evolution Postulate is that the various probabilities involved at a given stage
always sum to one; thus, this postulate is also termed unitarity. This evolution is in
accord with the theory’s time-dependent quantum wave equation.

Moreover, compliance with the quantum wave equation may alter which inner
product applies. I.e. the physical inner product is the final dynamical one rather than
the incipient kinematical one in the instance of these differing. In our case, the final
inner product is Schrödinger’s, with respect to which there is probability current
conservation. This refers to the probability current

ji = �

2mi
ψ∗ ↔
∂i ψ, (5.12)

which obeys a conservation equation ∂tρ + ∂ · j = 0 analogous to those of Clas-

sical Physics, corresponding to the probability density ρ := |ψ|2. Here ↔ denotes
backward as well as forward action of the derivative. This in turn works via H it-
self being self-adjoint with respect to this, by which the inner product in question
succeeds in being compatible with H .

Also note the equivalent Heisenberg picture in which the wavefunctions are sta-
tionary and the operators evolve according to the Heisenberg equation of motion

dÔ

dt
= i

�
[Ĥ , Ô(t)] + ∂Ô

∂t
. (5.13)

Historically this and the preceding Schrödinger picture with its evolving wavefunc-
tions and stationary operators were developed separately, but were then shown to be
equivalent in a manner which boils down to {〈�|U† }O{U |�〉} = 〈�|{U†OU}|�〉.

QM Postulate V) Collapse of the Wavefunction. This is a second dynamical process
that is held to occur in Ordinary QM despite its not being described by the evo-
lution equation of the theory. By this, measuring Ô for a system in state ψ that

6Any symmetry transformation in QM can be represented by an operator on the Hilbert space of
states Hilb that is either i) linear and unitary or ii) antilinear and antiunitary. See [885] for an
accessible proof, and both that and [269, 401] for commentary.
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happens to yield on has thrown the system into the corresponding eigenstate ψn.
Quantum Measurement Problem subtleties ensue; in a nutshell, QM turns out to
require an interpretation beyond reading off of what the theory’s equations dic-
tate (which was sufficient by itself in Classical Paradigms). The standard position
here is the Copenhagen Interpretation of QM (after the School of renown physicist
and conceptual thinker Niels Bohr). This involves a quantum subsystem being in
a surrounding large; in particular the observer is treated as macroscopic and lying
outside the quantum subsystem in question.

5.2 Experimental Support for QM and Examples

There is vast experimental support for QM. Some highlights are QM’s explana-
tion of the atomic spectra [599], of much of Chemistry at the molecular level [81],
radioactive decay [652], and structural properties of matter [556] including explain-
ing solid matter and why metals are shiny. Quantum Theory also explains Particle
Physics [712, 885, 886] consistently with accelerator and cosmic ray data.

Example 1) Quantum harmonic oscillators are a useful model of e.g. molecular vi-
brations. A convenient way of studying these is in terms of creation and annihila-
tion operators

â† := {2m�ω} −1/2 {mω x̂ − i p̂}, â := {2m�ω}−1/2 {mω x̂ + i p̂}. (5.14)

Their actions on the nth state |n〉 are â† |n〉 = √
n + 1|n + 1〉, â|n〉 = √

n|n − 1〉—
i.e. a raising and a lowering respectively—for a different n for each component of
â†, â. In dimension d (often 1 or 3), one starts from a Eucl(d)-invariant vacuum,
building up the other states by applying the creation operator.

Example 2) The rigid rotor model can be characterized in terms of L̂2 and L̂z eigen-
values and eigenfunctions. L̂zψ = m�ψ and L̂2ψ = l{l + 1}�2ψ for l the azimuthal
angular momentum quantum number and m the ‘magnetic’ angular momentum
quantum number such that |m| ≤ l. This example is closely tied to the representa-
tions of the rotation group SO(3), as the first of many instances of Representation
Theory (Appendix A.5) playing a significant role in Quantum Theory.

Example 3) The hydrogen atom’s quantum equations (see also Ex II.2) separate into
a rotor problem angularly and an extra radial equation. This produces the energy
spectrum E(n) = −�

2/2mea
2
0n2, for n now the principal quantum number and

a0 := 4πε0�
2/mee

2 the atom’s Bohr radius.

In some ways, it is straightforward to extend this to multi-electron atoms, in
particular if one neglects electron-electron interactions to leading order. In this way
a simple model of the Periodic Table can be built up.

This array of the chemical elements’ row numbers have an additional factor of
2 on top of the 2l + 1 factor from adding up the possible values of m for each l.
Noted physicist Wolfgang Pauli posited his Exclusion Principle so as to account for
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this factor of 2 as a “peculiar classically non-describable duplexity”. This for now
appended notion is called ‘spin’, and is a type of angular momentum. Ĵi now means
total angular momentum, in the sense of orbital angular momentum spin considered
together, according to Ĵ = L̂+ Ŝ. The particular case of the spin of the electron can
be represented by the Pauli matrices

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
. (5.15)

Heisenberg, Pauli and physicist John Slater incorporated the Pauli Exclusion
Principle as wavefunction total antisymmetry, with the associated particles obey-
ing Fermi–Dirac statistics (U.4).7 Another class of particles observed obey Bose–
Einstein statistics (U.3) associated with wavefunction total symmetry. Finally, no
mixed-symmetry particles appear to be realized in Nature. This is an example of
a so-called superselection rule [817]: specifying pure eigenstates only rather than
mixed states (Appendix U.1). Also due to this, not all Hermitian operators are real-
ized as observables.

5.3 Time in Nonrelativistic QM

Three uses of ‘time’ can be distinguished in Ordinary QM [185, 517].

I) External time is the background Newtonian time inherited from Classical
Physics, occasionally also known as laboratory time in this context. This quan-
tifies when the experiment is set up, the duration of the experiment, when ex-
ternal fields are switched on and off, and so on. Being measured by an external
detached laboratory clock, it is not dynamically interconnected with the quan-
tum entities under study in the experiment in question [185].

II) Dynamical time is, more relationally, determined by the quantum subsystem it-
self; this is also termed internal time in [185]. It is based on each non-stationary
quantum observable Ô providing its own characteristic time: that within which
〈Ô〉 changes significantly [185]. Notions of time of this kind include time de-
lay in scattering experiments, dwell time in quantum tunnelling, and lifetime of
unstable quantum states. These are all notions of duration in dynamical time.

III) Observable time carries further operational connotations, through involving the
measuring apparatus as well as a quantum entity under study. An example is
the notion of time of arrival at one’s detector from a source [185].

I) to III) have more significant quantum-level distinctions than their classical coun-
terparts do. These notions of time enter Ordinary QM in the following ways.

7These statistics are named after physicists Enrico Fermi, Paul Dirac, Einstein, and Satyendra
Bose.
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1) Whereas most physical entities are represented at the quantum level by operators,
Pauli (see e.g. [701]) provided an argument placing restrictions on representing
time in this manner. This led to ‘time playing the role of an external parameter’ in
QM, though the issue is somewhat confused by the multiplicity of time concepts
in QM and by Pauli’s argument not being as widely encompassing as originally
thought.

2) It is moreover tempting to represent observable times by operators, though there
are a number of subtleties and impasses with this. For instance, if time is to be
treated as an operator, Wigner’s Theorem (in footnote 6) requires it to be an
antiunitary operator T̂ .

3) Returning to Pauli’s considerations [699], he pointed out that the commutation
relation8

[T̂ , Ĥ ] = i � (5.16)

cannot hold for physically realistic Ĥ . This is a consequence of the following
result.

Stone–von Neumann Theorem Any Â, B̂ such that [Â, B̂] = i � have to closely
resemble q̂ and p̂.9 In particular q̂ and p̂ are ‘unbounded below’, i.e. their spec-
tra go down to −∞. On the other hand, physically realistic Hamiltonians must be
bounded below, i.e. each of these possess a ground state at finite energy.

4) Moreover, the Energy–Time Uncertainty Principle

	T 	E ≥ �

2 (5.17)

has an entirely different meaning to that of the other uncertainty relations.
Firstly, it is significant that this is not stated for external time. Reasonably

credible interpretations concern, rather, an internal here alias dynamical time, or
an observable time. For example, 	T can be interpreted as duration in dynam-
ical time on which each 〈Ô〉 changes by the same amount as the corresponding
(averaged) indeterminacy [517]. See e.g. Chap. 5.3 of [517] and [185] for fur-
ther careful exposition.

5) The commutation relations that all the quantum operators are subjected to are,
more precisely, equal-time commutation relations. This rests on the notions of
‘being at a time’ and of simultaneity.

8See (J.27) for the classical precursor of T . In the case of a conservative system, this is just t− t (0),
which can be interpreted as tNewton up to choice of calendar year zero, by which T = tNewton and
	T = 	tNewton in (5.17).
9This is a Uniqueness Theorem, named after mathematician Marshall Stone and noted mathe-
matician and polymath John von Neumann. It is phrased for the exponentiated (alias Weyl, after
mathematician Hermann Weyl) commutation relations; these have a generic unitary representation;
see e.g. [407] for a commented proof. Finite Theories lie within the remit of this result, whereas
Field Theories do not.
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6) Sect. 5.1’s Evolution Postulate applies again, possibly with new forms for the
corresponding time-dependent wave equations.

7) Specification of an inner product is tied to time concepts via its use in estab-
lishing conservation of probability.

8) Sect. 5.1’s collapse of wavefunction continues to hold. This is a separate mani-
festation of becoming, tied to measurements rather than to the evolution postu-
late’s more habitual case of prescribing a PDE problem from which to deduce
dynamical outcome. This additionally carries one of the Arrows of Time since
the state of a system is markedly different ‘before’ and ‘after’ such a collapse.

9) The Copenhagen Interpretation of QM is built out of measurements made at a
particular time. This rests on the assumption of a privileged background notion
of time. In multi-measurement contexts, this is also tied to dating.

The Copenhagen interpretation’s assumption of a surrounding large is more-
over a further type of Background Dependence.

10) QM Postulate II)’s notion of quantum observable contains an ‘at a given time’
clause [483], and rests on items 2) and 4) of Sect. 1.6.

11) In constructing a quantum theory’s Hilbert space Hilb, one is to select a com-
plete set of observables. Various time connotations are subsequently tied to this
construct (see Chaps. 24 and 25). Let us note for now that these form a partic-
ular algebraic structure under equal-time commutation relations.

12) As compared to 10), a ‘history’ has no direct physical meaning except in so
far as it refers to the outcome of the sequence of time-ordered measurements it
consists of.

13) One might a fortiori seek to conceptualize in terms of histories, rather than time,
at the primary level.

5.4 Clocks in QM

We next continue with Chap. 3.1’s argument against perfect clocks, now at the quan-
tum level.

1) All quantum clocks occasionally run backwards . Whereas background Newto-
nian time appears explicitly in e.g. QM’s time-dependent Schrödinger equation,
such a time is not precisely operationally realizable by a physical clock. Physi-
cists William Unruh and Robert Wald [862] established this by contradiction.
Suppose that there is some quantum observable T̂ that can serve as a ‘perfect’
physical clock in the sense that, for some initial state, its observed values increase
monotonically with the abstract time parameter t . To include the possibility that
T̂ has a continuous spectrum, decompose its eigenstates into a collection of nor-
malizable vectors |τ0 〉, |τ1 〉, |τ2 〉. . . . Here |τn〉 is an eigenstate of the projector
onto the interval of the spectrum of T̂ centered on τn. Saying that t corresponds
to a perfect clock has the following meaning.

A) For eachm, ∃ n >m and t > 0 such that Prob(|τm〉 evolves to |τn〉 in Newto-
nian time t) �= 0. This formalizes the clock having a non-zero probability of
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running forwards with respect to T , and means that the physical quantity
fmn(t) := 〈τn|U(t)|τm〉 = 0, for U(t) := exp(−i Ĥ t/�).

B) For each m and ∀ t > 0, the transition amplitude to evolve from |τm〉 to |τn〉
vanishes if m> n: the clock never runs backwards.

A) and B) are, however, incompatible with the physical requirement of positive
energy (Ex II.9).

2) If T were to obey (5.16), an even stronger restriction would apply. This is be-
cause (5.16) implies that U(t)|T 〉 = |T + t〉, where T̂ |T 〉 = T |T 〉 as would be
required for a perfect clock. However, it is well-known that self-adjoint operators
which satisfy (exponentiable) representations of (5.16) necessarily have whole-
R spectra; this result follows from the previous Section’s Stone-von Neumann
Theorem. So (5.16) is manifestly incompatible with requiring Ĥ to be a positive
operator.

1) and 2) amount to QM teaching us that there is a limit on global-in-time mono-
tonicity, and bounds on accuracy criteria.

3) For a quantum clock10 of massM to run for a maximum interval of time T with
an accuracy (here a minimal discernible time-interval) τ , the Salecker–Wigner
clock inequalities—(named after Wigner and physicist H. Salecker) [761]

linear spread λ ≥ 2
√
�T /M, clock mass M ≥ 4�

c2τ

T

τ
(5.18)

hold. In this way, at the quantum level, a clock’s tick-duration needs to be traded
off against its longevity, which thus becomes a nontrivially finite concept.

5.5 Advent of Atomic Clocks

Atomic clocks greatly increased clock stability, e.g. exceeding the threshold for rel-
ativistic effects being non-negligible in the late 1970s [82]. By now, we have atomic
clocks for which the stability of the primary timestandard is 2 parts in 1016 [621] or
even better. This substantially outstrips the accuracy of contemporary astronomical
timestandards.

4) ‘Cleaner Clocks Principle’. The main limitations of astronomical timestandards
come from limitations on the detailed knowledge of the contents of the Solar
System, some of whose internal workings are speculative. For instance, details of
the behaviour of the Earth’s mantle enter the fluctuations which invalidate accu-
rate use of sidereal time. In contrast, atomic clocks have simple and well-known
internal constitution and physics, while being selected and further designed for
being stable and well-shielded from external disturbances.

10This is valid for clocks that are dynamical systems that keep track of their own state, e.g. a
pendulum with hands rather than just a pendulum.
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Atomic clocks are themselves based upon periodic motions. By being small and
localized (at least in comparison to the Solar System), atomic clocks have the fol-
lowing further useful properties. Firstly, they are straightforward to shield from dis-
turbances Secondly, they are convenient as reading hands, in particular far more so
than the position of the Moon. Thirdly, one need not worry about position-dependent
relativistic effects within each atomic clock itself (unlike with Solar System based
timestandards).

Atomic clocks, moreover, remain based on an ephemeris type conceptualization
[364]. Clock bias might in principle still apply; atomic clocks still require recalibra-
tion checks. However, in the early days of atomic clocks it was determined that they
read out ephemeris time to at least 1 part in 109 [638], which substantially eased the
passage from ephemeris to atomic timestandards. None the less, this has the status
of a null experiment, so one should keep on testing whether this premise continues
to hold as precision elsewise improves. . . .

We finally note that, a fortiori, QM underlies all time measurements. In some
cases, this is by providing the atoms that emit and absorb, and in others by providing
the solid state that quartz crystals, gear wheels, planets and sundials are made of.

5.6 Quantum Inputs to Measuring Lengths and Masses

Quantum Theory also underlies all length measurements, whether by providing the
solid state that permits rods, reflectors and lasers or by providing the atoms which
emit and absorb. Marzke and Wheeler [645] showed how quantum dependence
enters a rod and an electromagnetic beam itself, and proceeded to find a way of
defining length that does not involve quantum dependence. However, they did not
consider that in practice Quantum Theory also enters their scheme as regards the
structure of the ‘point particles’ at each end of the electromagnetic beam, so the first
point stands.

How does the standard uncertainty principle limit the precision to which lengths
can be measured? In practise, very accurate interferometers—such as LIGO’s11—
improve performance in this regard by employing ‘squeezed states’ and ‘entangled
beams’.

Let us next consider some quantum mechanical reasons for clocks being more
fundamental than rods. Being made out of quantum matter, rods are not only compli-
cated physical entities [349] but also are ultimately underlied by frequencies, which
are clearly a temporal notion [160]. Also, by their nature and function, rods are nec-
essarily macroscopic [761] and so interact with their environment in uncontrollable
ways, while microscopic clocks (in the sense of reading hands) are possible.

Finally, following on from Chap. 2’s treatment of mass, in the near future it looks
likely that an exact � will be defined so as to be free from the 50 micrograms per
century uncertainty observed in Pt–10Ir ‘kilograms’.

11This is the Laser Interferometer Gravitational Wave Observatory; [839] see Chap. 7 for further
discussion.



Chapter 6
Quantum Field Theory (QFT)

QFT [712, 885, 886] retains the non-commutation, evolution and measurement pos-
tulates, but involves distinct quantum wave equations and inner products. Its Comp-
ton wavelength scale lC (after physicist Arthur Compton) arises from the balance
mc2 = E = �ω = � c/lC.1

6.1 Free Spin-0 Field

The theory for this follows from the Lagrangian L = −∂μφ ∂μφ/2 − m2c2φ2/2�2.
The corresponding equation of motion is the Klein–Gordon equation (after physi-
cists Oskar Klein and Walter Gordon),

�
2 �φ = m2c2φ for wave operator � := −c−2∂2

t + �. (6.1)

The split Lagrangian is L = φ̇2/2c2 − |∂φ|2/2 − m2c2φ2/2�2, the conjugate mo-
mentum is π = φ̇/c2, and the Hamiltonian is H = c2π2/2 + |∂φ|2/2 +m2c2φ2/2�2.

The equal-time commutation relations are now

[φ̂(x), π̂(y)] = i �δ(3)(x − y). (6.2)

The Klein–Gordon equation is a special-relativistic version of the time-dependent
Schrödinger equation (and actually historically precedes it), which can now be re-
covered from the expansion

Eφ = mc2

√{
1 + p

mc

}2

φ = mc2φ − �
2

2m
�φ − �

4

8m3c2
��φ + · · · . (6.3)

1If unfamiliar with any of the non-temporal material in this Chapter, consult [712]; some of this
Chapter’s material on time in QFT (and the Wightman axioms) may however be new to the reader.
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The Klein–Gordon inner product

〈φ1 |φ2 〉 = �

2 i mc2

∫
d3x φ2

←→
∂t φ1 (6.4)

ensures conservation of probability, thus amounting to a distinct form of Sect. 5.3’s
item 7). The candidate probability density involved, however, is negative in some
places. This interpretational issue is best resolved by treating what were classical
fields as themselves quantum operators. The subsequent multi-particle interpreta-
tion of QFT is most efficiently treated as an infinite collection of harmonic oscilla-
tors. In terms of creation and annihilation operators for these (5.14),

H =
∫

d3x

{2π}3
Epa

†
pap, (6.5)

where we have also adopted the so-called normal (operator) ordering: with all cre-
ation operators ap to the left of all annihilation operators a†

p . The vacuum state is
defined by ap|0〉 = 0. We then build a Fock space (after physicist Vladimir Fock)
upon this. This is the Klein–Gordon quantum state space,

Fock =
∞⊕

n=1

n⊗
i=1

Hilb, (6.6)

where
⊗

denotes tensor product, and with appropriate symmetrization subse-
quently incorporated to reflect that the scalar field is bosonic. The sum over n here
corresponds to applying a multi-particle interpretation. Finally note for later refer-
ence that Klein–Gordon Theory straightforwardly admits a clear-cut split into posi-
tive and negative modes.

Propagators are Green’s functions corresponding to the time-dependent quantum
wave equation, which play a significant further role in QFT. The Klein–Gordon
propagator takes the form

D(x − y) ∝ i
∫

d4p
exp(−i p · {x − y}/�)
p2 −m2c2 + i ε

. (6.7)

For some purposes, one needs to specify which contour in the complex plane is to
be used [712], some of which encode different implementations of causality.2

2If insufficiently familiar with Green’s functions (named after 19th century mathematician George
Green), consult [220]. In contrast to propagators, correlators are Green’s functions correspond-
ing to time-independent wave equations. Finally, examples of choices of contour used in defining
propagators are retarded, advanced, Feynman and ‘anti-Feynman’ propagators, after noted physi-
cist Richard Feynman. The retarded case is causal and the advanced case is anti-causal; The most
usual choice for propagators is the Feynman propagator, which is the half-causal half-anticausal
choice, with matter treated causally and antimatter treated anti-causally.
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6.2 Free Spin-1
2 Field

The great physicist Paul Dirac discovered a linear spin-1/2 theory whose field equa-
tion is in a sense a square root of Klein–Gordon Theory’s,3

{
i �γ μB

A∂μ −mc δB
A
}
ψB = 0. (6.8)

The γ μ are the Dirac matrices; representations of these are i
(
I 0
0 −I

)
and i
(

0 σi
−σi 0

)
.

The γ μ obey the Dirac algebra

[γ μ,γ ν]+ = 2ημν, (6.9)

where [γ μ,γ ν]+ := γ μγ ν + γ νγ μ is the anticommutator bracket.

There is additionally a fifth matrix γ 5 := i γ 0γ 1γ 2γ 3 =
(

0 I

I 0

)
, which anticom-

mutes with the other four; its eigenvalues ±1 encode chirality, i.e. handedness.
This spin-1/2 theory can subsequently be placed on a classical Principles of Dy-

namics foundation. Defining the Dirac conjugate ψ := ψ†γ 0, a Lagrangian for Dirac
Theory is L = ψ{i γ μ∂μ − m}ψ, with spacetime split form L = ψ{−i γ 0ψ̇ +

i γ i∂iψ −mψ}. The conjugate momentum expressions, e.g. π = −iψ†, exhibit that
‘momenta and configurations coincide’ for Dirac Theory. Finally, the Dirac Hamil-
tonian is H = iψ†γ i∂iψ +mψ†ψ.

Dirac Theory has the equal-time anti-commutation relations

[ψ̂A(x), ψ̂†
B(y)]+ = δ(3)(x − y)δAB. (6.10)

These incorporate (but do not explain) the Pauli Exclusion Principle by imple-
menting Fermi–Dirac statistics. The inter-relation between commutation and Bose–
Einstein statistics, on the one hand, and between anticommutation and Fermi–Dirac
statistics on the other, was established by physicist Markus Fierz alongside Pauli;
see [885] for a distinct modern proof.

This theory also requires a multi-particle interpretation. The corresponding Dirac
inner product is

∫
d3xψ1ψ2 =

∫
d3xψ†

1γ
0ψ2. (6.11)

In this case, let us denote positive energy state creation and annihilation operators
by a different letter from negative energy ones; it is conventional to use ap and bp
for these. Dirac Theory’s Hamiltonian can be expanded as (once again adopting
normal-ordered form)

H =
∫

d3p

{2π}3

∑
s

Ep
{
as†p a

s
p − bs†p b

s
p

}
, (6.12)

3The capital Latin indices here run over 1 to 4 for 4-component spinor indices; these spinorial
indices are often suppressed in this book.
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for s summing over the allowed spin values. Originally, this raised issues concerning
descent to arbitrarily negative energy states. However, this case’s Feynman propa-
gator,

D(x − y) ∝ i
∫

d4p exp
(−ip · {x − y}/�) γ · p

p2 − m2c2 + i ε
, (6.13)

has a subtle difference in interpretation [712] relative to its Klein–Gordon counter-
part. This reveals that ap and bp correspond to a distinguishable particle–antiparticle

pair.4 There is a straightforward symmetry between antiparticle creation and particle
creation, which is additionally tied to the Fermi–Dirac statistics obeyed by these par-
ticles [712, 817]. Indeed, Dirac predicted the existence of positrons—antiparticles
corresponding to electrons—and those were promptly experimentally observed, in
the form of deflections in an electromagnetic field corresponding to the same charge-
to-mass ratio as the electron but with opposite sign. Finally, a particular feature in
computing Feynman diagrams involving fermionic species is that each fermionic
loop in a diagram contributes a minus sign, giving schematically an overall factor of

(−1)F. (6.14)

This is due to [712] operator exchange in fermionic propagators such as (6.13).

6.3 Free Spin-1 Field: Electromagnetism,
and Its Gauge Symmetry

We next consider a theory whose classical form is already classically well-
known: Electromagnetism. As a long-ranged force, it makes sense that its medi-
ator particle—the photon—is massless. Electromagnetism being linear suggests un-
charged mediators, so that these do not interact electromagnetically with each other.
Moreover, static forces between particles A and B require that emission and absorp-
tion of the mediator by either A or B leaves both of these in the same internal state
[299]. This makes half-integer spin mediator particles impossible for such forces
(here electrostatics forces).

Comparing A = B and A = B (antiparticle) cases, if A and B are charged, these are
same-sign and opposite-sign charges. Compute the potentials and take suitable lim-
its. Moreover, if the mediator particle is of odd integer spin, like charges repel and
opposite charges attract. This fits the bill for Electromagnetism. Take spin-1 as for
now the simplest possibility (Sect. 11.7 furthermore precludes higher odd spins).
Conversely, mediators of even integer spin result in universally attractive forces.

4By the half-causal half-anticausal choice in the Feynman propagators, some of the arrows in
Feynman diagrams (Fig. 6.1.b) point backwards. This corresponds to modelling distinguishable
antiparticles as if they were travelling backward in time. This convention moreover indeed works
for practical purposes.
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This now fits the bill for Gravitation, to which we return in Chap. 11. Electromag-
netism’s mediator particle is moreover massless. If it were massive, the resulting
static force would go as exp(−mr)/r2, in discord with the observed inverse square
law.

Following on from the Lagrangian (4.14), Electromagnetism’s momentum con-
jugate to Ai is

πi := ∂L

∂Ȧi
= −Ȧ

i − ∂i� = Ei . (6.15)

Next note that Gauss’s Law (2.13) is instantaneous: a constraint equation

G := ∂iπi = 0 (6.16)

in vacuo. It is moreover accompanied by a primary constraint (see Appendix J)
π� = 0, for π� the momentum conjugate to�. These constraints are both first-class
(also in Appendix J), so they use up 2 degrees of freedom each. In this way, one
passes from Ai , � and their conjugate momenta’s redundant 4 × 2 phase space de-
grees of freedom per space point to just 2 × 2. This is in accord with electromagnetic
waves consisting of just two modes (the transverse modes). N.B. that constraint
equations become a major feature for most of the rest of this book. Electromag-
netism’s ‘total’ Hamiltonian (see Appendix J.15) is

H = {π2 + B2}/2 + �∂ · π (strictly need to include + λπ0). (6.17)

Electromagnetism is moreover invariant under U(1) local gauge transformations

Aμ −→ Aμ + ∂μξ (6.18)

for any function ξ = ξ( �X).5 This bears well-known relation to the above form of the
constraints. Commonly useful gauge choices include each of

∂μAμ = 0 (Lorenz gauge), (6.19)

∂iA
i = 0 (Coulomb gauge). (6.20)

Electromagnetism’s commutator is, in the Coulomb gauge,

[Ai (x),πj (y)] = i �
{
δij − �−1∂i∂j

}
δ(3)(x − y), (6.21)

the combination in curly parentheses forming a transverse projector.
Maxwell’s equations (4.11) play the role of wave equation. Applying a mode

expansion in terms of ak (for k each mode’s momentum), the Coulomb gauge con-
dition leads to k · ak = 0 and k · a†

k = 0. The normal-ordered quantum Hamiltonian

5In this book, we use overhead arrows to denote 4-vector quantities.
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is

H =
∫

d3k

{2π}3
|k|a†

k · ak. (6.22)

Building up the states with creation operators from a vacuum state works in the
habitual manner for bosons.

Finally note that the photon propagator is—in the Lorenz gauge [712, 885] (after
physicist Ludvig Lorenz)—

DFμν(x − y) ∝ i
∫

d4k
exp(ik · {x − y}/�)

k2 + i ε

{
ημν − kμkν

|k|2

}
. (6.23)

More compactly, its Fourier-transformed form is

1

k2 + i ε

{
ημν − kμkν

|k|2

}
. (6.24)

6.4 Time in Quantum SR

Conventional Relativistic Field Theory has a fixed background (usually Minkowsk-
ian) spacetime structure with the field propagating with respect to this in the corre-
sponding time [471].6 Therein, QFT is based on selection of an inertial frame and
so of a choice of time [471]. This is formalized by the first of the Wightman axioms
[401, 875].7

Wightman-1) The theory’s state are unit rays in a Hilbert space Hilb that carries a
unitary representation of the Poincaré group Poin(4).

At the quantum level, SR’s Poin(4) now manifests itself as a commutator algebra
with nontrivial commutators

[M̂μν, P̂ρ] = i �{ημρP̂ν − ηνρP̂μ}, (6.25)

[M̂μν, M̂ρσ ] = i �{ημρM̂νσ − ημσ M̂νρ − ηνρM̂μσ + ηνσ M̂μρ}. (6.26)

Since Poin(4) is tied to the background Minkowski metric η and its high level of
symmetry, passing from QM to QFT indeed parallels passing from Newtonian Me-
chanics to SR as regards trading one kind of absolute time for another. Also, since
Poin(4) is repeatedly involved in the account below, many sources of contention will
arise when this background structure can no longer be assumed (see Sect. 11.3).

6QFT does not by itself entail SR, e.g. phonons are a Nonrelativistic QFT model of quanta of sound
waves in materials.
7Moreover, the Wightman axioms (named after mathematical physicist Arthur Wightman) do not
cover Quantum Gauge Theories. See e.g. [269] for a recent overview of this, and also [687] as
regards an advanced consideration of their Euclidean counterpart.
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Wightman-2) The 4-momentum—as defined by the action of Poin(4) on Hilb—is
positive. Moreover, this can be reformulated as the spectrum condition: that the
4-momentum spectrum is contained within the closed future null cone.

Wightman-3) There exists a unique, Poincaré invariant state: the vacuum (thus this
is also induced from background structure).

Wightman-4) The quantum fields are operator-valued distributions8 defined on a
dense (in the sense of Appendix C.6) domain D ⊂ Hilb that is both Poincaré
invariant—and thus Background Dependent—and invariant under the action of the
fields and their adjoints.

Wightman-5) The fields transform covariantly under the action of Poincaré trans-
formations. This follows from Wigner’s demonstration that the different types
of free particle are the representations of Poin(4) [885]. This is outlined in Ap-
pendix E. This furthermore signifies that spin is an inherent part of SR. The linear
relativistic wave equations are ‘projection conditions’ onto irreducible subspaces
in some Hilbert space [363].

Wightman-6) At spacelike separations, quantum fields either commute or anticom-
mute. N.B. that this depends on the fixed-background (but not necessarily highly
symmetric) metric to judge what is spacelike.

The equal-time commutation relations now additionally carry the further time con-
notations of microcausality [483],

[�̂A( �X), �̂A′( �Y )] = 0. (6.27)

Here �̂A are relativistic quantum field operators at all spacelike-separated spacetime
events �X and �Y , i.e. for all pairs of points not interconnected by causal signals.

One now has distinct time-dependent wave equations and new inner products
carrying time connotations via unitarity’s tie to conservation of probability.

Finally, the Time–Energy Uncertainty Relation is additionally contentious in this
SR setting [517]. Having to treat x, y, z differently from t on the other is ‘intuitively’
problematic if these are to be related by Lorentz transformations. On the other hand,
the Salecker–Wigner inequalities continue to apply to SR clocks.

6.5 Interacting Field Theories, Including Quantum
Electrodynamics (QED)

Free Field Theory has the following schematic form.

Free QFT I) For each field type start with the corresponding relativistic particles
which are non-interacting. These correspond to classical field equations that are

8Appendix O outlines ‘distributions’ in the current sense of Functional Analysis. So as to not
confuse this with ‘probability distribution’ or ‘distribution of matter’, this book always fully spells
out these other uses.
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linear in the fields and thus to quadratic Lagrangians The irreps of the Poin(4)
symmetry group of the Lagrangian give the quantum states. Each individual parti-
cle’s states form a Hilbert space.

Free QFT II) To have an arbitrary particle number scheme, one next builds the cor-
responding Fock space (6.6) with suitable (anti)symmetrization incorporated.

Free QFT III) Finally construct the corresponding creation and annihilation opera-
tors.

Interacting QFT then builds upon this as follows. We now need to include interac-
tion terms in the Lagrangian; these are cubic or higher in the fields. In the Scattering
Theory, the ‘in’ and ‘out’ states are free, whereas scattering in a transition region
is described by a scattering matrix (S-matrix). If the coefficients of the interaction
terms can be regarded as small, perturbation theory can be applied and useful re-
sults reasonably straightforwardly ensue. The S-matrix can be viewed in terms of
the vacuum expectation values of time-ordered products of ‘interpolating fields’ (i.e.
n-point functions) linking different-particle-number-and-species ingoing and outgo-
ing states. At this point, one uses Wick’s Theorem [712] to relate time ordering to
normal operator ordering. Feynman rules arise from these considerations. As well as
propagators, one is now to consider interaction vertices and S-matrix ‘in’ and ‘out’
states. Model arenas are useful in this study. As a first example, consider φ4 theory,
meaning that there are 4 scalar field propagators emanating from each vertex. The
integrals now contain edge, external and internal vertex contributions; the Feynman
rules [712] are an efficient prescription for computing such diagrams.

The U(1) gauge symmetry of classical Electromagnetism plus a complex scalar
field involves considering a local (gauged) version of the φ → exp(iξ)φ symmetry,
i.e. now with ξ( �X) rather than just a global ξ . This requires introducing an object Aμ
which transforms in opposition to ∂μ. Letting Aμ have its own dynamics produces
Electromagnetism coupled to a complex scalar field Gauge Theory. This has an
AμAμ φ∗φ vertex.

One can also arrive at QED (Quantum Electrodynamics) by repeating the above
procedure for a fermionic theory. This possesses a ϕ γ a ϕAa vertex (Fig. 6.1.b).
This theory originated with work of Heisenberg, Pauli, Bohr and physicist Léon
Rosenfeld [150, 444].

As regards model building more generally,

1) constructing Lagrangians to obey a pre-determined list of symmetries is a com-
mon procedure in Particle Physics. Including all terms with a given symmetry in
the Lagrangian is an additional common premise in Particle Physics.

2) Power-counting within each Feynman diagram, the superficial degree of diver-
gence of an interaction I is [885] 	I := 4 − dI −∑f nIf {sf + 1} for dI the
number of momentum factors and nf the number of fields of type f with spin sf .
Theories with 	I ≥ 0 for all interactions are termed naïvely renormalizable
(since this is for now but a ‘back of the envelope’ calculation). Two attitudes to
non-renormalizable theories are to discard them, or to retain them in the guise of
effective theories that are a good approximation within some particular regime.
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3) The Cluster Decomposition Principle asserts the independence of QFT in dis-
joint local spacetime patches [885].

Returning to QED, two significant features are, firstly, the involvement of a
charge-to-mass ratio, which lends itself to being readjusted in detailed calcu-
lations. Secondly, the fine structure constant α := e2/4π � c � 1/137 is here
available to play the role of perturbation theory’s small parameter.

4) Anomalies [4, 139, 250] are a type of brackets algebra obstruction that specifi-
cally alters the classical symmetry group at the quantum level. In this manner,
Quantum Theory refuses to accept some of what were perfectly good symmetries
at the classical level. According to Dirac [250], one’s Quantum Theory avoiding
this problem requires ‘luck’.

6.6 Yang–Mills Theory Underlying the Nuclear Forces

An early theory for the nuclear forces involved mediation by massive pions. This led
to Fermi’s theory (4-fermion vertices) being applied again, although this was then
demonstrated to be non-renormalizable in the 1950s. [Cf. how in QED the photon
splits the putative 4-fermion vertex into two QED vertices.]

There are now multiple 1-form fields to Electromagnetism’s single one. Further-
more, they are coupled to each other: Yang–Mills Theory (after physicists Chen
Ning Yang and Robert Mills) is nonlinear, with mediator particles now carrying
charges, in contrast with Electromagnetism’s photon being neutral. Yang–Mills The-
ory encodes these further features using larger gauge groups (Appendix E) than
Electromagnetism’s U(1), which are furthermore noncommutative. For the mod-
elling of the nuclear forces, the mediator particles in question are termedW± and Z0

bosons for the weak force [g = SU(2)] and gluons for the strong force [g = SU(3)];
the latter carry ‘red’, ‘green’ and ‘blue’ colour charges. Moreover, these are just ar-
bitrary label names [so one really has SU(3)/Z3]. This SU(3)—held to be exactly
realized—should not be confused with the approximately realized flavour SU(3)
that covers up, down and strange quarks9 The latter has been generalized to there
being three generations of pairs of quarks (Fig. 6.1.a), whereas the former is the
basis of the Quantum Chromodynamics theory of the strong force. We finally note
the electroweak unification based on SU(2) × U(1) by physicists Steven Weinberg
and Abdus Salam [886]. The composition without further unification of the previ-
ous two sentences’ theories is known as the Standard Model of Particle Physics. See
Fig. 6.1.a) for its remaining fundamental particle species and their relations to all
the types of composite particle mentioned in this book.
αS and αW can at this point be defined in parallel with QED’s α. However, αS is

unfortunately too large to be amenable to perturbation theory paralleling QED’s.

9I.e. physicist Murray Gell-Mann’s eightfold way explanation of the octet, singlet and decuplet
patterns of the observed and predicted-and-confirmed hadrons [886].
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Fig. 6.1 a) Summary table of the building blocks of Nature: 6 quarks and 6 leptons, each repre-
senting 3 generations, alongside the mediator particles and the Higgs bosons. b) Notation used for
the propagators and vertices in various theories

The spacetime form of the Lagrangian for (arbitrary gauge group) Yang–Mills
Theory is

L = − 1

2
FIμνF

μν
I , (6.28)

for Yang–Mills field strength FIμν := ∂μAIν − ∂νAIμ + i|[Aμ,Aν]|I and Yang–Mills

potential 1-forms AIμ. The corresponding field equations are

0 = DμFIμν = Dμ
{
∂μAIν − ∂νA

I
μ + i|[Aμ,Aν]|I}, (6.29)

for Dμ the gauge covariant derivative (explained in Appendix F).
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The 3 + 1 split of Yang–Mills Theory’s Lagrangian is

L = − 1

4
FIabF

Iab

+ 1

2

{
∂0AIa − ∂aAI0 + |[Aa,A0 ]|I

}{
∂0AIa − ∂aAI0 + ∣∣[Aa,A0]∣∣I}. (6.30)

The conjugate momenta are

πaI := ∂L

∂ȦIa
= δij δIJ

{
Ȧ
J

j − ∂jA0 + +i|[A0,Aj ]|}, π�I := ∂L

∂�̇I
= 0. (6.31)

The last equality is a primary constraint; it is partnered by the Yang–Mills–Gauss
constraint

GJ := DaπaJ = ∂aπaJ − gcfIJKAKa πIa = 0. (6.32)

[Brackets have been evaluated here in terms of the structure constants (E.2), along-
side making explicit an overall scalar factor: the coupling constant gc.] These are
both first-class, and use up 2 degrees of freedom each. The Yang–Mills Hamiltonian
is

H = πaIπIa + 1

4
FIμνF

Iμν − AJ0 GJ . (6.33)

The Yang–Mills wave equation is just the second form of (6.29). Since it is not
linear, we cannot fully treat this with mode expansions, and there are other subtleties
such as Fadde’ev–Popov determinants (outlined in Chap. 52). The Standard Model
further requires the Yang–Mills–Dirac Gauge Theory parallel of QED [712, 886].

Symmetry breaking is required for contact with observation. Breaking of global
symmetries involves further Goldstone boson species (after physicist Jeffrey Gold-
stone) entering the physics [886]. On the other hand breaking of local i.e. gauged
symmetries involves instead Higgs bosons [886], which confer mass to other parti-
cle species. [This means inertial mass since the 3-force Standard Model QFT within
the Minkowskian Paradigm solely involves the inertial notion of mass.] Moreover,
neutrinos have come to be considered to possess mass so as to explain solar obser-
vations [888].

Yang–Mills Theory’s nonlinearity renders it [238, 239] somewhat more like GR
than Electromagnetism is. A final feature that is common in QFTs used to approach
Quantum Gravity is possession of a mass gap, i.e. a finite difference in energy be-
tween the vacuum state and the next lowest energy state.

6.7 Discrete Operations (Including Time-Reversal)
in Quantum SR

Let T, P and C denote time-reversal symmetry t → −t , parity-inversion symmetry
x → −x and charge conjugation symmetry q → −q respectively (see e.g. [269,
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885]). The T operator is moreover antilinear and antiunitary [885] (cf. Sect. 5.3).
Note furthermore, C, P, and even CP, violations are observed experimentally; these
are related to the weak force; on the other hand, even this obeys the combined CPT
invariance. We finally point to C here enlarging the grouping of space-and-time that
is PT, which provides yet another reason for non-closure of temporal notions by
themselves.

6.8 Quantum-Level Evidence for SR

This includes the survival of muons through the atmosphere, the fine structure of
atomic spectra, accounting for Nuclear Physics reactions and many observed Par-
ticle Physics processes. In particular, the predicted W± and Z0 bosons have been
confirmed, and likewise the charm, bottom and top quarks, and now the Higgs bo-
son [838], as well as mixing angles related to the flavour changing weak decays
[886].

6.9 Grand Unified Theories

These attempt to unify the electromagnetic, weak and strong forces using repre-
sentations of some larger gauge group such as SU(5) or SO(10), within which
SU(3)× SU(2)×U(1) can be embedded: large enough and admitting complex rep-
resentations. This would replace three separate coupling constants by a single one
in some high-energy regime. The SU(5) Grand Unified Theory itself is overruled
due to non-observation of proton decay [886].

6.10 Exercises II. Time and Quantum Theory

Further Reading See e.g. [599] for an introductory account of QM, [487] for an
introduction to the foundations of QM and its use of basic Linear Algebra, and
[712, 885, 886] for more on QFT.

Exercise 1) Solve the n-d quantum harmonic oscillator in n-d spherical coordi-
nates.

Exercise 2) Model the hydrogen atom’s energy spectrum by considering the follow-
ing equations with Coulomb potential in spherical polar coordinates. i) The time-
independent Schrödinger equation. ii) The Klein–Gordon equation. iii) The Dirac
equation. iv) Compare these results. v) Consider what happens to the atomic orbits
in the semiclassical limit, and compare with the corresponding classical problem.

Exercise 3) [Bosonic noninteracting QFT] i) Make sure you know how this is mod-
elled in terms of a countable collection of harmonic oscillator creation and annihi-
lation states, and Fock space. ii) How does this work better than a single-particle
interpretation of the Klein–Gordon equation?
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Exercise 4) Show that Noether’s Theorem links momentum to translational sym-
metry, angular momentum to rotational symmetry and energy to time translation
symmetry. Find a Noether current and conserved quantity for a single complex
Klein–Gordon scalar field and for a Dirac spin-1/2 field; both of these cases corre-
spond to some phase symmetry.

Exercise 5) The Feynman path integral formulation—of conceptual and efficient
computational value in QFT in particular—can be considered to be in terms of a
transition probability

T [qfin, tfin,q in, tin ] := 〈qfin, tfin |q in, tin 〉 = 〈qfin |exp
(
i H {tfin − tin }�)|q in 〉. (6.34)

i) By inserting a complete set of states and applying a suitable discretization
and limiting procedure, and using p(0) := p(in), q(0) := q(in) and q(N + 1) :=
q(fin), rewrite (6.34) as

T
[
q(fin), tfin,q(in), tin

]= lim
N−→∞

∫ M∏
A=1

DqADp
A

{2π �}M

× exp

(
i

�

N∑
B=0

{
pA(tin + B	t)

{
qA(tin + {B + 1}	t)

− qA(tin + B	t)
}−	t H

(
pA, q

A)}
)

=
∫ M∏

A=1

DqADp
A

{2π �}M
(
i

�

∫ tfin

tin

{
pAq̇

A −H
}
dt

)
. (6.35)

ii) Carry out analogous workings in the case of a scalar QFT. iii) Consider further-
more the Euclidean path integral analogue by performing a complexified spacetime
coordinate transformation to imaginary time, τ = it . Investigate choice of a con-
tour in C (‘Wick rotation’, after physicist Gian-Carlo Wick) so as to move back to
the Lorentzian form of the path integral. iv) Derive the form of all of this Chapter’s
propagators.

Background Reading 1)† Extend [349, 521, 736]’s treatments of time in Classical
Physics to Quantum Theory.

Exercise 6) i) How do anti-Hermitian operators evade Pauli’s point in Sect. 5.3?
ii)† How else can Pauli’s point be evaded? [See Sect. 41.1 for more.]

Exercise 7) [Time–Energy Uncertainty Principle.] In Ordinary QM, show that
	O	E ≥ |〈 Ô, Ĥ 〉|/2 for a time-independent operator O . Rearrange this to ob-
tain a Time–Energy Uncertainty Principle for a ‘characteristic evolution time’

tO := 	O

/∣∣∣∣
d〈 Ô 〉

dt

∣∣∣∣,

and interpret this quantity.
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Exercise 8) Derive the Salecker–Wigner clock inequalities (5.18) from a suitable
Uncertainty Principle.

Exercise 9) Demonstrate Unruh and Wald’s contradiction (Sect. 5.4) by studying
the function fmn(t), m> n, for complex t .

Background Reading 2) i) Understand Quantum Theory’s transition time, life time,
tunnelling time, reflection time, response time, dwell time, flight time, arrival time,
pulse time, Zeno time, passage time, jump time, and coherence time as notions of
time at the conceptual level [669, 670]. E.g. which of these bear which relations
to each other? Which are external, internal or based on observables? Which can
meaningfully enter Energy–Time Uncertainty Principles? ii)† What happens to all
of these notions of time upon passing to a classical Newtonian limit? iii)† Which
of these notions of time remain meaningful in QFT, and what happens to each of
these upon passing to a classical Minkowskian limit?

Backgound Reading 3) Work through Chaps. 6 and 7 of [82] as regards the physics
of timekeeping using atomic clocks.

Exercise 10) i) Show that all the fundamental Laws considered so far in this book
are individually T, P and C invariant with the exception of the weak force. [To
include Ordinary QM, consider only observable quantities, and be disposed to re-
strict the form of the potential.] ii) Demonstrate that even the weak force is CPT-
invariant. (See also [817] for a demonstration that CPT must hold a fortiori for any
local SR Field Theory.)

Background Reading 4) Consider the accounts of decoherence in the compilation
[366].

Exercise 11) Demonstrate that α-tracks in bubble chambers can in fact be taken to
be governed by a time-independent Schrödinger equation.

Exercise 12)†† Read Chaps. 1 to 4 of physicist Dieter Zeh’s [931] on the Radia-
tive, Thermodynamical, and Quantum (measurement: wavefunction collapse, and
weak-force) Arrows of Time. Explore whether one of these is a ‘Master Arrow’
from which all the other Arrows follow. Does the Psychological Arrow of Time
follow from any of the others?



Chapter 7
Time and Spacetime in General Relativity (GR)

GR arose historically through Einstein’s hopes for universality of SR being thwarted
by Gravitation alone amongst the classical laws. In the process, he recognized the
importance of the Equivalence Principle: having to treat

a + mg

mi
g (7.1)

jointly rather than piecemeal, as per Sect. 2.9. He approached this via his eleva-
tor thought-experiment, in which an observer in a small enclosed laboratory is not
able to discern whether they are experienced gravitational fall or rocket accelera-
tion. This rests on the concept of Universality of Free Fall [287]—independence of
the material composition of falling test bodies—since elsewise bodies of different
compositions could be used to discern between a and g. Einstein furthermore took
this universality to point strongly toward there being a common underlying geome-
try being experienced by all the test particles. Moreover, a curved generalization of
SR’s notion of 4-d spacetime can serve this purpose. Contrast the above also with
how particles with different charge-to-mass ratios move differently in an electro-
magnetic field: the Equivalence Principle is a statement of the non-existence of an
analogous gravitational-to-inertial mass ratio.

That Gravitation in the above sense can be transformed away at any particular
point is implemented by the mathematics of the spacetime affine connection.1 By
this feature, freely falling frames are but local concepts, thus deserving the name
‘local frames’. The combination of Newton’s Second Law and Newton’s Law of
Gravitation ẍ = −∂φ can be reformulated as a (for now affine) geodesic equation
with a spacetime affine connection whose only nonzero components are

�(4)i00 = ∂iφ, (7.2)

where φ is the Newtonian gravitational potential.

1From here on, we assume the reader knows Differential, Affine and Metric Geometry; if not, take
a detour to Appendix D. If elsewise unfamiliar with this Chapter’s material on GR, consult [874]
as preliminary reading.

© Springer International Publishing AG 2017
E. Anderson, The Problem of Time, Fundamental Theories of Physics 190,
DOI 10.1007/978-3-319-58848-3_7

79

http://dx.doi.org/10.1007/978-3-319-58848-3_7


80

Indeed, connections correspond to not being able to treat an additive pair of math-
ematical objects in isolation from each other. This is reflected in their individual
transformation laws being inhomogeneous (non-tensorial) whereas the sum of the
objects does have a tensorial transformation law.2 This transformation law can also
be taken to underlie how the spacetime affine connection can be transformed away
at any particular point (see Appendix D.3’s normal coordinates).

Local agreement with SR is also required; a natural hypothesis here is Einstein’s
that SR inertial frames are global-in-spacetime idealizations of GR’s local inertial
frames that are attached to freely falling particles. Furthermore, in parallel with
the development of SR, Einstein retained a notion of metric g with components
gμν

3 on spacetime to account for observers in spacetime having the ability to mea-
sure lengths and times if equipped with standard rods and clocks. I.e. the inner
product characterization of length and angle carries over from SR to GR. One is
consequently dealing with an in general curved semi-Riemannian (alias pseudo-
Riemannian) metric. See Appendix D as regards a more general Tensor Calculus
than that on R

3 or M4.
The metric g represents Gravitation in a second sense: it replaces the single New-

tonian scalar field by a geometrical decuplet of fields. Moreover, this unification of
Metric Geometry and Gravitation was itself a novel physical proposal at this stage
in the development of Physics. The metric connection associated with this turned
out to suffice in the aforementioned role for an affine connection in the theory. As
g reduces locally to SR’s η everywhere locally the other laws of Physics take their
SR form. One can see g’s indefinite signature as a continuation of SR’s; it is again
an indefinite metric encoding the distinction between time and space by time be-
ing −− and space being + + +. Indeed, notions of timelike, spacelike and null
carry over to GR, as does using the first and third of these to interpret massive and
massless particle based matter respectively. The straight timelike lines followed by
free particles in SR’s Minkowski spacetime M

4 are bent by the gravitational field
into the curves followed by relatively-accelerated freely-falling particles in the case
of full GR. The straight null lines which constitute M

4’s lightcones are similarly
bent.

A natural question at this point is how one is to interpret the spacetime curva-
ture associated with the affine connection and the metric. Another is what are suit-
able field equations—analogous to Maxwell’s equations for Electromagnetism—
and subject to the requirement of recovering the Poisson form of Newton’s Law of
Gravitation in a suitable limit. These field equations are to be tensorial: a realization
of General Covariance.

2Partial derivative and connection come with transformation laws with extra compensating por-
tions that cancel out in the covariant derivative’s own tensorial transformation law: Appendix D.3.
Indeed the ‘compensating field’ treatment of Gauge Theory in Chap. 6 can be formulated in terms
of another type of connection, as per Appendix F.4.
3g is the spacetime metric’s determinant, which is a scalar density, �(4) is the spacetime metric
connection and ∇μ is the spacetime covariant derivatives. While there is a role for an affine con-
nection, it is the metric connection (indeed computable from the metric: Appendix D.4) subsumes
this role in GR.
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Moreover, an intermediary reformulation already reveals that Newtonian Gravi-
tation is already a curved-space theory. Indeed [814], from (7.2)

Ri0j0 = −∂i∂jφ, (7.3)

so the Newtonian tidal equation (2.10) can itself be viewed geometrically as a
geodesic deviation equation (D.14), and Poisson’s form (2.11) of Newton’s Law
of Gravitation can be further recast as

R00 = −4π Gρ. (7.4)

Furthermore, (7.3) is the only nonvanishing component. This means that this cur-
vature tensor does not have the symmetries corresponding to Metric Geometry’s
Riemann tensor; the indices are clearly mismatched as well. This (non-historical)
observation (and [278]) suggests that Curved Geometry is on the right track, but
also that in excess of the above realization is required. SR’s involvement of a space-
time metric points further toward an eventual realization of Gravitation by Metric
Geometry which is free from the above intermediary geometrization’s defects.

That curvature can be interpreted in terms of geodesic deviation is itself a geo-
metrically standard fact (Appendix D.4). The above link between geodesic devia-
tion and the Newtonian tidal equation indicates that curvature models a third aspect
of Gravitation.4 Furthermore, curvature—unlike connection—is a tensor quantity;
therefore it cannot be transformed away at the point of interest. This gives a sharp
mathematical basis for a substantial conceptual distinction between Gravitation in
the second and third senses. I.e. local physics can be freed from Gravitation in the
second sense but not in the third. [This use of ‘local’ requires a neighbourhood rather
than a point, since curvature manifests itself though finite-region vector transport or
geodesic deviation involving finitely separated geodesics.]

As compared to Gauss’s investigation of the curvature of physical space
(Chap. 1.10), Einstein’s set-up had the good fortune that its spacetime curvature
was large enough to be observed in the epoch in which he discovered GR. More-
over, Gauss and Riemann had no inkling that curvature encoded Gravitation or that
space and time could be co-geometrized as 4-d spacetime. By these additional in-
sights and good fortune, Einstein was able to show that Curved Geometry is relevant
to modelling the Universe via some of the observations outlined in Sect. 7.5.

Returning to the issue of setting up field equations for the new Theory of Gravi-
tation, a hypothesis that turns out to be useful and makes use of two Minkowskian
Paradigm steps is as follows. I) View the source term in Poisson’s Law in terms
of energy.5 II) Next extend this to sourcing by the entirety of the corresponding

4In Newtonian Gravitation formulated along the original lines with no mention made of Curved Ge-
ometry, the single word ‘Gravitation’ is used in all three of the above senses. These become sharply
distinguished upon passing to a geometrical formulation of Newtonian Gravitation. Moreover, this
distinction transcends to GR, in which setting the geometry involved is both better-behaved and
more standard from a mathematical point of view.
5This is an SR insight: E = mc2. Moreover, it has a more immediate and significant consequence:
since energy gravitates and all particles have energy, everything has to couple to Gravity.
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spacetime tensor: the energy–momentum–stress tensor, Tμν . On these grounds, Ein-
stein conjectured that energy–momentum–stress sources some notion of spacetime
curvature and thus Gravitation (meant in the third sense). He eventually realized
that this required a curvature tensor matching the properties of the Tμν , i.e. with
two indices, symmetric therein, and divergenceless: ∇μTμν = 0. (D.24) implies that
Gμν := Rμν − gμνR/2 is such a curvature tensor [282], and this is indeed conse-
quently named the Einstein tensor.6 Next equate this with Tμν up to proportionality
as set by the Poisson equation, giving

Gμν = 8π G

c4
Tμν (Einstein’s field equations). (7.5)

Various comments on curvature, the field equations and further assumptions in their
derivation are now in order.

1) A cosmological constant term Λgμν can also be included in the left hand side,
since this also fits the symmetry and conservation criteria. There are further
mathematical simplicity criteria (see e.g. [859] for an account and references)
that pick out this tensor (plus the cosmological constant part). The Cartan sim-
plicity postulates for GR—that Gtrial

μν contains at most second-order derivatives
of gμν and is linear in these—also came to be used in axiomatizing GR. The
Lovelock simplicity postulates for GR (after physicist David Lovelock) followed
from subsequent demonstration that the linearity assumption is unnecessary in
dimension d ≤ 4 [629].

2) The number of Einstein field equations matches the number of independent com-
ponents of gμν (Appendix D.4); in the usual 4-d spacetime case, there are 10
of each. By this stroke of good fortune, the natural interpretation in which the
gμν are taken to be unknowns corresponds to a well-determined system: one for
which the number of equations matches the number of unknowns. Since most
other attempted geometrizations would face a mismatch rather than a coinci-
dence at this point [779], this ‘stroke of good fortune’ is a reasonably significant
further indication of GR being on the right track.

3) N.B. that the current section is not just a Paradigm Shift from Minkowski space-
time M

4’s Flat Geometry to a generally curved notion of geometry. It is addi-
tionally a Paradigm Shift between the following two situations. i) An ‘actors
performing on a stage’ perspective of Physics, encompassing both the Newto-
nian and Minkowskian Paradigms. Both Euclidean and Minkowskian geome-
tries are rigid pre-determined background structures upon which physical events
occur and physical processes unfold. ii) A ‘material blobs moving around on a
rubber sheet’ perspective of Physics [660]. Here the distribution of the material
blobs influences the shape of the rubber sheet by determining part of its curva-
ture properties. (7.5)’s status as a ‘geometry = matter’ equation then means that
each of geometry (in the form of curvature) and matter (in the form of energy–
momentum–stress) influences the other in GR. Additionally, GR explains the

6Here Rμν is the Ricci curvature tensor and R the Ricci scalar curvature.
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limited extent in practice of SR’s inertial frames in terms of the sources of Grav-
itation, by which inertial frames cease to be structures that cannot be acted upon
[736].

4) While pertinent, let us leave discussion of the well-known and yet disputed role
of Mach’s Principle [632] in the inception of GR to Chap. 9.

5) Gμν contains the same amount of information as Rμν , but less than that in the
Riemann curvature tensor Rμνρσ . The Weyl tensor Cμνρσ (D.22) picks out the
difference, which admits interpretation as gravitational waves. In this way, in
GR, Gravitation meant in the third sense further splits into the source-controlled
part governed by the Einstein field equations and a free part consisting of gravita-
tional waves. This rests on the Weyl tensor being mathematically sharply defined
as an irreducible piece of the Riemann tensor, alongside this irreducible piece
covering the totality of information in the Riemann tensor which does not enter
the Einstein field equations. Moreover, the conventional spacetime dimension of
4 is the minimal one supporting a nontrivial Weyl tensor and thus the general
possibility of gravitational waves.

Having commented on the meaning of the Einstein field equations, we turn to some
brief comments on the earlier part of this Section. Let us first expand on Sect. 2.9’s
coverage of Equivalence Principle concepts. The Weak Equivalence Principle can be
taken to be just another name for Universality of Free Fall [365, 910]. On the other
hand, the Einstein Equivalence Principle (in fact due to physicist Robert Dicke)
augments the preceding with Local Poincaré Invariance. This consists of Local
Lorentz Invariance and Local Position Invariance [910]. These are, respectively,
the independence of local non-gravitational experiments from the velocity of the
freely falling frame, and from where and when it is performed. Finally, the Strong
Equivalence Principle additionally includes the effect of self-gravitation [910].

Also note for later comparison that this Chapter gives a Discover Connections
and then Curvature approach, in the sense of connections arise first suggesting that
the associated notions of curvature be considered as well.

Finally, once curvature is involved, the geodesic deviation equation (D.14) plays
a role which is in some ways analogous to that of the Lorentz Force Law (4.15) in
Electromagnetism ([660, 897] and Ex V.3).

7.1 More Systematic Formulation of GR’s Mathematics

The conventional spacetime formulation of GR is in terms of a pair (m,g). Here m
is the topological manifold (Appendix D.1) underlying each spacetime. Additionally
assume that m carries differentiable structure (Appendix D.2).

Spacetime diffeomorphisms are injective maps φ : m → m which are differen-
tiable and possess differentiable inverses are Diff (m); see Appendix D.2 for more
about the mathematics of these. Because of these, 4 components’ worth of informa-
tion among the 10 components of g are unphysical.
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Moreover, in the case of GR spacetime, the distinction between passive and active
diffeomorphisms acquires further significance. Passive diffeomorphisms are coordi-
nate transformations, tied to the well-known notion of Jacobian matrix (Chap. 2). On
the other hand, active diffeomorphisms correspond to the moving around of points
of a manifold; this is also tied to the notion of Lie derivative (Appendix D.2), which
indeed provides a means of moving points around: Lie-dragging. It is the active dif-
feomorphisms which are the main concern in the study of GR, for the Background
Independence reasons laid out in Chap. 9. Also note the step-up from Electromag-
netism and Yang–Mills Theory, whose transformations occur at a fixed spacetime
point (i.e. event), whereas in GR the diffeomorphism group moves points around
[483].

Given that GR spacetime is also equipped with a metric, a subsequently useful
notion are the isometries: metric-preserving injective maps. Isometries are further-
more related to both Lie derivatives and Killing forms (Appendix E.2) by

$ �Xgμν = 2∇(μXν) =: (KX)μν. (7.6)

The first equality is computational, and illustrates a common trend: that Lie deriva-
tives can be re-expressed as covariant derivatives in the presence of sufficient struc-
ture to define the latter. Moreover, the Lie derivative notion is more minimalistic,
pertaining to just Differential Geometry to the covariant derivative requiring an
affine connection as well. Finally note that Killing vectors are a crucial part of the
extension of the notions of symmetries and conserved quantities to more general
settings than in the flat spaces of Newtonian and Minkowskian Physics; see Ap-
pendix E.2 for more.

7.2 Spacetime Action Principle for GR

The Einstein–Hilbert action for pure GR is (based on Appendix D.6’s notions of
density and integration)

sGR
EH = c4

16π G

∫

m
d4x
√|g| R( �X; g]. (7.7)

One is to introduce here also a matter action sψ , combined additively with (7.7).
This takes the η −→ g version of its SR form, making use of minimal coupling as
well (a type of local Lorentz invariance postulate). Much as one can cast all the
observationally-established non-gravitational classical laws of Physics in SR form,
one can cast these (now free from this non-gravitational caveat) in GR form [660].

Varying this additive combination gives Einstein’s field equations for GR (7.5).
The energy–momentum–stress tensor here is identified as being of the form

Tμν := 2|g|−1/2 δsψ

δgμν
. (7.8)
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Finally, to include the cosmological constant, pass from R to R − 2Λ in the ac-
tion. This long was a theoretically-optional feature, but conventional ways of fitting
modern cosmological observational data provide a strong argument for the practical
necessity of this term.

7.3 Black Holes

Since this and the next Section consider some of GR’s solutions, let us note prelim-
inarily that the Minkowski metric η of SR (4.1) indeed also resurfaces as a solution
of GR.

A first example of GR black hole metric is the Schwarzschild solution

ds2 = −{1 − 2GM
/
c2r
}
c2 dt2 + dr2/{1 − 2GM/c2r

}+ r2dΩ2 (7.9)

(after physicist Karl Schwarzschild). This is expressed here in spatially spherical
polar type coordinates. It is a vacuum solution, spherically symmetric and asymp-
totically flat (as a simple criterion, it is increasingly well-approximated by η in the
far field). It is both stationary—in possession of a timelike Killing vector field—and
static: likewise, but now additionally with the timelike Killing vector field orthog-
onal to the constant-time spatial hypersurfaces). These coordinates go singular at
the Schwarzschild radius (2), which happens to coincide with the Michell radius
(Ex V.1). One can however pass through the surface at this radius by changing co-
ordinates. This surface furthermore has a coordinate-invariant meaning as an event
horizon. Loosely speaking, this is a surface of no return. More specifically, in terms
of Causality Theory, it is H := J̇

−
(I+)∪ m, where the dot denotes ‘boundary of’.7

Because the Schwarzschild solution possesses this, it contains a black hole: a region
from which light cannot escape (so nothing else can escape either). Also in terms
of Causality Theory, the black hole is the region B := m − J−(I+). On the other
hand, r = 0 is a genuine—rather than merely coordinate—singularity, so the black
hole contains a singularity. This is denoted by the jagged edge in Fig. 7.1.e).

The maximally extended Schwarzschild solution (Fig. 7.1.e) represents a black
hole and the time reversal of a such: a white hole. A piece of this Schwarzschild
solution—lying well outside of where the event horizon would be—is used in
modelling the part of the Solar System exterior to the Sun (see the next Sec-
tion). Indeed, rSchw � rSun, so the vacuum condition ceases to apply anywhere near
rSchw. GR has a Newtonian limit in the sense that the correct Newtonian Physics
is recovered in situations with low velocities v � c and weak gravitational fields
φ � c2. While G is absent from this expression, via GM/c2r2 = φ, this amounts
to r � rSchw. Figure 7.1.g) indicates a piece of Schwarzschild spacetime arising

7I+ here denotes future null infinity, I− is past null infinity and i0 is spatial infinity. These play a
significant role as edges of Penrose diagrams: Fig. 7.1, where the corresponding types of geodesics
can begin and end.
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Fig. 7.1 GR spacetime. a) GR null cones are in general bent. Penrose diagrams (after math-
ematician Roger Penrose) for b) Minkowski spacetime M

4, c) k > 0 FLRW, d) k ≤ 0 FLRW,
e) Schwarzschild, f) Kerr (or Kerr–Newman) and g) the astrophysical truncation of Schwarzschild.
Asymptotically flat regions are coloured in blue, black hole regions in black, white hole regions
in white, cosmological dust in brown and stellar matter in orange. The jagged edges are singulari-
ties, the jagged edges with gaps are the Kerr ring singularities (traversible in some directions), and
the dashes are mere coordinate singularities. h) Non-orientability in time (f indicates the future
direction). i) The Particle Horizon Problem in Cosmology, and j) its resolution according to infla-
tion by including an extended past region in pink. k) The Rindler wedge (after physicist Wolfgang
Rindler): the region of Minkowski spacetime covered by Rindler coordinates T and X (this is not
a Penrose diagram)

by stellar collapse. From balancing gravitational collapse against the maximum de-
generacy pressure exertable by a Fermi gas, collapse occurs if the star’s mass ex-
ceeds the Chandrasekhar mass (after astrophysicist Subrahmanyan Chandrasekhar)
∼ m3

Pl/m
2
p ∼ 1.4mSun, where mp is the proton mass. Below this bound, collapse can

halt in a white dwarf star or neutron star configuration.
A second example is the stationary (but not static) aximsymmetric rotating and

charged black hole metric (Kerr–Newman metric after physicists Roy Kerr and Ted
Newman)

ds2 = −
{

dr2

	
+ dθ2

}
ρ2 +
{
c dt − j

c
sin2θ dφ

}2
	

ρ2

−
{{
r2 + j2

c2

}
dφ − j dt

}2 sin2θ

ρ2
. (7.10)
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The spatial part of the coordinates is presented here again as a type of spherical po-
lar coordinates. Also j := J/M , q2 := GQ2/4πε0c

4, ρ2 := r2 + j2c−2cos2θ and
	 := r2 − 2GMr/c2 + j2/c2 + q2. Just setQ (or q) to 0 to get the very similar un-
charged rotating case (Kerr metric), whereas the charged rotating case is accompa-
nied by an electromagnetic potential whose nonzero components are At = Qr/ρ2,
Aφ = −Qjc−2r sin2θ/ρ2. On the other hand, setting J (or j ) to 0 gives the simpler
diagonal non-rotating charged case (the Reissner–Nordström metric, after physi-
cists Hans Reissner and Gunnar Nordström), accompanied by the electromagnetic
potential whose remaining nonzero component is now At = Q/r . The physical case
involves j2 + q2 < 1, for which the Kerr–Newman black hole possesses 2 distinct
event horizons.

Surface gravity κ is a useful concept in Black Hole Physics. Its Newtonian As-
trophysics precursor is the gravitational acceleration experienced on the surface of
an astrophysical object. However, for GR black holes, this takes an infinite value;
a more physically appropriate definition follows from the non-affinely parametrized
geodesic equation kμ∇μkν = −κ kν ; cf. (D.10). So κ is a measure of the failure of
Killing and affine agreement along the null geodesic generators of the event horizon
(the kμ are normal to the event horizon). Note furthermore that (see e.g. [874] for
exposition)

κ is constant over a GR stationary black hole’s horizon. (7.11)

Using the area of the Kerr–Newman black hole as computed geometrically, one
furthermore deduces that

dM = κ

8π G
dA +Ω dJ +Φ dQ, (7.12)

dA ≥ 0 ∀ black hole processes, (7.13)

It is impossible to attain κ = 0 by a finite number of physical processes. (7.14)

Equation (7.14) corresponds to the extremal black hole. Furthermore, compare
(7.11)–(7.14) with the Laws of Thermodynamics in the forms (Q.1)–(Q.4) re-
spectively, under the for now tentative identifications κ ↔ cT , S ↔ A/8π c and
M ↔ U , and regarding the last two terms of (7.13) as work terms. This analogy
suggests that the above Laws of Black Hole Mechanics (7.11)–(7.14) are special
cases of the Laws of Thermodynamics. However, the black hole is classically a per-
fect absorber, so κ is not conceptually a temperature. And yet Sect. 11.3 outlines
how Quantum Theory removes this objective to cement this analogy. In particular,

0 ≤ dSTotal = dSBH + dSother (7.15)

is a more general form for the Second Law, in accord with this law’s conceptually
desirable universality. For the Schwarzschild solution,

S = kBA/4G�. (7.16)
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7.4 Cosmology

The homogeneous8 and isotropic (Sect. 2.12) metric that is most often used for this
is

ds2 = −c2dt2 + a(t)2
{
dr2/{1 − kr2}+ r2dΩ2}: (7.17)

the Friedman–Lemaître–Robertson–Walker (FLRW) metric (after physicists Alexan-
der Friedmann, Georges Lemaître, Howard Robertson and Arthur Walker). This
comes in closed (spatially S

3: k = +1), open (spatially the hyperbolic space H
3:

k = −1) and critical (spatially flat R3: k = 0) variants. See e.g. [736] for further
details of these solutions and their physical interpretation, without and with Λ. For
instance, these references cover the dependence of the scalefactor of the (model)
universe, a = a(t)’s dependence upon the equation of state p = wε of the matter
content of the Universe. According to such models and their fitting to observational
data,

the age of the Universe � {1.380 ± 0.002} × 1010 years, (7.18)

while it is as yet not a foregone conclusion which sign k takes.
In isotropic model universes, cosmic time t = tcosmic is physically the time that

labels the surface of homogeneity, or, dually, that is aligned with the ‘Hubble flow’
as followed by idealized comoving inertial observers [523, 596]. This is the proper
time experienced by these observers, which roughly models our own perspective
here on Earth; Chap. 20 provides further details. It is also the time in the above
standard presentation of the FLRW metric.

Conformal time, on the other hand, is given by dη := c dt/a(t); this puts the
metric into the form

ds2 = a2(η)
{−dη2 + dr2/{1 − kr2}+ r2dΩ2}, (7.19)

which, for the spatially flat case, is conformal to a piece of M
4. This is clear in

the corresponding Penrose diagram Fig. 7.1.d); it is only a piece because this is not
a valid conformal transformation along a = 0. The link between conformal time
and causal structure becomes clearer after the following definition. Cosmological
horizons alias particle horizons are the edges of where information can arrive from
at a given observer’s position, as per Fig. 7.1.i). Conformal time corresponds to
the distance to the cosmological horizon. Moreover, different events with the same
value of conformal time appear simultaneous to a comoving observer [595, 596].

See Appendix I.1 as regards further anisotropic cosmology solutions (‘Minisu-
perspace solutions’). These are still the same pointwise over space; however, this
ceases to be the case in inhomogeneous solutions; see e.g. [812] for some GR cos-
mologies of this form. As simpler examples, ‘Midisuperspace solutions’ are nontriv-
ially spatially inhomogeneous, while retaining some nongeneric elements of sym-

8In this sense, ‘homogeneous’ means the same at each point over a mathematical space (in the
present cosmological context physical 3-d space).
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metry by which these are more tractable; footnote 4 points to some examples of
these.

To complete this Sec’s discussion of horizons, Fig. 7.1.k)’s Rindler wedge repre-
sents a uniformly accelerating reference frame in Minkowski spacetime. The edge
of this wedge is a type of horizon at which acceleration diverges.

7.5 Evidence for GR

Gravitational redshift provides a test of the (Einstein) Equivalence Principle prior
to any use of the Einstein field equations that further characterize GR. Thus such
considerations do not distinguish between different metric theories of gravity. GR’s
general redshift formula is

1 + z =
√

gobs
t t /g

source
t t . (7.20)

The gravitational redshift between two points in the same body’s gravitational field
(at distances rsource and robs from the centre) is then approximately

z = {GM/rsource − GM/robs }/c2 = rSchw {robs − rsource }/2 robsrsource. (7.21)

Einstein’s hypothesis in the fourth paragraph of this Chapter has since been ex-
perimentally supported [814] by Pound–Rebka type experiments (after physicists
Robert Pound and Glen Rebka) [910] to better than 1 part in 105.

The credibility of GR itself was rapidly established by its explanation of the
43 seconds of arc per century anomalous perihelion shift of Mercury in 1915, along-
side experimental verification (albeit to limited accuracy) of its prediction of the
bending of light rays by the Sun in 1919. The two most common deviations from
GR [910] in alternative theories are denoted by γ and β . γ quantifies variety in how
much spatial curvature is produced by a unit rest mass. This enters computations
for the motion of null test particles, such as calculations of the deflection of light. It
also enters the more constraining Shapiro time delay by which Cassini space probe
data confirms GR’s value γ = 1 to 2 parts in 105. On the other hand, β is a mea-
sure of the nonlinear departure from the Superposition Principle applicable within
Newtonian Gravity. It features in addition to γ in the massive test particle case of
perihelion precession; the GR value of β = 1 has by now been confirmed to 8 parts
in 105.

As regards cosmological developments, Hubble’s Law for the recession of galax-
ies is v = H0r for H0 Hubble’s constant. (This law dates from 1929; see [888] for
this paragraph’s original references and further details.) Moreover, astronomer Ed-
win Hubble only determined that the Universe was expanding (1932), rather than by
how much. The first reasonable estimate ofH0 was provided in 1958, but agreement
upon a value for this would not come for decades after. This is closely tied to the
cosmological redshift formula

1 + z = aobs/asouce (7.22)



90 7 Time and Spacetime in General Relativity (GR)

for the overall recession of the galaxies. The Planck satellite mission [840] obtained
H0 to 1 part in 100, as 67.80 ± 0.77 km/s Mpc, where Mpc stands for the intergalac-
tic length unit of megaparsecs. A second pillar of modern Cosmology—evidence
of the abundances of the light elements that is tied to their genesis in the Early
Universe—began with physicist Ralph Alpher’s theoretical predictions in 1948, but
observational secureness for it had to wait until around 1980. The third pillar—the
cosmic microwave background radiation: a thermal imprint in the form of highly
homogeneous and isotropic black body radiation—was first observed by physicists
Arno Penzias and Robert Wilson in 1964. This observation confirmed the Big Bang
scenario over its cosmological rival of that epoch: the Steady State model.

Some more modern problems with the Big Bang theory itself are why the Uni-
verse appears to be so flat, the non-observation of the monopoles that Grand Unified
Theories would suggest, and Fig. 7.1.i)’s horizon problem. A candidate improve-
ment in these regards is Inflationary Theory, which involves a period of exponential
expansion. This flattens out the Universe, dilutes its monopole content and resolves
the horizon problem, as per Fig. 7.1.j). Inflation was first proposed at the start of
the 1980s and holds out fine against detailed modern cosmological data [122, 841]
including the pattern of small inhomogeneities observed in the cosmic microwave
background. Accommodation of additional supernova data [569] is a principal rea-
son for considering universe models currently dominated by dark energy—a cos-
mological constant type term (or similar resultant from cosmological matter fields).

Let us now continue with Sect. 2.10’s argument by pointing out that there is also a
‘gravitomagnetic law’ that completes the square of Inverse Force Laws and is a valid
piece of a more full GR case: the weak-field regime [736]. At least in this setting,
this is linked to frame dragging effects—relevant to some aspects of whether GR is
Machian along the lines of the bucket argument—and has been investigated using
the Gravity Probe B experiment [910] albeit here the support for GR’s prediction is
for now just at the 30% level.

For GPS (the global positioning system) [74, 431, 910] to attain the precision it
operates at, it needs to take into account GR as well as SR effects. In particular, it
is affected by both time dilation and gravitational redshift. N.B. also the importance
to relativistic timekeeping of knowing the relative locations of the clocks and other
equipment involved.

Einstein already predicted gravitational lensing as an extension of light deflection
to optical effects with galaxies and other compact objects acting as natural lenses.
See [776] for an account of this, or [431] for a briefer outline; a number of observa-
tions of gravitational lensing have by now been made [910].

Einstein also already predicted gravitational waves. For GR in weak field
regimes, these have tensor modes with two polarizations: × and + [874] (these
are literally the distortion patters associated with each). Indirect evidence for grav-
itational waves comes from binary pulsar data exhibiting gravitational damping, in
accord to parts in 103 with GR’s predicted losses due to gravitational radiation [910].

In 2016, LIGO and Virgo (kilometre-scale interferometer based gravitational
wave detectors based on Earth [763]) obtained the first direct evidence for gravi-
tational waves [839]: a binary black hole merger signal.
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The further proposed eLISA mission is to be an interferometer formed between
three space probes forming an equilateral triangle of side 106 km [309].

As is clear from the difference in size between these Earth based and space based
detectors, each is particularly attuned to a different part of the gravitational wave
spectrum. The former are in particular for searching for gravitational waves sourced
by compact astrophysical binaries9 On the other hand, the latter are also to investi-
gate gravitational waves of a primordial cosmological origin [226].

7.6 Notions of Time in the Spacetime Formulation of GR

1) In the spacetime formulation of GR, time is but one of the spacetime 4-manifold’s
coordinates. This clashes with Ordinary QM holding time to be a sui generis
extraneous quantity. Moreover SR’s signature distinction between timelike and
spacelike separations remains: space and time remain distinguishable concepts.

2) The privileged frame interrelating Poincaré group of SR (or the Euclidean group
of Mechanics and Ordinary QM) have been supplanted by the spacetime diffeo-
morphisms Diff (m) between arbitrary coordinate systems. As far as the Author
is aware, the consequent significant increase in complexity arising from this was
first pointed out by Pauli [700]. E.g. attaching significance to conserved quan-
tities is linked to the Poincaré (or Euclidean) groups, and Chap. 11.3 presents
four more examples of structures tied to Poin(4). Nor does the influx of harder
diffeomorphism-based mathematics end with the spacetime diffeomorphisms,
as is evidenced by two further kinds of diffeomorphisms appearing in the next
Chapter.

3) Furthermore, GR’s generic solutions have no Killing vectors. In particular some
time-related applications are affected by there now being no timelike Killing vec-
tor; this provided a privileged class of times in SR’s Minkowski spacetime M

4.
In contrast, M4 has the maximal number of independent Killing vectors (10 in
4-d). Finally, GR is ultimately considered to be about generic solutions. In this
way, much of the structure that many SR and QFT calculations are based upon
is lost.

The points made so far in the current section mean that much of the structure
of Ordinary QM simply ceases to have an analogue [see Chap. 11]. As we shall
see in Chaps. 9 to 12, noted quantum physicist and conceptual thinker Chris
Isham [483] has attributed much of the Problem of Time to the extra subtleties
brought in by the diffeomorphisms.

4) GR’s notion of simultaneity is a straightforward extension of SR’s [521].
5) GR time retains the ordering property.

9Compact astrophysical objects are white dwarfs, neutron stars or black holes. Astrophysical bi-
naries are pairs of objects orbitally bound in close proximity to each other. Such a configuration,
where each object is a neutron star or a black hole, is potentially a strong source of gravitational
waves. See e.g. [296] for a pedagogical account of source counting for white dwarf stars.
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6) Causality continues to play a major role in the spacetime formulation of GR
as it did in SR, except that now matter and gravity influence the larger-scale
causal properties. In GR, the null cone structure is dynamical. Penrose diagrams
(Fig. 7.1) are useful at this point on two counts. Firstly, these are based on per-
forming conformal transformations so as to compactify spacetimes into finite
diagrams. This is based on the key underlying fact that null geodesics are con-
formally invariant (Ex III.11). Secondly, in Penrose diagrams, the null cones are
everywhere upright, giving a very clear representation of the causal structure.
Features priorly encoded in terms of null cones tipping over in other representa-
tions are clearly displayed in the Penrose diagram representation, e.g. the hori-
zons in Figs. 7.1.e)–f).

7) We now have a further Arrow of Time to introduce: the cosmological Arrow of
Time (Ex V.22).

8) GR spacetimes 〈m,g〉 are often taken to be time-orientable, meaning that it is
possible to divide continuously over m each null cone of the metric g in two
parts, past and future [440, 874].

9) Closed timelike curves exist within certain GR spacetimes. E.g. the Kerr–
Newman spacetime possess such: Ex V.7). Their significance is that observers
following these would experience time travel.

One means of avoiding causality paradoxes is suppressing (regions of)
solutions containing closed timelike curves. There is however also a self-
consistent interpretation of closed timelike curves [666]. Solutions which are
non-orientable in time are also often excised from the study of the supposedly
physical GR solution space.

See the next Chapter for notions of space within GR (as well as further aspects
of time that become apparent upon performing a space–time split).

10) Energy is a substantially more complicated and unsettled concept in GR than
in pre-GR Physics (Appendix K.5). This is related to time through (at least the
simpler notions of) energy) being tied to time in the form of being its canonical
conjugate.

7.7 GR Issues with Clocks

Chapter 4’s light-and-mirror clock considerations continue to apply in GR.
Sufficiently accurate timestandards are both Specially and Generally Relativistic.

We have already seen that SR confers motion-dependence to timestandards. This is
a localization of the applicability of timestandards in that each ‘particle’ undergoing
a distinct motion experiences its own timestandard. On the other hand, gravitational
time dilation directly imposes location-dependence on timestandards.

So where in space a timestandard is to hold becomes an issue once precision
exceeds SR and GR corrections. In pre-relativistic timekeeping, one need not ask
where in, say, the Earth–Moon–Sun system the ephemeris time holds. However,
once the precision exceeded around 1 part in 1012 in the late 1970s, relativistic
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timekeeping becomes relevant and differs according to where the clock is and how
it is moving. Above this precision, such as ‘using the Moon as a reading hand’ only
makes sense for specifying a timestandard in some particular localized frame. ‘On
the surface of the Earth’ is such a qualification; due to this not being of constant
radius or gravitational equipotential, ‘at mean sea level’ is used instead. Finally,
upon introducing this standardization, the motion implicit in being ‘on’ the rotating
Earth becomes the stipulation of ‘on the rotating geoid’ at mean sea level.

GR also plays a significant role in the accurate determination of positions, as is
evident in the GPS system. Furthermore, since relativistic timekeeping is position-
dependent, precise determination of positions is itself is a substantial input. We need
to know where our clocks are in relation to one another. In this way, clock bias enters
GPS considerations (see [88] and Ex V.19).

Chapter 1’s definition of the second requires, for sufficiently accurate applica-
tions, additional stipulation that it is defined on the rotating geoid at mean sea level.
This covers the position and motion at which it is defined.

We finally consider timestandards in more extended settings. Firstly, clocks for
space travel require determination of position away from large well established ap-
proximately rigid frames such as provided by the Earth; this is already potentially an
issue for LISA. One approach involves on-board clocks and frequent recalibration
by signals from Earth (or similar positions with currently conventional timekeeping
set up). Another possibility involves on-board clocks being calibrated by compar-
ison with pulsar signals. These furnish an example of a case with very negligible
gravitational interaction between a clock and the subsystem(s) it ‘keeps time for’.
Accurate pulsar ephemerides [310] have been computed, though for now these de-
pend on their being observed from Earth.

Secondly, let us next consider what clocks would be suitable in the Early Uni-
verse and near black holes. We do not consider this in the sense of disturbance from
accurate motion due to accelerations as in the problem of timekeeping at sea (which
here has an analogue due to high spacetime curvature analogue) nor the SR con-
ception of clocks [736]. We consider, rather the breakdown of the technology under
such as high accelerations and high temperatures. Atomic clocks are vulnerable to
regimes in which the primary timestandard atoms ionize. The frequency band in-
volved is also vulnerable to [13] the Stark effect, i.e. the perturbation of a quantum
system due to presence of background electric fields. This points to alternatives be-
ing required; one issue is whether black holes themselves provide any further types
of notably accurate clocks, e.g. from their rotation. Finally, which clocks could—or
actually did—exist in Early-Universe regimes?

7.8 Observers and Length Measurement in GR

In GR, observers are modelled as negligible energy–momentum–stress entities; con-
trast with how in Quantum Theory, observers are usually held to be much larger than
the system in question. So the theory of ‘the large’ and of ‘the small’ is not just a
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direct comparison but also a comparison of each with the sizes and sensitivities as-
sumed of its observers. Observers in GR are moreover idealized as regards their
internal constitution not being posited. This is also the case for any clocks and rods
involved. As such one should believe little in these idealizations once details thereof
become pertinent to the physical thinking. Is the quantum way of handling these
entities extendible to subsystems within the GR setting?

In GR, the actual nature of rods is ignored; idealized objects are considered in-
stead. The concept of ‘rigid bodies’ is further lost at the level of GR (see e.g. p. 264
of [730]), but also one can pass to electromagnetic beam type conceptualization and
technology. Marzke and Wheeler’s [645] motivation for this came from Bohr and
Rosenfeld’s criterion for self-sufficiency of a theoretical framework [150]. They suc-
ceed in conceptualizing of the beam in quantum-free terms, but fail to remove Quan-
tum Theory entirely from consideration due to the detailed nature of the emitting,
reflecting and absorbing devices at each end. Indeed, they pointed out that length de-
termination cannot just involve light [645], because equivalent conformally-related
geometries having the same null geodesics. The ‘massive particles’ thus entailed
are point-particle idealizations of solids, fluid bodies, or atoms, all of which are
underlied by Quantum Theory.

GR has also entered the definition of the metre since 2002, due to acknowledg-
ment that the metre is a unit of proper length, whose definition only applies to
lengths which are sufficiently small that GR effects are negligible. One surmises
that the definition would require modification on small scales if one were to be op-
erating in a sufficiently high-curvature regime.

7.9 GR’s Singularity Theorems

GR points to its own inapplicability under extreme circumstances: in the innermost
part of black holes, and within a very short time interval after a cosmological Big
Bang. These circumstances are furthermore likely to occur in our Universe by the
Singularity Theorems of Penrose and physicist Stephen Hawking. This may be re-
lated to difficulties with combining GR and QM to form a theory of Quantum Grav-
ity necessary for the study of these extreme regimes (see Chap. 11).

The Singularity Theorems are built using Causality Theory, conjugate points
(Appendix D.3), and trapped surfaces: spacelike 2-surfaces both of whose null nor-
mals are converging. See [440, 784, 874] for detailed statements, proofs and exam-
ples.

Singularities can, moreover, be spacelike, timelike or null; Fig. 7.1 gives exam-
ples of the first two of these. Some singularities are inevitable within finite proper
time; upon crossing the event horizon, this is true in Schwarzschild spacetime but
false in Kerr spacetime (Ex V.13). With the Big Bang in mind, it may be that time
runs over R+ rather than over R, or over an interval T if there is a Big Crunch as
well.



Chapter 8
Dynamical Formulations of GR

Dynamics entails heterogeneous treatment of time and space. In particular, as
Chaps. 1 and 2 indicated, Dynamics concerns configurations and momenta evolv-
ing with respect to time, and treats derivatives with respect to time differently from
those with respect to space. This does not directly fit in with the SR and GR space-
time perspective, in the sense that spacetime itself neither evolves in time nor plays
configuration’s timeless role. Rather, GR spacetime contains notions of both spatial
configuration and of time. Each of these can be extracted by splitting the space-
time metric up; moreover, this induces a split of GR’s Einstein field equations along
dynamical lines [73, 660, 899]. One may furthermore consider Dynamics to be pri-
mary, and thus ask from first principles what GR is a dynamics of, i.e. what its
configurations are. In any case, GR’s configurations can be taken to be spatial—i.e.
positive-definite Riemannian—3-metrics, hij ; in formulations in which spacetime is
primary, these are furthermore spatial slices within spacetime.

In fact, as we shall see below, spatial 3-metrics are a redundant presentation; less
redundantly, GR’s configurations are spatial 3-geometries: 3-metrics ‘minus coordi-
nate information’. In this way, as well as having a spacetime formulation, GR admits
a dynamical formulation in terms of evolving spatial 3-metrics or 3-geometries too.
Wheeler termed the latter Geometrodynamics [660, 897, 899].1

8.1 Topological Manifold Level Structure

i) In conventional dynamical formulations of GR, one first has choose a residual
notion of space in the sense of a 3-surface that is a fixed topological manifold �.

ii) In this book, � is usually taken to be compact without boundary for simplicity;
(this book considers these to be connected as well).

1Wheeler is well-known for coining terminology; e.g. ‘S-matrix’ [895] and ‘black hole’ are also
due to him.
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iii) We furthermore concentrate on specific examples with � = S
3: the 3-sphere,

which is one of the simplest possibilities.

By i), a fixed � is to be shared by all the spatial configurations in a given Geometro-
dynamics. I.e. dynamical formulations of GR such as Geometrodynamics are built
subject to the restriction of not allowing for topology change. This means that Ge-
ometrodynamics covers a more restricted range of spacetimes than the spacetime
formulation of GR does: those with spacetime topology � ×τ . Geometrodynamics
is thus just a ‘manifold topolostatics’ rather than being a ‘manifold topolodynamics’
as well, a matter to which we return in Sect. 10.12 and Epilogue II.C. This has some
superficial resemblance with Newtonian space-time, e.g. as a stringing together by
labelling by time variables. However, the spatial slices involved in general differ
among themselves at the metric level.

GR spacetime carries the following additional connotations.

A) Unified co-geometrization: an overall 4-metric rather than separate spatial and
temporal metrics in the Newtonian case.

B) Causality structure is encoded by the indefiniteness of the 4-metric rather than
Mechanics’ slices being privileged surfaces of absolute simultaneity. GR’s time
variable is additionally highly nonunique. Different choices of this in general
correspond to different foliations, each of which is valid and with the Physics
involved turning out to be foliation-independent (see Chap. 10 for more).

See Chap. 9 for further motivation of ii) and iii), and Appendices C–D.1 for the
meaning of i) and ii)’s technical details. Further restrictions are placed on � in
Sect. 8.13. For now, one accepts confinement to a subset of GR’s solution space
so as to be able to study its dynamics within what mathematical methodology is
currently known and accepted among physicists. Let us also use the notation σ in
place of � if a 3-space is treated in isolation rather than as a slice within spacetime
(in a sense made precise in Sect. 8.4). For many purposes, one can also take a finite
piece of space S ⊂ �, rather than a whole space �.2

8.2 Differential Geometry Level Structure

Let us next additionally assume that σ (or any of the preceding Sec’s variants)
carries differentiable structure (Appendix D.2); this is much as was considered for
m in Chap. 7.1. The maps preserving this level of structure are spatial diffeomor-
phisms, Diff (�). Many properties of these parallel those of Diff (m), because at this
level of structure there is not yet a metric involved whose signature distinguishes be-
tween spacetime and space. E.g. Diff (�) are again actively interpreted (nothing in

2For some purposes, one does not need to concern oneself with such a piece having boundaries.
These involve ‘local’ considerations in a sense that will be made precise at the metric level in the
next Section. See e.g. [322] for the dynamics of GR including boundaries. Chapter 31 outlines
arbitrary dimensional, and yet further, alternatives to this Chapter’s workings.
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Fig. 8.1 Embedding � from 3-space σ to hypersurface � within spacetime m. Throughout this
book, we distinguish spatial manifolds from spacetime ones by shading them green and turquoise
respectively

the given active–passive argument is signature dependent). Also,

£ξhab = 2D(aξb) = (K ξ)ab (8.1)

is the counterpart of (7.6) and with the same ties to Killing vectors. See Chap. 9 for
further comparisons.

8.3 Metric Level Structure

A hypersurface 〈�,h〉 inherits spatiality from how it sits within the surrounding am-
bient spacetime 〈m,g〉. To ensure that σ is indeed cast in a spatial role, moreover,
this is directly equipped with a specifically Riemannian (positive-definite) 3-metric
h with components hij (x).3 It is natural to consider 3-metrics from prior consider-
ation of Newtonian Mechanics or SR, and so as to continue to model in terms of
lengths and angles.

Riem(�) is GR’s configuration space consisting of all the h on that particular
fixed topological manifold �; if the context in which this is used does not presup-
pose spacetime, the notation Riem(σ) is used instead. The latter occurs e.g. in
investigation of geometrodynamical theories in general (see e.g. Chap. 33), rather
than in treatment of specifically the Geometrodynamics that is obtained by splitting
GR spacetime and GR’s Einstein field equations.

8.4 Single-Hypersurface Concepts

Let us next consider passing from a 3-space σ to a spatial hypersurface � embed-
ded in a spacetimem.4 More formally, a hypersurface � withinm—Fig. 8.1.a)—is

3As further useful notation, hij has determinant h, inverse hij and 3-metric-compatible covariant
derivative Di .
4Relativist Eric Gourgoulhon’s book [382] also considers such a passage, and is carefully laid out
as regards sharply distinguishing between these and other notions which involve multiple spatial
hypersurfaces.
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Fig. 8.2 a) The normal nμ to a hypersurface, which is denoted throughout this book with a white
triangular arrow. In this figure alone, the perpendicularity is emphasized with blue right angles.
b) Extrinsic curvature of a curve in R

2 is the rate of change of the normal along the curve. If
the curve is in R

3, then near each point p1 the curve lies within a plane. This permits use of the
preceding notion of curvature. c) 2-d surface as an example of extension of the extrinsic curvature
concept to hypersurfaces with d ≥ 2. d) 2-d surface with principal curvatures read off. e) An
example of intrinsically flat but extrinsically curved 2-d surface in R

3. The ant living on this
surface only perceives 2-d Flat Geometry

the image of a plain spatial 3-manifold σ under a particular kind of map: an embed-
ding,5 �. This construction can also be applied locally [874]: embedding a piece s
of spatial 3-surface as a piece S of hypersurface.

The notion of hypersurfaces within R
3 is intuitively clear and well-known, e.g.

a bent sheet of paper, or the surface of a globe. Hypersurfaces are more generally
characterized as surfaces h within a higher-d manifold M that are of codimension
C := dim(M)− dim(h) = 1.

Next define the normal nμ to the hypersurface � (Fig. 8.2.a) and the projector
Pμν := δμν + nμnν onto �. The spacetime metric is furthermore said to induce the
spatial metric on the hypersurface. This induced metric is both an intrinsic met-
ric tensor on space, hij and a spacetime tensor hμν . It attains such a duality by
being a hypersurface tensor. I.e. a tensor such that for each ‘independent index’
0 = �μν ...ωnμ =: �⊥ν ...ω (in this context ⊥ is pronounced ‘perp’, short for ‘per-
pendicular’). Since hμν is symmetric, hμνnμ = 0 is a sufficient condition for this
to be a hypersurface tensor, and this condition is indeed met. See Chap. 31 further
geometrical interpretation of the induced metric. Finally, upon Metric Geometry
becoming involved, one is dealing more specifically with isometric embeddings.5

The extrinsic curvature of a hypersurface is its bending relative to an ambient
space. For instance, a sheet of paper retains its intrinsic 2-d Flat Geometry when it
is rolled up into a cylinder. None the less, it has nontrivial curvature relative to the
ambient R3: Fig. 8.2.e). Extrinsic curvature can be usefully defined as the rate of
change of the normal nμ along a hypersurface,

Kμν := hμ
ρ∇ρnν. (8.2)

N.B. that extrinsic (unlike intrinsic) curvature is already defined for 1-d � (curves:
Fig. 8.2.b). In this case, it is a single number per point. Moreover, in d ≥ 2, extrinsic
curvature is nontrivially a tensor. E.g. for a 2-surface within a 3-d manifold, one

5If interested, consult Chap. 31 and [614] for more about embeddings.
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applies the same construct to ‘a basis of curves’ on the surface (Fig. 8.2.c). The
most convenient such are the principal curvatures κ1 and κ2 (Fig. 8.2 d). I.e. these
are extrema and correspond to eigenvalues, so working with these amounts to cast-
ing the symmetric Kab in diagonal form. The trace trK := K and the determinant
detK are useful invariants built from Kab . These are respectively proportional to
the following.

I) the mean curvature := trK/2 = {κ1 + κ2 }/2 in 2-d ; more generally trK/d for a
d-dimensional hypersurface.

II) The Gauss curvature := detK = κ1κ2 in 2-d .

Extrinsic curvature is symmetric and a hypersurface tensor; given the first property,
Kμνnν = 0 as follows from (8.2) suffices to establish the second.

Induced metric and extrinsic curvature are ‘packaged together’ as the first and
second fundamental forms respectively. Between them, these contain the informa-
tion about how a hypersurface is embedded in an ambient manifold.

Additionally, despite being defined in very different ways, it turns out that the
intrinsic and extrinsic notions of curvature of a surface are related. For a 2-surface
embedded in R

3, the intrinsic curvature is in fact equal to (in the above convention
twice) the Gauss curvature:

R = 2 κ1κ2 (Gauss’ Outstanding Theorem). (8.3)

This result furthermore substantially generalizes. For now (see Chap. 31 for yet
further generalizations), allow for the embedding space itself to be curved, as well
as higher-dimensional (maintaining codimension C = 1). The generalized result can
furthermore be viewed in terms of projections of the Riemann tensor,6

(Gauss equation) R(4)abcd = Rabcd + 2Ka[cKd]b, (8.4)

(Codazzi equation) R(4)⊥abc = 2D[cKb]a. (8.5)

I.e. the left hand side is viewed here as a projection which is then computed out to
form the right hand side.

The Gauss–Codazzi equations (named in part after mathematician Delfino Co-
dazzi) admit a number of conceptually-distinct interpretations, including the fol-
lowing.

1) Top-down. Given a higher-d manifold containing a hypersurface, how do its cur-
vature components project onto this hypersurface (as a combination of its in-
trinsic and extrinsic curvatures)? This involves constructing the geometry of a
hypersurface within a given manifold.

6From here on, spacetime objects have (4) subscripts added where distinction is necessary between
them and their spatial counterparts.
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Fig. 8.3 a) The set-up for S1 a local in space piece of a spatial slice. b) Arnowitt–Deser–Misner
(ADM) 3 + 1 split of a region of spacetime, with lapse α and shift βi , after physicists Richard
Arnowitt, Stanley Deser and Charles Misner. c) Local presentation of t, n, β split. The white dia-
mond arrows denote time flow and the flat-backed black arrow denotes shift along the spatial hy-
persurface. More generally, in this book special black arrowheads denote a priori spatial motions,
whereas and white arrowheads denote motions jutting between spatial slices or through spacetime
(depending on perspective). d) Illustrating the nature of foliation f: the rigged or decorated version
of the definition of chart in Fig. D.2

2) Bottom-up. Given a hypersurface’s intrinsic geometry and how it is bent within
its ambient manifold, what can be said about the intrinsic geometry of the am-
bient manifold? This involves constructing the manifold locally surrounding a
given hypersurface.

3) Intrinsic to extrinsic. Given the intrinsic geometry of both an n-d manifold and
an (n + 1)-d manifold, is there a bending by which the former can be realized
within the latter as a hypersurface?

Part I makes no claims as regards these schemes’ mathematical well-posedness
[a concept defined in Appendix O and commented on for 1) to 3) in Chap. 31].

8.5 Two-Hypersurface and Foliation Concepts

Some notion of thin one-sided infinitesimal neighbourhood of � (Fig. 8.3.a) is re-
quired as regards developing a number of further concepts [382]. The notion of
foliation [614] (Fig. 8.3.d) takes this further by considering a more extended piece
of spacetime.

By considering an infinitesimal limit of two neighbouring hypersurfaces, extrin-
sic curvature can furthermore be cast in the form of a Lie derivative,

Kμν = £nhμν/2. (8.6)

This observation offers immediate manifest proof of its aforementioned symmetry
property.

Each foliation by spacelike hypersurfaces is to be interpreted in terms of a choice
of time t with an associated ‘time flow’ vector field tμ. t is called a ‘global timefunc-
tion’ (see e.g. [874]). There are an infinity of choices for such a t. Spatial hypersur-
faces here correspond to constant values of the chosen t.

For M4, t and tμ already exist as fully general entities, though they are usually
chosen via a global inertial coordinate system [874]; of course this ceases to exist in
the case of full GR.
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For dynamical formulations of GR, one usually demands the spacetime to be
time-orientable so that it is always possible to consistently allocate notions of past
and future.

tμ is restricted by tμ∇μt = 1 and sμ∇μt = 0 for any tangential sμ. (8.7)

If these hold, it is consistent to [814]

identify tμ∇μ with ∂/∂t (8.8)

and then

identify ∂/∂t with £t, (8.9)

meaning an expression of the form (string of projectors) × £t�.
Arnowitt–Deser–Misner [73] split the spacetime metric into induced metric hij ,

shift βi and lapse α pieces (Fig. 8.3.b):

gμν =
(

βkβk − α2 βi
βj hij

)
. (8.10)

This is often presented for a foliation, though two infinitesimally close hypersur-
faces suffices (or even less for some parts and weakened versions, as per Chap. 31).
The corresponding split of the inverse metric is

gμν =
(−1/α2 βi/α2

βj /α2 hij − βiβj /α2

)
, (8.11)

and that of the square-root of the determinant is

√|g| = α
√

h. (8.12)

In the ADM formulation, tμ is split into tangential and normal parts,

tμ = βμ + α nμ. (8.13)

This serves to define the shift, βμ := hμν tν : displacement in identification of the spa-
tial coordinates between 2 adjacent slices; this is geometrically an example of point
identification map [814]. Additionally, α := −nγ tγ is the lapse: ‘time elapsed’,
which may be interpreted as duration of GR proper time dτ = α(t, xi)dt.

In the ADM split, if −α2 + gμνβμβν < 0, the hypersurface within spacetime
is spacelike and the normal direction is timelike. In particular α cannot vanish any-
where, and one is to take α> 0 everywhere for a future-directed normal. The normal
is now nμ = α−1 [1,−β]. A computational form for the extrinsic curvature is

Kij =
h′
ij − £βhij

2 α
= h′

ij − 2D(iβj)
2 α

=
δ�βhij

2 α
, (8.14)
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where ′ := ∂/∂t for t the coordinate time. A final useful construct at this level of
structure is Canonical Quantum Gravity expert Karel Kuchař’s hypersurface deriva-
tive [576–579],

δ�β := ∂

∂t
− £β. (8.15)

Moreover, the correction to ∂hab/∂t is (8.1) under the substitution of βi for ξi .
The ADM prescription for a split of spacetime is, moreover, far from unique. The

Kaluza–Klein split [67] (proposed by Klein alongside physicist Theodor Kaluza)
parallels the inverse ADM split in form but uses new names and interpretations
in place of the lapse and shift pieces. There is also an alternative threading split
[440]. Here the 1-d temporal threads are primary rather than the 3-d spatial hyper-
surfaces; this is useful in considering observed past null cones in cosmological and
astrophysical contexts. Thus it is termed a 1 + 3 split to ADM’s 3 + 1 one. Among
the many possible splits, the feature which distinguishes the ADM one is its be-
ing well-adapted to dynamical calculations. This does not just refer to its being built
around the dynamical objects of GR: the spatial hypersurfaces. Additionally, it picks
out four multiplier coordinates—the lapse and shift—which simplifies the dynam-
ical equations and cleanly splits them into constrained and evolution systems. On
the other hand, the threading split, is well-adapted to observational concepts such as
past null cones and fluxes of gravitational waves. Finally note that the Kaluza–Klein
split has a distinct main use, in 4 + 1 dimensions, as an attempt to unify Electro-
magnetism and GR; see Chap. 11 for more in this regard.

8.6 Foliations in Terms of Fleets of Possible Observers

Each normalized tμ (tμ/‖t‖ = γ [1,v] for v = β) represents a distinct possible mo-
tion of a fleet of observers (Ex V.11.d). These are held to be combing out space-
time rather than travelling on mutually-intersecting worldlines. Elsewise, they have
freedom of motion: ‘rocket engines’ permit each to accelerate independently of the
others.

One needs to be careful at this point because of the various possible non-
alignments between tμ, nμ and uμ Let us start by considering the simplified sit-
uation for the Eulerian observers [154, 382] that correspond to each foliation, for
which

uμ = nμ = (a particular normalized tμ orthogonal to the foliation),

So in this case there is one thread of motion of observers per foliation, meant in a
sense that is meaningfully dual to this foliation. This is in parallel to ‘ray–wavefront
duality’ in Geometrical Optics or its configuration space analogue in the Hamilton–
Jacobi formulation of Mechanics ([598] and Appendix J.14).

Two simple cases of tilted flows (Fig. 8.4.b) involve time flow aligned with each
of uμ and nμ in turn. Now under some circumstances, the hypersurfaces to which
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Fig. 8.4 a) Material flow uμ (small white arrows), normal vector field nμ and time flow tμ all
coincide for Eulerian observers (depicted here in the SR case). b) In this case, material flow is
tilted away from the normals. c) Inhomogeneous material flow. d) Generic GR solution

the normal vector fields coincide have no physical significance. In the depicted SR
case with homogeneous but tilted material flow, the third subfigure corresponds to
dropping the initial inertial frame for a distinct material flow aligned inertial frame
(rest frame). However, in the isotropic cosmology counterpart, there are hypersur-
faces privileged by homogeneity, for which the preceding flexibility of changing to
an equally simple frame is lost.

Consider next the more general case for which tμ is unaligned with nμ. Nor is it
necessary for the observers to follow the flow uμ, since 1) the predominant matter
flow in the Universe is indeed not made out of observers. 2) Observers can instead be
regarded as residing on independently-moving planets and rockets. 3) Such rockets
can to good approximation be idealized as test particles.

In even greater generality, consider inhomogeneous material flow. Pass here from
column b) to c) in Fig. 8.4, amounting to leaving the inertial frames for a more
complicated general frame. On the other hand, in generic GR (Fig. 8.4.d) there are
no flat hypersurfaces to begin with. The most general situation of a fleet of observers
which are individually capable of undergoing arbitrary accelerations (‘in rockets’),
the motion of which need not be aligned with the material flow vector or the normal.
So we have, overall, descended from the privileged flat foliation of flat spacetime
with double alignment to a generic hypersurface in a generic spacetime with no
alignments.
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Foliations can moreover be thought of as the as level surfaces of the scalar field
notion of time, t. t is here taken to be smooth, with a gradient that is nonzero every-
where, ensuring that these level surfaces are nowhere intersecting.

Chapter 31 will additionally explain the further ‘ray–wavefront’ dual concepts
of many-fingered time and bubble time, which are well-known in both GR and in
arbitrary spatial slice formulations of Field Theory.

8.7 Completion of the Curvature Projection Equations

The remaining projection of the Riemann tensor is the Ricci equation,

R(4)⊥a⊥b =
δ�βKab + DbDaα

α
+ KacKcb. (8.16)

Through containing ∂Kab/∂t, this now requires at least infinitesimal foliation con-
cepts for its conception and manipulation. In contrast, the Gauss–Codazzi equations
contain no more than Kab , which can be contemplated within a single slice.

8.8 A Further Type of Diffeomorphism: Diff(m,Fol)

These correspond to foliated spacetimes. These are taken to involve all possible
foliations Fol for a given m. It is substantial from Chap. 9 onward to be aware
that these do not share some of the simpler mathematical similarities common to
Diff (m) and Diff (�); see also Chap. 9.14] in this regard.

8.9 Space–Time Split of the GR Action

Under the ADM split, the Einstein–Hilbert action takes the form7

sADM ∝
∫

dt
∫

�

d3xLADM =
∫

dt
∫

�

d3x
√

h α
{
KabKab − K2 + R

}
. (8.17)

This is obtained by decomposing R(4) using a combination of contractions of the
Gauss and Ricci equations and discarding a total divergence since � is without
boundary. Keeping a cosmological constant term just involves −2Λ inside the curly
parenthesis.

The result of varying with respect to this action can be recognized in terms of
the three projections of the spacetime Einstein tensor. I.e. particular combinations

7This book uses 8π G = 1 = c units, since we are focusing on the geometrical meaning of the split
involved.
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of contractions of the Gauss, Codazzi and Ricci equations viewed as projection
equations. [These can also be obtained by projecting the Einstein field equations
themselves, though it is further useful in Canonical Approaches to decompose the
underlying action instead.] One begins by considering the manifestly Lagrangian
form of the action, i.e. in terms of configurations and velocities, which are here hij
and ∂hij /∂t.

8.10 The GR Action Equips Riem(�) with a Metric Geometry

Let us next reformulate this action in terms of the configuration space geometry for
GR. (8.17)’s kinetic term contains

Mabcd := √
h
{
hachbd − habhcd

}
(8.18)

contracted into KabKcd and thus into ḣabḣcd . Mabcd is a metric on the configura-
tion space Riem(�); it is termed a supermetric out of possessing four indices and
already being built out of one preceding notion of metric, hab . Moreover, DeWitt’s
[237] 2-index to 1-index map hab  → hA recasts this supermetric in the standard
form for a metric: with two downstairs indices, Mabcd  → MAB . TADM takes the form
MABδ�βhAδ�βhB . [The capital Latin indices in this context run from 1 to 6.] Point-
wise, this is a − − + + + + + metric, and so, overall it is an infinite-dimensional
version of a semi-Riemannian metric: the GR configuration space metric alias in-
verse DeWitt supermetric. This ‘DeWittian’ indefiniteness is associated with the
expansion of the Universe giving a negative contribution to the GR kinetic energy.
This is entirely unrelated to the Lorentzian indefiniteness of SR and GR spacetimes
themselves.

The inverse metric is

NAB = Nabcd = {hachbd − habhcd/2}/√
h, (8.19)

which is the DeWitt supermetric itself. DeWitt additionally studied the more detailed
nature of this geometry in [237] (set as Ex V.17).

Thus, overall, the geometrical DeWitt form of the manifestly Lagrangian form of
the ADM action works out to be

sADM =
∫

dt
∫

�

d3x
√

h α
{
TADM/4α2 + R − 2Λ

}
,

for

TADM = ‖δβh‖2
M. (8.20)
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8.11 GR’s Momenta

Now additionally to extrinsic curvature being a characterizer of hypersurfaces, it is
of further relevance due to bearing close relation to the GR momenta,

pij := δLADM

δḣij
= √

h
{
Kij − K hij

}= Mijkl
δ�βhij

2 α
. (8.21)

I.e. GR’s momenta are a densitized version of Kab with a particular trace term sub-
tracted off. Finally, taking the trace,

p = −2
√

hK. (8.22)

8.12 GR’s Constraints

The ADM–Lagrangian action encodes the

GR Hamiltonian constraint H := Nijklp
ijpkl − √

h{R − 2Λ} = 0 (8.23)

from variation with respect to the lapse α. From variation with respect to βi , it also
encodes the

GR momentum constraint Mi := −2Djpj i = 0. (8.24)

The GR momentum constraint can be straightforwardly interpreted as physicality re-
siding not in the 3 degrees of freedom per space point choice of point-identification
but rather solely in terms of the 3-metric’s other 3, termed the 3-geometry: the
diffeomorphism-invariant information in the 3-metric. This is how GR comes to be,
more closely, a dynamics of 3-geometries [237, 899] on the quotient configuration
space,

superspace(�) := Riem(�)/Diff (�). (8.25)

However, interpreting the GR Hamiltonian constraint is tougher. It is ‘purely-
quadratic in the momenta’, meaning it consists of a quadratic form plus a zero-order
piece but with no linear piece:

Quad := NAB(Q)PAPB/2 −W(Q) = 0. (8.26)

We shall see in Chap. 9.10 that this property leads to the Frozen Formalism Facet of
the Problem of Time.

Moreover, in terms of Kij (and setting Λ = 0), the constraints are

0 = −H = K2 − KijKij + R = 2G(4)⊥⊥, (8.27)

0 = Mi = −2
{
DjKj i − DiK

}= 2G(4)i⊥ . (8.28)
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These forms of GR equations were already known to Darmois in the 1920s [227].
As indicated, the Kij forms of these constraints serve to identify [874] these as
contractions of the Gauss–Codazzi equations for the embedding of spatial 3-slice
into spacetime: the Constraint–Embedding Theorem of GR.

GR’s phase space degrees of freedom count works out as 6 × 2 (hij and conju-
gates) −3 × 2 (quotienting out Mi ) −1 × 2 (quotienting out H) = 2 × 2 degrees of
freedom.8 A more rigorous count is 10 × 2 (including the lapse and shift as well as
hij ) −3 × 2 (due to the shift being a Lagrange multiplier, so its momentum is zero)
−1 × 2 (due to the lapse being a Lagrange multiplier, so its momentum is zero also)
−3 × 2 − 1 × 2 = 2 × 2. See Appendices O.5–O.6 if interested in the constraints as
mathematical equations.

8.13 GR’s Evolution Equations

Chapter 7 already laid down some topological restrictions such as orientability and
Chap. 8.1 considered simple-product spacetimes. One may require further restric-
tions on the spacetime to ensure good causal behaviour. We assume � × T pre-
venting consideration of topology change. If S is a closed achronal set with D(S) =
m, it is a Cauchy surface (named after the great mathematician Augustin Cauchy).
This is where the position and velocity data for the Cauchy problem—a type of
PDE problem: Appendix O—for a hyperbolic evolution (wave equation type) PDE
is to be posed. A spacetime possessing a Cauchy surface is said to be globally hy-
perbolic [440, 874]. This condition allows for (local in time) determinability of GR
evolution from GR initial data and excludes e.g. non-orientable spacetimes. See
Fig. 8.5 for domain of dependence in the GR context. The notion of Cauchy hori-
zon H+(�) := D+(�) − I−(D+(�)) is an indicator of beyond where � fails to be
a Cauchy surface. The version that is local in space builds a surface within the do-
main of dependence [348] of the initial �. This is still a direct product at the level
of topological manifolds, at least in the cases covered in this book.

The hypersurfaces � are held to be everywhere spacelike. Applying such a split
entails time orientability and absence of closed timelike curves, now additionally as
conditions for Cauchy surfaces to exist.

In terms of momenta, the (Λ = 0) evolution equations (ADM equation of motion)
are

δ�βpij = √
h
{
Rhij /2 − Rij + DjDi − hij�}α − 2 α

{
picpc

j − p pij /2
}
/

√
h

+ α hij
{
pijpij − p2/2

}
/2

√
h. (8.29)

8The means of carrying out this count depends on Constraint Closure and the accompanying de-
tailed Principles of Dynamics analysis, which we postpone to Chap. 24. The degrees of freedom
counts are always modulo a finite number of degrees of freedom [552] as occur e.g. in 2 + 1 GR
(Ex III.13), which still manages to have some global degree of freedom dynamical.
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Fig. 8.5 a) The domain of dependence of a piece S of a spatial hypersurface �, D+(S), is the
portion of spacetime that is controlled solely by the physical data on S. Points on � outside S
are not able to causally communicate with D+(S) (the external influence depicted). Within this is
shaded an example of ‘sandcastle-shaped’ region for which the GR Cauchy problem results could
be expected to hold. b) In dealing with evolutions of pieces of hypersurfaces, the pieces get smaller
due to the constricting effect of the domain of dependence

In terms of the extrinsic curvature,

−{δ�βKab − habδ�βK} − DbDaα + hab�α

α

− {2KacKbc − KKab + {KijKij + K2}hab/2
}+ Gab = G(4)ab = 0. (8.30)

which form complements the constraint equations as regards forming the remaining
projection of G(4)μν , The three of them can also be interpreted in terms of contractions
of the Gauss–Codazzi–Ricci embedding equations (thus extending the Constraint–
Embedding Theorem to the Constraint–Evolution–Embedding Theorem of GR). It
is occasionally more convenient to work instead with the following form in terms of
Rab rather than Gab:

δ�βKab + DbDaα

α
− KKab + 2KacKbc − Rab = −R(4)ab = 0. (8.31)

Also note the success in deriving these equations as regards removing all Riemann
(and thus Weyl) tensor projections from the system of projection equations. How-
ever, some other formulations—e.g. the Threading Approach of (Sect. 36.1)—use
other linear combinations which do cause some such terms to be kept. See Ap-
pendix O.7 if interested in the GR evolution equations as mathematical equations.

8.14 Other Classical Applications of Geometrodynamics

For the applications below, and others later in this book, it is generally useful to
add matter to the system. For now, we add phenomenological matter; see Chap. 18
for examples of adding fundamental matter fields instead. Define ε := T(4)⊥⊥, Ja :=
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T(4)a⊥ and Sab := T(4)ab . These are general matter terms which are usually prescribed
as functions of matter fields that are governed by usually-separate field equations.
The GR initial value problem—a type of PDE problem: Appendix O—is for the
system consisting of 4 constraints [227] (via the μ ⊥ component of the Einstein
field equations G(4)μ⊥ = T(4)μ⊥ in suitable units):

K2 − KijKij + R = 2{ε +Λ}, (8.32)

DbKba − DaK = −Ja. (8.33)

These are obtained by use of the split Einstein field equations in the doubly-
contracted Gauss and the contracted Codazzi embedding equations respectively.
They are constraints because they contain none of the highest time derivatives. Note
that this system consists of three linear PDEs and one nonlinear algebraic equation.

The remaining 6 equations are evolution equations [227]: Eq. (8.30) with right
hand side replaced by Sab +Λhab .

As PDEs, these are well supported by Analysis theorems guaranteeing their good
behaviour. This work was started by the French School of Mathematical Physics.
André Lichnerowicz [622] treated the GR initial value problem (constraint equa-
tions). This is viewed as a first data providing step for the GR Cauchy problem
(evolution equations). The first convincing mathematical study of the latter was due
to Yvonne Fourès-Bruhat [311, 312] (alias Bruhat and Choquet-Bruhat) and Jean
Leray [617]. See Chap. 21 and Appendix O for further details of more up-to-date
such theorems.

These PDEs can also be used to study compact astrophysical binaries using Nu-
merical (General) Relativity [123, 202, 382, 684]. While perturbative formulations
can be used to model lengthy inspirals, the ‘plunge’, ‘merger’ and ‘ringdown’ at the
end of the process require full Numerical Relativity based on invariants of ADM’s
equations. A further output of such calculations is a template for the gravitational
waves emitted, to be searched for within gravitational wave detector data.

8.15 Outline of Ashtekar Variables Alternative

GR admits a number of further first-order or spinorial formulations [706, 814, 874].
A particular such, which recasts GR in ‘Yang–Mills like form’ is the Ashtekar Vari-
ables formulation [75, 154] (named after physicist Abhay Ashtekar). This is in terms
of a SU(2)(�) [local SU(2) on �] 1-form Ai I . The conjugate momentum is the den-
sitized 3-bein Ei I := √

h eiI , for eiI the 3-bein itself, which is related to the 3-metric
by hij = −tr(EiEj ).9 This is now a conjugate momentum, despite its relation to

9The capital indices here denote spinorial SU(2) indices. tr denotes the trace over these. Di is
here the SU(2)(�) covariant derivative as defined in the first equality of (8.35). | [ , ] | denotes the
classical Yang–Mills-type commutator. Moreover, due to the specific form of Ai I and Ei I , hij is
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the previous configurational variables hab , because a canonical transformation (Ap-
pendix J.9) has been applied. On the other hand, by involving 1) a type of mathe-
matical unity is introduced, in the sense of all four of the fundamental forces now
being associated with Gauge Theoretic connections.

A particular first-order spacetime action often used for this is (see Sect. 24.9 for
generalizations)

s∝
∫

d4x e eμAeνBFABμν (8.34)

in spacetime form. eμ is here the spacetime 4-bein, e the corresponding determinant,
and FABμν the corresponding Yang–Mills type field strength.

This formulation’s constraints are

GA := DiE
i
A := ∂iE

i
A + ∣∣[Ei ,Ei

]∣∣
A

= 0, (8.35)

Mi := tr
(
EjFij

)= 0, (8.36)

H := tr
(
EiEjFij

)
/2

√
E = 0. (8.37)

The GR SU(2) Yang–Mills–Gauss constraint (8.35) arises due to internal symme-
tries introduced in setting up this formulation. (8.36) and (8.37) are the polynomial
forms now taken by the GR momentum and Hamiltonian constraints respectively.
One can see that (8.36) is indeed associated with momentum flux since it is the
condition for a vanishing (Yang–Mills–)Poynting vector. As per Geometrodynam-
ics, this formulation’s version of H (8.37) lacks such a clear-cut interpretation. On
the other hand, it is technically simpler than Geometrodynamics’ H since it is poly-
nomial in this approach’s canonical variables. Indeed one of the major reasons for
considering Ashtekar variables formulations is their distinct and simpler form for H.

8.16 Exercises V. Spacetime and Dynamical Formulations of GR

Exercise 1) Derive the ‘Michell radius’ version of GM/2 c2 within the Newtonian
Paradigm with allowance made for c taking a finite value.

Exercise 2) i) Derive Sect. 7.5’s general redshift formula for metric Theories of
Gravity; deduce also that Section’s various more specialized redshift formulae. ii)
Estimate the redshift for a photon emitted from the Sun as observed from Earth,
and one emitted down a 30-metre tower on Earth. To what extent will the time kept
by a clock deviate due to gravitational redshift during an airplane flight? Finally,
estimate the precision to which the ACES Earth-orbit space mission will be able
to test gravitational redshift with its 1 part in 1016 accurate on-board atomic clock.
iii) What age of the Universe corresponds to a redshift of around 10 (approximate

in fact complexified, i.e. pointwise in GL(3,C) rather than in GL(3,R), a point to which we return
in Sect. 11.9.
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maximum redshift observed in a galaxy)? What is the redshift of the surface of last
scattering when the cosmic microwave background formed? [Assume a dust-filled
FLRW cosmology.]

Exercise 3) i) Compare the geodesic deviation equation (D.14) and the Lorentz
Force Law (4.15) at the conceptual level. ii) Derive the Newtonian tidal equation
from the former. iii)† Demonstrate the absence of relativistic tidal effects in GR.
Find an example of alternative theory of gravity which does admit such; compare
the ratio of these relative to Newtonian tidal forces, both on Earth and for a binary
pulsar.

Exercise 4) i) Use the geodesic equation in modelling Newtonian Mechanics, in-
cluding consideration of non-affine parametrization. ii) Compare GR spacetime
and Newtonian space-time from a conceptual point of view; in addition to the cur-
rent book’s intermediate geometrical formulation for the latter, consider also its
Cartan-type formulation (see [776] for source material).

Exercise 5) i) Derive the FLRW solutions in the open, closed and limiting flat cases
for each of dust matter and radiation matter. ii) Show that the flat dust-filled FLRW
solution can be derived in purely Newtonian terms. iii) Use these solutions to esti-
mate the age of the Universe and to posit the Particle Horizon Problem.

Exercise 6) Compare the following. a) The proper time taken for a radially in-
falling test particle to reach the event horizon in Schwarzschild spacetime. b) The
Schwarzschild coordinate time that the particle appears to take to reach the horizon
from the point of view of a distant stationary observer.

Exercise 7) i) Construct the Penrose diagram for each of the Reissner–Nordström
and Kerr–Newman black holes. Comment on the geometrical form of the latter
solution’s singularity. ii) For a representative set of points in these solutions, con-
sider where the wavefront of a light flash emitted from that point is after a short
time interval. iii) Interpret also the surface r = s+ := M + √

M − a2cos2θ within
the Kerr solution, as well as what happens within this surface. iv) Demonstrate that
the Kerr–Newman solution contains closed timelike curves; are these accessible to
observers who are unwilling to traverse any event horizons?

Exercise 8) Compute the surface gravity and horizon areas for the Schwarzschild
and Kerr–Newman spacetimes. Differentiate the latter to obtain the black hole form
of the First Law (7.12).

Exercise 9) i) Work out the extrinsic curvature for an ellipse in R
2, for S2 in R

3 and
for S3 in FLRW spacetime. ii) Justify the appending of

± c2

8π G

∫

∂m
d3x

√
hK

to (7.7) with + for spacelike boundaries and − for timelike ones.
Exercise 10) Derive the Gauss–Codazzi–Ricci equations (8.4), (8.5), (8.16) and

their relations to the Einstein field equations in the ADM formulation. Show that in
dimension p these have p{p− 1}2 {p− 2}/12, p{p− 1}{p− 2}/3 and p{p− 1}/2
components respectively. Recover Gauss’s Outstanding Theorem (8.3) as a special
case.
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Background Reading 1) Read [440, 874] on Causality Theory and the derivation of
the Singularity Theorems. Consult also a more modern review on singularities in
GR such as [210] or [784].

Background Reading 2) Read the account of Geometrodynamics in [660].
Background Reading 3) Read one of [123] or [382] on Geometrodynamics applied

to the Numerical Relativity of compact binary objects.
Background Reading 4) Consider a readable introductory account of Ashtekar vari-

ables at the classical level, such as within [154].
Exercise 11) i) Obtain the ADM action from the Einstein–Hilbert action. ii) Obtain

(8.27), (8.28), (8.30) from varying the ADM action. iii) Rewrite ii)’s equations in
canonical form and furthermore also in terms of the DeWitt supermetric. iv) With
reference to Sect. 8.6, work out �t/‖ �t‖ as a function of β.

Exercise 12) i) How do GR singularities differ from those elsewhere in Physics?
ii)† By considering of a growing list of examples, can you come up with a concrete
definition of a GR singularity? (Compare your answer with [347].)

Exercise 13) i) Show that in Lorenz gauge (6.19), Electromagnetism’s Ampère–
Maxwell Law is cast as the wave equation. ii) In the harmonic gauge

γ̄μν,ν = 0, (8.38)

show that linearized GR’s evolution equation can also be cast as a wave equation,

� γ̄μν = −16π T(1)μν , (8.39)

where γ̄μν is the trace reversed metric γμν − γ
2ημν and T(1)μν is the first-order per-

turbed energy–momentum–stress tensor.
Exercise 14) Derive the forms taken by the geometrodynamical equations in i)

FLRW cosmology and ii) small perturbations about the spatially spherical case
thereof.

Exercise 15)† Derive the form of the spherically symmetric geometrodynamical
equations. Also show that ds2 = {1 +GM/2 c2r}4ds2

R3 solves the conformally flat
static version of the Lichnerowicz equation (21.6) for r a standard radial coordi-
nate.

Exercise 16) Work through Chap. 31 on foliations.
Exercise 17)† Work through DeWitt’s geometrical study of Riem(�) [237]. If

you are particularly interested in Applied Geometry and Quantum Gravity and
you have a lot of time on your hands, additionally work through his study of
PRiem(m) [241] and Kuchař’s study of the space of hypersurfaces [576].

Exercise 18)† Derive the Ashtekar variables formulation’s constraint equations.
(Hint: you may first need to read up on the type of curved-space spinors used
in this approach, e.g. in [75].)

Exercise 19) Estimate the sizes of the principal SR and GR effects in GPS time-
keeping and localization (its satellites have an orbital period of 12 hours).

Exercise 20) Can pulsars serve as standard clocks for galaxy-wide timekeeping?
Exercise 21) a) Estimate the maximal tidal force which an ordinary wristwatch can

withstand, alongside where within a Schwarzschild solution such tidal forces are
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to be found forMPl <M <Mgalactic centre. b) In which ways might a classical black
hole itself be used as a clock?

Exercise 22)†† Read Chap. 5 of Zeh’s book [931] on the Cosmological Arrow of
Time, and explore whether this is a Master Arrow. Does the analysis of which
Arrows imply which others change if Quantum Gravity or Quantum Cosmology
are evoked? [424].



Chapter 9
Classical-Level Background Independence and
the Problem of Time. i. Time and Configuration

We now turn to the main subject of this book: Background Independence aspects
and the nine ensuing facets of the Problem of Time which Isham and Kuchař identi-
fied [483, 586]. In Part I, this main subject of the current book is covered in Chaps. 9,
10 and 12. Chapter 9 and 10 demonstrate that much of Background Independence
and the Problem of Time is already present at the classical level. Chapter 9 covers
approaches in which one or more of space, configuration or dynamics are primary,
whereas Chap. 10 covers approaches in which spacetime is primary. Chap. 11 is an
introduction to Quantum Gravity, since the Problem of Time is principally moti-
vated as a foundational issue in—or towards—Quantum Gravity. Finally, Chap. 12
gives an outline of the Problem of Time as features in sufficiently Background Inde-
pendent Quantum Gravity programs. N.B. that most of the rest of this book expands
on Chaps. 9 to 12 rather than directly expanding on the preliminary material in
Chaps. 1 to 8.

Passage to Quantum Theory is usually from Newtonian Mechanics or SR prior
to these being upgraded to GR. As per the Preface, this amounts to a Background
Dependence versus Background Independence Paradigm Split, in which GR and
Ordinary Quantum Theory lie on opposite sides. Historically, this situation arose by
each of these two areas of Physics developing in a different direction both concep-
tually and technically, without enough cross-checks to keep Physics within a sin-
gle overarching Paradigm. This Paradigm Split has a further practical justification
which continues to apply today: that our practical experiences are of regimes that
involve at most one of QM or GR. Indeed, regimes requiring both of these at once
would involve the decidedly outlandish Planck units, as discussed in the Preface and
Chap. 11.

Moreover, the development of GR stagnated from the 1920s through to around
1960 [910]. One knock-on effect of this was the above Paradigm Split remaining
largely unaddressed. GR was subsequently revived by Wheeler’s U.S. group (in-
cluding ADM [73]), Zel’dovich’s U.S.S.R. group, and the U.K. groups including
Bondi, Sciama, Penrose and Hawking. ADM’s work on the split spacetime formu-
lation of GR toward a canonical formulation of Quantum GR did have a few sig-
nificant precursors. On the one hand, the French School’s work outlined in Chap. 8
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was significant in identifying and manipulating the GR constraints, albeit not yet in
canonical form. On the other hand, in the 1950s Dirac followed up his version of
classical Canonical GR with Canonical Quantization (as subsequently reviewed in
[250]). Wheeler then turned attention to the conceptual underpinnings of this ap-
proach in the 1960s, envisaging some of the Problem of Time facets [897, 899]. The
great Quantum Gravity pioneer Bryce DeWitt concurrently gave modern Quantum
Gravity’s first extensive (and last full field sweeping) treatise in the series of papers
[237–239]. These cover the configuration space for the Canonical Approach and the
origins of various of the strategies for addressing the Problem of Time, as well as
Covariant and Path-Integral Approaches.1 From here, Canonical and Covariant Ap-
proaches largely went their separate ways, as outlined in Chap. 11. Henceforth the
number of alternative theories grew quickly to beyond what can be considered in
detail in a single treatise. As further testimony to the revival of GR in the 1960s, this
also included understanding the black hole concept and working out rotating black
hole solutions, the birth of observational Cosmology with the detection of the cos-
mic microwave background, and the Hawking–Penrose Singularity Theorems. This
substantially increased interest in Quantum Gravity’s Planck regime as the seat for
the more extreme parts of the new fields of Early-Universe Cosmology and Black
Hole Physics.

GR can, moreover, be viewed as not only a Relativistic Theory of Gravitation
but also as a freeing from absolute or Background Dependent structures. This is a
continuation of the relational conceptualization of Mechanics outlined in Chap. 3.

Firstly, GR is often interpreted as providing a physically meaningful explanation
of the privileged inertial frames of SR as being, more precisely, idealized arbitrar-
ily large versions of GR’s local inertial frames. The latter are furthermore in turn
determined by the matter distribution as per Chap. 7.

A second issue concerns how Einstein , in developing GR, was influenced along
these lines by Mach [288, 518], albeit not in a straightforward manner [96, 897].
Initially, he misinterpreted Mach’s Origin of Inertia Principle —due to confusion
between ‘inertia’ in the sense of ‘inertial mass’ and of ‘inertial frames’. Moreover,
he eventually abandoned his ‘Machian’ approach for a more indirect approach—
Chap. 7’s—involving spacetime frames rather than spatial frames. The resulting
theory of GR can none the less be investigated as regards whether various Machian
criteria apply to it. Some do, e.g. the frame dragging mentioned in Sect. 7.5. Others
do not, e.g. through some GR solutions being in some sense un-Machian, such as
universes with overall rotation being physically distinguishable from nonrotating
ones [440].

It is useful to recollect at this point (from Sect. 3.1) that ‘Machian’ refers to
a somewhat disjoint set of attributes that a theory might have, rather than some
single coherent package that the theories being sought are to possess the entirety
of. Only some parts of Mach’s insights endure the passage to GR (and subsequent
GR-like theories). More specifically, it is Mach’s Time Principle and Mach’s Space

1See Sects. 11.1–11.2 and 11.6 for these other approaches toward Quantum Gravity’s own most
significant precursor papers.
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Principle that this book (and Barbour’s work [98, 109]) draw from. Note that these
are dynamical tenets, and made prior to the advent of almost all notions of spacetime
largely and to Einstein’s eventual correct form of the field equations of GR. This
provides another sense in which Einstein’s spacetime formulation of GR at most
indirectly addressed Machian criteria..

To instead set up a theory of Background Independence along dynamical lines,
it turns out to be rather helpful to already be familiar with the standard spacetime
formulation of GR (Chap. 7) and its dynamical and a fortiori canonical reformu-
lations (Chap. 8). The original dynamical reformulation concerns evolving spa-
tial 3-metrics with Diff (�) redundancy; whereas formulation in terms of Diff (�)-
invariant 3-geometries is conceptually equivalent, it is the former which has the
benefit of explicit computability. This Geometrodynamics is additionally a practical
realization of Broad’s Worldview [830], since the spacetime block grows stepwise
by geometrodynamical evolution from one spatial hypersurface to the next. Sec-
tions 9.7–9.9 furthermore outline how starting from relational first principles for
time and space lead to a derivation of GR in a particular geometrodynamical form
[62, 98, 109], which has manifestly relational (Leibnizian and Machian) features.
With more work (Sect. 10.9 and Chap. 33), GR can eventually be recovered along
such lines from less structure assumed. In this way, Relationalism is not only a
demonstration of the existence of a formulation in which GR is relational, but also
its own route to GR (in Wheeler’s sense, as per the next Section).

This is one of the ways in which the current book argues that GR suc-
ceeds in meeting Background Independence criteria as well as ones for Rela-
tivistic Theory of Gravitation. (Criteria along such lines are discussed in e.g.
[40, 78, 188, 194, 250, 483, 485, 488, 552, 586, 748, 752, 795, 796, 843].) The Pref-
ace phrased this as ‘GR is a gestalt theory’, and pointed to this having further con-
sequences as regards subsequent conceptualization of ‘Quantum Gravity’. Indeed,
from the perspective of GR being a gestalt entity, the wording ‘Quantum Gravity’
is itself is a misnomer since it refers solely to GR in its aspect as a Relativistic The-
ory of Gravitation. Whereas this does reflect what is attempted in some approaches,
a number of others do consider GR as a gestalt entity. In this book, this is made
clear by terming Background Independence programs not just ‘Quantum Gravity’
but a fortiori ‘Quantum Gestalt’; this book’s ‘QG’ acronym then refers to the latter.
Quantum Gestalt encompasses a subset of Paradigms of Physics (some of which
are tentative). It also highlights the complementary possibility of studying Quan-
tum Background Independence in the absence of any Theory of Gravitation that is
compatible with Relativity2 (see below and Chaps. 15 to 16). Moreover, in Quan-
tum Gestalt approaches, adopting Background Independence entails the notorious

2As regards other names, ‘Quantum GR’ will not do in this role due to implying the specific
Einstein field equations. Contrast with how the Quantum Gestalt position remains open-minded as
to which Relativistic Theory of Gravitation is involved. Quantum Gestalt is also in contradistinction
to ‘Background Independent Quantum Gravity’. This is since the latter may carry connotations that
the Background Independent and Gravitational inputs are separate rather than part of a coherent
whole, whose classical counterpart—GR—already forms such a coherent whole.
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Problem of Time as a direct consequence to be faced. This is in contradistinction to
approaches beginning from a position of denying (parts of) Background Indepen-
dence so as to avoid (parts of) the Problem of Time from occurring in one’s scheme.
This second type of approach adheres to more standard conceptualizations (usually
from Quantum Theory and SR). Within these, calculations are more familiar and
tractable. In contrast, Quantum Gestalt approaches involve more even-handed com-
binations of concepts from each of Quantum Theory and of GR viewed as both a
Relativistic Theory of Gravitation and of Background Independence.

9.1 Many Routes to GR

Wheeler’s works provide some useful context at this point. Firstly, Wheeler [660,
899] argued that Einstein’s derivation (Chap. 7) is but the first of many routes to
GR; some of the other routes are as follows.

A) and B) are the 2-way passage between the spacetime and ADM [73] split space-
time (Chap. 8) formulations of GR, of foremost relevance to this book.

C) On the other hand, in Sakharov’s route, GR is conceived of as an elasticity con-
ferred to space by Particle Physics processes. This is relevant as an example of
interpreting GR as an effective theory rather than as a fundamental one; [195]
reviews a number of subsequent such ideas.

D) In the Fierz and Pauli type route [300] (see also [883]), GR emerges from
consideration of a spin-2 field on a fixed-background Minkowski spacetime
M

4. This is a useful perspective for Covariant Approaches to Quantum Grav-
ity (Sect. 11.2).

See Sects. 8.15 and 11.9–11.11, and Chap. 21 for further programs which mostly
postcede [660, 899] that can be argued to constitute further such routes.

9.2 Dynamics in the Great Tradition

Secondly, Wheeler alongside mathematical physicist James Isenberg furthermore
argued that Physics was developed as “dynamics in the great tradition” [469] in
the period from Galileo through to the advent of SR. Broad’s point outlined in
Sect. 4.6 can furthermore be expanded in this regard (a development supported also
by philosopher of physics Gerald Whitrow [906]). I.e. Minkowskian and Einsteinian
spacetimes are both co-geometrizations of space and time, rather than an end to the
actual distinction between the two concepts. Dirac [250] also questioned space-
time’s acquisition of primary status. “One cannot, however, pick out the six impor-
tant components from the complete set of 10 in any way that does not destroy the
four-dimensional symmetry. So if one insists on preserving four-dimensional sym-
metry in the equations, one cannot adapt the Theory of Gravitation to a discussion
of measurements in the way Quantum Theory requires without being forced to a



9.3 Spacetime Versus ‘Space or Configuration Space’ 119

more complicated description than is needed by the physical situation. This result
has led me to doubt how fundamental the four-dimensional requirement in physics
is.” Barbour provided further arguments for spatial or configurational primality in
e.g. [101, 103].

Wheeler additionally supplied misgivings about the status of GR spacetime at the
quantum level [899] (this book postpones discussion of these to Sect. 12.12). These
were part of his motivation to conceive of GR as Geometrodynamics so as to take a
step back from GR spacetime and return to the ‘great tradition’. As an initial step,
one could make the ADM split to pass to the geometrodynamical formulation of GR.
However, Wheeler went further than this by asking for first principles for this with-
out ever passing through the spacetime formulation of GR. Further on in this book,
we shall encounter the Deformation Approach [454] and the Relational Approach
[62, 109] which address this question. The first of these still assumes embeddability
into spacetime, whereas the second derives that also. In this way, a geometrodynam-
ical formulation of GR can be derived without ever passing through spacetime, i.e.
never departing from the ‘great tradition’. Finally N.B. that GR spacetime indeed
remains as a useful reformulation; the new feature in the Relational Approach is,
rather, that GR spacetime no longer plays an ontologically primary role.

9.3 Spacetime Versus ‘Space or Configuration Space’

The preceding two Secs point to this dilemma of ontological primality, which can
also already be seen by contrasting Chap. 7’s spacetime formulation of GR and
Chap. 8’s geometrodynamical one.

Dynamical primality rests within the ‘space or configuration space’ horn of the
dilemma. So do arguments for timelessness at the primary level, from Leibniz’s
Time Principle through to the Fully Timeless Approaches outlined in Sect. 9.12.
This dilemma is moreover one of the underlying reasons for the multiplicity of Prob-
lem of Time facets (Fig. 9.1) and of strategies to deal with these (Fig. 10.2).

9.4 Configuration Spaces q

Now q has entered consideration, it helps to supplement Sect. 2.13’s outline of these
with further examples, which furthermore introduce two of this book’s principal
model arenas.

Example 1) Scaled relational particle configurations involve just relative angles and
relative separations. A theory in which just these are meaningful is Scale and
Shape Relational Particle Mechanics (RPM) [28, 37, 100, 102, 105], alias Eu-
clidean RPM and Barbour–Bertotti (1982) theory (reviewed in [37, 100]). On the
other hand, ‘pure-shape’ relational particle configurations involve just relative an-
gles and ratios of relative separations. Shape RPM [37, 45, 102] alias similarity
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Fig. 9.1 a) In addition to considering each of spacetime and space, one can consider passage
from spacetime to space by considering a slice and projecting spacetime entities onto it, or by
foliating the spacetime with a collection of spaces. b) Passage in the opposite direction involves
embedding rather than projecting, and is a Spacetime Construction; this is harder due to assuming
less structure [41]. Cf. Wheeler’s 2-way passage mentioned above; this is the basis of Facets 6)
and 7). c) Including the spaces of each of the four preceding entities gives the eightfold that is
crucial for understanding many of the facets of the Problem of Time. d) In particular, this book
makes substantial use of ‘spaces of spaces’, especially configuration space q. In the GR case, the
configuration space is Riem(�), each point of which represents a 3-metric hij on the one fixed
spatial topology �

RPM can be viewed as a theory in which just these are meaningful. A redundant
q for these theories is q(N,d) = R

dN of N particles. This possesses an obvious
Euclidean metric: the R

dN one rather than the spatial Rd one. See Chap. 15 and
Appendix G.1 for further less redundant qs for RPMs; many of these turn out to
have tractable and well-known geometry.

Example 2) For full GR, a redundant q is Riem(�) [237], as per Chap. 8.3 and
further detailed in Appendix H. Figure 9.1.d) uses this example to introduce the
notion of a space of spaces. superspace(�) as per Sect. 8.12 is a less redundant q
for GR; if interested, see Appendix N for more about this.

Example 3) Minisuperspace Mini(�) [657, 659] is a simpler subcase of Exam-
ple 2): the space of homogeneous positive-definite 3-metrics on �. These are no-
tions of space in which every point is the same. Here full GR’s Mijkl(h(x)) has
collapsed to an ordinary 6 × 6 matrix, MII′(h); this is an overall—rather than in-
dependently per space point—curved (− − + + + + +) ‘minisupermetric’. Some
simpler subcases nested within this are as follows.

i) Diagonal Minisuperspace involves a yet smaller 3 × 3 (− − ++) matrixMII′(h)
[659]; Appendix I.1 further develops various subcases.

ii) Isotropic Minisuperspace: flat single-number (–) minisupermetric, for instance
for � = S

3 with standard hyperspherical metric. This is a closed cosmological
model, and simpler than i) through not modelling anisotropy.

The specific Minisuperspace models used in this book’s detailed examples are spa-
tially closed on Machian grounds. I.e. these avoid undue influence of boundary or
asymptotic physics, a criterion that Einstein also argued for [286], though see also
Epilogue II.C’s counterpoint. The simplest choice is � = S

3; this is also the most
conventional for closed-universe cosmologies. Unlike in Sect. 7.4, this is here to
contain fundamental rather than phenomenological matter, due to having Quan-
tization in mind [149, 433]. One needs at least 2 degrees of freedom, and Cos-
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mology conventionally makes use of scalar fields. The simplest case brings in one
minimally-coupled scalar field. The q metric for this Minisuperspace is (as per Ap-
pendix I and up to a conformal factor of a3) just 2-d Minkowski spacetime M

2

equipped with its standard indefinite flat metric.

9.5 Configuration Spaces as Starting Point for Dynamics

Given the configurations Q indexed by A, composite objects can be built from these.
In some approaches, these include velocities Q̇, changes of configuration Q, or
conjugate momenta P . Alternatives based on ‘configurational minimalism’ [37] en-
tertain the further possibility of the Q being more primary than these other ob-
jects. There are various strengths of configurational minimalism. Most stringently,
one can consider just the Q in a fully timeless manner, as per the next Section;
less stringently, these alongside whichever of the above notions taken to be sec-
ondary. In these approaches, further familiar useful constructs such as actions and
Hamiltonians make sense as yet further composite objects; all subsequent Sections
of this Chapter are of this kind. Kinetic metrics M with components MAB(Q)
are another type of composite object which feature in the theory’s kinetic term,
T := ‖Q̇‖2

M/2 := MABQ̇
AQ̇B/2; this can furthermore be considered to equip q with

a metric.

9.6 Constraints Are All Versus Constraint Providers

Constraints are yet further composite objects: relations between the Q and P ,
CC(Q,P ) = 0. These feature in particular in approaches in which one of q, Phase
or Dynamics are primary, and present the following further dilemma.

A) Constraints Unquestioned. In this approach, constraints are merely to be pre-
scribed ab initio regardless of what they represent. This is along the lines of Ap-
plied Mathematics’ general theory of constrained systems [70, 371, 797, 805].

B) Constraint Providers. In this approach, one is furthermore entitled to ask why
the constraints that play major roles in Fundamental Physics take their particular
forms. One may then attribute further significance to how Fundamental Physics’
constraints arise.

In Wheeler’s words, [899], B) involves seeking ‘zeroth principles’ which are more
primary than the constraints themselves. In particular, he asked the following ques-
tion, which readily translates (Appendix J) to asking for first-principles reasons for
the form of the crucial GR Hamiltonian constraint, H.

“If one did not know the Einstein–Hamilton–Jacobi equation, how might
one hope to derive it straight off from plausible first principles without ever
going through the formulation of the Einstein field equations themselves?” (9.1)
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Fig. 9.2 Inter-relation of this book’s three implementations of Temporal Relationalism at the level
of actions

This is in the context of no longer considering just the Geometrodynamics specific to
GR, but rather a multiplicity of geometrodynamical theories, and is furthermore an
appeal to seek for a selection principle that picks out the GR case. The Deformation
Approach and the Relational Approach are answers to this question.

Barbour [98, 105] further developed the idea of Constraint Providers, in the sense
of underlying explanations for the form taken by Fundamental Physics’ constraints.
Moreover, the very well-known approach of taking a Lagrangian with particular
symmetries, from which Gauge Theory—with its gauge constraints Gauge—ensues,
can be interpreted as an example of Constraint Provider. Section 9.8 and Chaps. 14,
16, 18 consider a number of variants of this idea. In Part I, however, we first consider
a different kind of Constraint Provider, as follows.

9.7 Background Independence Aspect 1:
Temporal Relationalism

Temporal Relationalism Postulate. We now implement [37, 105] Leibniz’s Time
Principle (Chap. 3.1) in a mathematically sharp manner. The postulate itself is the
following two-part selection principles for Principles of Dynamics actions.

TR-i) Include no extraneous times—such as tNewton—or extraneous time-like
variables—such as the ADM lapse of GR, α.

TR-ii) Include no label times either.

A first implementation of TR-ii) is for a label λ to feature in the action but be physi-
cally meaningless due to it being interchanged for any other (monotonically related)
label without altering the physical content of the theory. I.e. the action in question
is to be Manifestly Reparametrization Invariant. This requires the action to be ho-
mogeneous of degree one in its velocities Q̇ = dQ/dλ (line 1 of Fig. 9.2). Further
envisaging this d/dλ as the Lie derivative £d/dλ in a particular frame—paralleling
(8.9)—is useful for further reference (Sect. 10.2).
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A second implementation follows from the further conceptual advance of formu-
lating one’s action and subsequent equations without use of any meaningless label
at all. This gives the Manifestly Parametrization Irrelevant implementation in terms
of changes dQ in place of label-time velocities Q̇. I.e. now actions are required to
be homogeneous of degree one in the changes (this is clearly equivalent by line 2 of
Fig. 9.2).

Moreover, it is better still to formulate this directly, i.e. without even mention-
ing any meaningless label or parameter. This can be done because the Manifestly
Parametrization Irrelevant implementation is, dually, a Configuration Space Geom-
etry implementation. This final implementation provides further justification for the
study of the geometry of q (Chaps. 18, 21, Appendices G and H).

As a concrete example, consider Temporally-Relational but Spatially-Absolute
Mechanics. An action for this is3

SJ :=
∫

dλLJ := 2
∫

dλ
√
TW := √

2
∫

ds
√
W : (9.2)

Jacobi’s action principle [598], whether the ‘J’ stands for the great mathematician
Carl Jacobi. In the first expression, T := ‖q̇‖2

m/2 is the kinetic energy, whose qmet-
ric m is just the ‘mass matrix’ with components mIδIJ δij . Also W := E − V (q) is
the potential factor, for V (q) the potential energy and E the total energy of the
model universe. Moreover, Manifestly Parametrization Irrelevant formulations of
this are indeed also well-known, as are dual Configuration Space Geometry formu-
lations. The second expression in (9.2) is of this kind, now involving the kinetic arc
element ds := ‖dq‖m. This action is indeed physically equivalent to the more famil-
iar Euler–Lagrange action principle, though demonstration of this is postponed to
Sect. 15.2.

The Manifestly Reparametrization Invariant form’s conjugate momenta are p :=
∂LJ/∂ q̇ = √

W/T q̇ .
The main consequence of actions implementing TR-ii) arises via the following

argument of Dirac [250]. Manifestly Reparametrization Invariant actions are homo-
geneous of degree 1 in the velocities. Consequently, the k := dim(q) = Nd conju-
gate momenta are (by the above definition) homogeneous of degree 0 in the veloc-
ities. Therefore they are functions of at most k − 1 ratios of the velocities. So there
must be at least one relation between the momenta themselves (i.e. without any use
made of the equations of motion). But this is the definition of a primary constraint
(cf. Appendix J.15).

Thus Temporal Relationalism indeed acts as a Constraint Provider. Moreover,
the homogeneous quadratic form of the above mechanical action [98] causes the
constraint it provides to also be purely quadratic:

E := ‖p‖2
n/2 + V (q) = E. (9.3)

3Here indices I, J run over 1 to N (particle number), indices i run over 1 to d (spatial dimension)
and mI are the particles’ masses.
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Here n = m−1, with components δIJ δij /mI . (9.3) is familiar from elsewhere in
Physics, where it has the name and role of an energy equation, though as we shall
see below, in the current context its interpretation is, rather, as an equation of time.

Finally, this approach’s equations of motion are
√
W/T ṗ = −∂V/∂q .

We next turn to interpretational matters. Firstly, it is quite natural to ask whether
there is a paradox between Leibniz’ Time Principle’s ‘there being no time at the
primary level for the universe as a whole’ and our appearing to ‘experience time’.
Thus one is faced with having to explain the origin of the notions of time in the laws
of Physics that appear to apply in the Universe.

This can be answered by pointing to discrepancies between the two situations;
two preliminary such are as follows. Firstly, whereas ‘time’ is a useful concept for
everyday experience, the nature of ‘time’ itself is in general less clear. Secondly,
everyday experience concerns subsystems rather than the whole Universe setting of
the Principle.

This book’s main answer to this follows from recollecting Mach’s Time Principle
that ‘time is to be abstracted from change’.4 Thus timelessness for the Universe as
a whole at the primary level is resolved by time emerging from change at the sec-
ondary level. Chaps. 15 and 23 furthermore argue that one is best served by adopting
a Machian conception of time along the lines of the astronomers’ ephemeris time.
This is now abstracted from a ‘sufficient totality of locally relevant change’.

More specifically, Temporal Relationalism provides an emergent time which can
be interpreted in this Machian manner. This is the Jacobi emergent time, obtained
by the following rearrangement of the E constraint provided by Temporal Relation-
alism.

t em(J) =
∫

dλ
√
T/W =

∫
ds
/√

2W =
∫

‖dq‖m

/√
2W. (9.4)

Because of this rearrangement, E plays the role of an equation of time in the Rela-
tional Approach, rather than that of an energy equation. The third form therein—the
Manifestly Parametrization Irrelevant or dual q-geometry form version—is further-
more manifestly an equation for obtaining time from change, so this indeed com-
plies with Mach’s Time Principle. (9.4) also ascribes to the ‘choose time so that
motion is simplest’ tenet of Chap. 1. For, via5

∗ := ∂

∂tem(J)
:=
√
W

T

∂

∂λ
, (9.5)

it is also distinguished by its simplification of the model’s momentum–velocity re-
lations and equations of motion. In this manner, we have arrived at a recovery of
Newtonian time on a Temporally-Relational footing.

4Chapter 12 outlines various other answers, which constitute distinct strategies for addressing the
Frozen Formalism Problem.
5In this book, given a time variable t , its calendar year zero adjusted version t − t (0) is denoted by
the corresponding oversized t .
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Fig. 9.3 Action of Chronos in a) Spatially-Absolute Mechanics, b) RPM, c) GR, for which we
shall see H generates hypersurface deformations, and d) Minisuperspace whose hypersurfaces
privileged by homogeneity are 3-spheres with metric proportional to the 3-sphere metric Sij

In the GR counterpart of this working (Chaps. 15 and 18) we shall see that it
is indeed the Hamiltonian constraint H crucial to GR that arises from Temporal
Relationalism as a primary constraint, and that this amounts to a recovery of GR’s
version of proper time. For now, Part I offers an outline of how H arises in the
Minisuperspace subcase of GR in Sect. 9.9.

In conclusion, we emphasize that Temporal Relationalism provides a crucial con-
straint whose interpretation in this context is as an equation of time, let us name the
general case of the constraint provided in this manner as Chronos. E and H, as ar-
rived at within the Relational Approach, are both subcases of this. Finally Fig. 9.3
sketches how these constraints act in various models.

9.8 Aspect 2: Configurational Relationalism

Configurational Relationalism covers both of the following.

a) Spatial Relationalism [105] is to not ascribe any absolute properties to space.
b) Internal Relationalism is the post-Machian addition of also not ascribing any

absolute properties to any additional internal space associated with the matter
fields. This is both a useful addition and straightforward.

b) is substantially distinct though holding at a fixed spatial point whereas a) moves
spatial points around. Configurational Relationalism is then approached as follows.

CR-i) One is to include no extraneous configurational structures (spatial or internal-
spatial metric geometry variables of a fixed-background rather than dynamical na-
ture).

CR-ii) Physics in general involves not only a q but also a group g of transforma-
tions acting upon q that are taken to be physically redundant.

Since time-parametrization is really a 1-d metric of time, TR-i) and CR-i) reflect
a single underlying relational conception of Physics: that there is to be no fixed-
background Metric Geometry.

CR-ii) is a matter of practical convenience: often q with redundancies is simpler
to envisage and calculate with. The Internal Relationalism case of CR-ii) is a distinct
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formulation of Gauge Theory (as per Chap. 16) from the conventional one presented
in Chap. 6. The spatial case is similar: it can also be thought of as a type of Gauge
Theory for space itself.6 This includes modelling translations and rotations relative
to absolute space as redundant in Mechanics, for which q = R

dN , or Diff (�) as
redundant in GR, for which q = Riem(�). In accord with Chap. 8.2, the Diff (�)
are actively interpreted. Chaps. 14 to 19 subsequently discuss restrictions on q, g
pairings.

Best Matching implementation of Configurational Relationalism

Best Matching [105] is a substantial implementation of Configurational Relational-
ism at the level of Lagrangian variables (Q, Q̇). This involves q, g pairs so that q
is a space of ‘configurations for which g are taken to be redundant motions’. More
specifically, in Best Matching g acts on q as a shuffling group. I.e. pairs of con-
figurations are considered; one is kept fixed while the other is shuffled around—an
active viewpoint—until the two are brought into minimum incongruence.

One first constructs a g-corrected action. For the examples considered in Part I,
this involves

replacing each occurrence of Q̇ with Q̇− →
gg Q,

where
→
gg indicates group action.

Next, varying with respect to the g auxiliary variables g (indexed by G) provides
constraints; in view of the above, let us term these ‘shuffle constraints’ and denote
them by Shuffle (matchingly indexed by G). These arise as secondary constraints
(defined in Appendix J.15). Being linear in the momenta, they could also be denoted
by LinG. However, these are but a subcase of the most general linear constraints Lin
(indexed by L rather than G), since not all possible such arise from shuffling. Flin
(indexed by N)—constraints which are first-class linear in the momenta—turn out to
be a useful case of intermediate generality. Chap. 24 shall provide examples of these
various kinds of constraints being distinct, so this emphasis of a range of names for
slightly different concepts is justified.

In setting up Best Matching, the intent can be considered to be that g performs
the function of a gauge group. However, this intent is only known to have suc-
ceeded upon confirming Aspect 3)’s suitability of the algebraic structure between
the constraints. Thus the Shuffle are for now candidate constraints associated with
an attempt to associate g with q. Candidate Shuffle constraints which succeed in
the above manner belong to the more specific conceptual type Gauge.

Let us next address that the initial introduction of g corrections appears at first
sight to be a step in the wrong direction as regards freeing the physics of q from g.
This is due to its extending the already redundant space q of the Q to some joint

6The name and concept of Gauge Theory is used here in a somewhat broader manner than that
of Particle Physics, covering also e.g. Molecular Physics [624] and cosmological perturbations
[110, 671].
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space of Q and the g-auxiliary variables g. However, if Shuffle does turn out to be
of the form Gauge, Sect. 9.14 explains that this is a type of constraint which uses up
two degrees of freedom per g degree of freedom. Each degree of freedom appended
then wipes out not only itself but also one of q’s redundancies. Thus one indeed
ends up on a q that is free of these redundancies—the quotient space q/g—as is
required to successfully implement Configurational Relationalism.

In the Best Matching procedure, one continues by taking Shuffle in Lagrangian
variables to be equations to solve for the g themselves. Next, one substitutes this
extremizing solution back into the original action to obtain a reduced action on the
reduced configuration space q/g. This action is finally elevated to be a new starting
point.

Let us further clarify the nature of Configurational Relationalism and Best
Matching by using Shape and Scale RPM as an example. These are taken to be
fundamental rather than effective Mechanics problems, by which it makes sense
for the corresponding potentials to be of the form V (q) = V (q

I
· q
J

alone). This
form then guarantees that auxiliary translation and rotation corrections applied to
this part of the action straightforwardly cancel each other out within. The situation
with the kinetic term is more complicated, because d/dλ is not a tensorial operation
under the λ-dependent Euclidean group alias Leibniz group which plays the role of
kinematical group. This leads to the translation and rotation corrected kinetic term

T = ‖ ◦A,Bq‖2
m/2, for ◦A,B q := q̇ − A−B × q (9.6)

the ‘Best Matched derivative’. The Barbour–Bertotti action is then

SBB = 2
∫

dλ
√
W T . (9.7)

The momenta conjugate to the q are p = √
W/T {q̇ − A − B × q}. By virtue of

Manifest Reparametrization Invariance and the particular square-root form of the
Lagrangian, these momenta obey a primary constraint that is purely quadratic in the
momenta,

E := ‖p‖2
n/2 + V (q) = E. (9.8)

Next, variation with respect to A and B give secondary constraints, respectively,

P :=
N∑
I=1

p
I

= 0 (zero total momentum constraint), (9.9)

L :=
N∑
I=1

qI ×p
I

= 0 (zero total angular momentum constraint). (9.10)

Note that these constraints are linear in the momenta. The first can furthermore be
interpreted as the centre of mass motion for the dynamics of the whole Universe
being irrelevant rather than physical. All the tangible physics is in the remaining
relative vectors between particles.
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Fig. 9.4 a) Wheeler first contemplated a ‘thick sandwich’ [897]: bounding bread-slice data h(1)ij
and h(2)ij as knowns to solve for the GR spacetime ‘filling’ in between. This was an attempted
analogy with Feynman’s path integral for quantum transition amplitudes between states at two dif-
ferent times [897]; however, this failed to be mathematically well-posed. b) Wheeler subsequently
considered ‘Thin Sandwich’ data to solve for a local coating of spacetime [897]. This is the ‘thin’
limit of taking the data to be on the bounding ‘slices of bread’, with data hij and ḣij . c) The Thin
Sandwich can now be reinterpreted in terms of Best Matching Riem(�) with respect to Diff (�).
This corresponds to the depicted shuffling [98, 109], in which the red space is held fixed while each
point in the yellow space is moved to a new position marked in orange so as to seek out minimal
incongruence between the two. See Sect. 34.1 for further details of this reinterpretation. d) This
rests on the more basic point that Diff (�) acts on � by moving points around. e) Scaled RPM’s
Tr(d) and Rot(d) actions, as another example of shuffles. f) then gives the analogous Best Match-
ing for RPM triangles with respect to the rotations Rot(d) and translations Tr(d) [16, 98, 105]. This
indicates Best Matching’s applicability to a wider range of theories rather than just to Geometro-
dynamics or the corresponding Diff (�). g) Depicts the general case of Best Matching shuffling
configurations Q(1) and Q(2), in some shared configuration space q, with respect to a group g.
h) Part II (Chap. 13) involves a further generalization to other levels of structure, depicted here as
general objects O(1), O(2) in some shared space of objects o

The corresponding equations of motion are
√
W/T ṗ = −∂V/∂q .

Returning to the Best Matching procedure, the constraints (9.9), (9.10), rewrit-
ten in Lagrangian configuration–velocity variables (q, q̇), are to be solved for the
auxiliary variables A, B themselves. This solution is then substituted back into the
action, so as to produce a final Tr- and Rot-independent expression that directly
implements Configurational Relationalism. One has the good fortune of being able
to solve Best Matching explicitly for a wide range of RPMs (Chaps. 15 to 16, and
Appendix G, based on [37, 539]).

Let us next consider the Geometrodynamical subcase of Best Matching. This is
the so-called Thin Sandwich: Fig. 9.4.b) and [115, 124, 483, 586, 897]. In paral-
lel with the above set-up for RPM, the Baierlein–Sharp–Wheeler (BSW) [89] ac-
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tion is7

sGR
BSW =

∫
dλ
∫

�

√
T

GR
BSW

√
h{R − 2Λ}, T̄

GR
BSW := ∥∥δ→

β
h
∥∥2

M. (9.11)

Actions of this kind return the usual GR H as their primary constraint. See
Chap. 18 as regards equivalence of the ADM and BSW actions, and more about
the BSW action; this includes how this example indeed also gives rise to an
emergent Machian time. In this way, Einstein’s GR does happen to implement
[62, 98, 109] the philosophically desirable kernel that is Mach’s Time Princi-
ple.

9.9 Minisuperspace Model Arena Version

Whereas for now Part I’s restriction to treating the aspects piecemeal prevents us
from presenting Temporal Relationalism for full GR, we can in the meanwhile sub-
stantiate H arising in this manner by considering the subcase of Minisuperspace
GR.

Let us first comment that modelling the Problem of Time requires a range of
models which exhibit a variety of subsets of the aspect interference in GR-like the-
ories. It is interference between Temporal and Configurational Relationalism which
prevents full GR being presented in Part I. For instance, full Geometrodynamics’
tem depends in general on the outcome of Best Matching, and in doing so this en-
counters the Thin Sandwich Problem. Minisuperspace avoids this by not exhibiting
Configurational Relationalism, since spatial homogeneity renders Mi trivial due to
this constraint’s dependence on spatial derivatives. On the one hand, this facilitates
using Minisuperspace as a basic introductory example in Part I, but on the other hand
this renders Minisuperspace too simple a model for many of Part II and III’s consid-
erations. RPM is a comparably useful model arena by, complementarily, exhibiting
Configurational Relationalism, and notions of structure and thus of structure forma-
tion, which are also absent from Minisuperspace.8 Conversely, Minisuperspace is a
restriction of GR, so it inherits some features that RPMs do not possess, including
kinetic metric indefiniteness and imposition of more specific restrictions on the form
of the potential.

Let us next comment on this book’s particular choices among Minisuperspace
models, which consist of two distinct sets of modelling assumptions. 1) The matter
physics is light and fast (l) as compared to the gravitational physics being heavy

7The overline denotes densitization, i.e. inclusion of a factor of
√

h, which in the current case
resides in M.
8In RPMs, linear constraints and inhomogeneities are logically-independent features. This is in
contrast with the Minisuperspace version, in which both are concurrently trivialized by homogene-
ity rendering the spatial derivative operator Di meaningless.
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and slow (h). 2) Both are h and only further degrees of freedom—anisotropy or
inhomogeneity—are l.

We finally pick the isotropic minimally-coupled scalar field matter version of 1)
to further illustrate Temporal Relationalism. The Misner-type [659]) action for this
is

S = 1

2

∫
dλ
√
T W,

T := exp(3Ω)

{
−
{

dΩ

dλ

}2

+
{

dφ

dλ

}2}
,

W := exp(3Ω)
{
exp(−2Ω)− V (φ)− 2Λ

}
.

(9.12)

Here, the Misner variable

Ω := lna, (9.13)

for a the usual cosmological scale factor. Also note that the cosmological constant
term is needed to support [736] the spatially-S3 FLRW cosmology with scalar field
matter in the case in which matter effects are presumed small. The corresponding
Hamiltonian constraint is then

H := exp(−3Ω)

2

{−π2
Ω +π2

φ + exp(6Ω)
{
V (φ)+ 2Λ− exp(−2Ω)

}}= 0. (9.14)

This can then be rearranged to give the model’s classical Machian emergent time,

t em =
∫ √

−dΩ2 + dφ2
/√

exp(−2Ω)− V (φ) − 2Λ. (9.15)

9.10 Temporal and Configurational Relationalism Lead to Two
of the Problem of Time Facets

The most well-known (Schrödinger-Picture) Quantum Frozen Formalism Problem
arises from elevating an equation of the form (8.26) which encompasses both GR’s
H and RPM’s E , to a quantum equation

Q̂uad|�〉 = 0. (9.16)

Here, � is the quantum wavefunction of the (model) universe. See Sect. 11.4 for
the detailed form of the GR case of this equation: the so-called Wheeler–DeWitt
equation [237, 899]. This is often viewed as the E = 0 case of a time-independent
Schrödinger equation (5.11): a stationary alias timeless or frozen quantum wave
equation which occurs in a place in which one would expect a time-dependent equa-
tion such as (5.10). On occasion, this has been interpreted at face value as a Fully
Timeless Worldview arising from attempting to combine GR and Quantum Theory.
See however the rest of the current Chapter, Chap. 12, and Parts II and III for further
interpretations and means of bypassing such an equation arising in the first place.
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Equation (5.10) is presented above in the finite-theory case for simplicity (so its
given form includes just the Minisuperspace subcase of GR). The field-theoretic
counterpart of (9.16) contains in place of a partial derivative ∂/∂QA a functional
derivative δ/δhij (x) (Chap. 12.1). The Wheeler–DeWitt equation arises regardless
of whether from ADM’s scheme that presupposes and subsequently splits space-
time, or as an equation of time Chronos from implementing Temporal Relationalism
as per above. Moreover, from the latter perspective, the Frozen Formalism Problem
already features at the classical level for the Universe as a whole; its being mani-
fested at the quantum level is then less surprising.

On the other hand, the Lagrangian variables form of the GR momentum con-
straint Mi is the Thin Sandwich equation [124]; since its explicit form is rather
complicated, this is postponed to Eq. (18.13). Solving this is the Thin Sandwich
Problem, as outlined in Fig. 9.4.a)–b). This problem was furthermore identified as
another of the Problem of Time facets in Isham and Kuchař ’s ground-breaking re-
views [483, 586].

The Thin Sandwich facet was always presented as a manifestly classical-level
problem. It is indeed a problem concerning time because, firstly, it is solving for
a local slab of GR spacetime immediately adjacent to �. It is additionally a pre-
requisite for various Problem of Time strategies—including the above emergent
time one and the internal time one below—due to the GR momentum constraint
Mi interfering with resolutions of the Frozen Formalism Problem (see Part II for
more). Finally, it is a major mathematical problem [115, 124]; see Chap. 18 and
Appendix O.5 for an outline.

The Thin Sandwich is, moreover, sequentially generalized by the following.

a) Best Matching, which applies to a wider range of theories than just Geometrody-
namics (Fig. 9.4.c–d). Because of this, sandwich- and foliation-specific concepts
and nomenclature do not themselves directly generalize.

b) Configurational Relationalism, which furthermore applies to resolutions at lev-
els other than that of the Lagrangian variables. E.g. this can also apply at the
Hamiltonian level or at the level of solving the quantum equations. The most
general implementation for this involves g acting on one of the objects O(1)

being compared (Fig. 9.4.f) in question, followed by an operation over all of g
which cancels out the dependence of g, such as extremization in Best Matching
or group averaging (see Sect. 14.4 for details).

Most of Chap. 9 and 10’s material arose from analysing which facets of the Problems
of Time [24, 26, 37, 483, 586] in QG already occur at the classical level [37]. This
reveals that 8/9ths of the Problem of Time facets already have classical counterparts.

9.11 Other Timefunction-Based Problem of Time Strategies

Each time-dependent Schrödinger equation (5.10) can be considered to be preceded
by a classical equation that is parabolic in the momenta [580, 582],

pt = PAP
A + C. (9.17)
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Here pt is the momentum conjugate to whatever t plays the role of time in this model
(Newtonian time in the most conventional case), whereas C is a function of the Q
alone. On the other hand, a time-independent Schrödinger equation is preceded by
an elliptic equation,

PAP
A + C = 0. (9.18)

Moreover, the GR Hamiltonian constraint H looks more like (9.18) than (9.17). The
more general classical form

pt = f (Q,P ), f homogeneous of degree n (9.19)

often resembles (9.17) as regards the role played by time therein; this arises in par-
ticular by solving Chronos for pt , with f then playing the role of Hamiltonian for
the system. This form also includes Dirac-type equations.

One might next argue that the specific form of H (11.6) looks even more like the
Klein–Gordon equation’s classical precursor [581]—the hyperbolic equation

p2
t = PaP

a +C, (9.20)

where a runs over one value less than A. From this, the DeWittian indefiniteness
of Riem(�) might furnish a time (Chap. 20) in parallel to the Lorentzian indefi-
niteness of Minkowski spacetime M

n (Sect. 4.2). However, in the case of GR, this
approach goes awry at the quantum level (Sect. 12.2).

Canonical transformations can map into and out of the general form (9.19) [580,
581]. In this case, specialize the notation to

pthidden +HTrue
(
QO,PO, t

hidden)= 0, (9.21)

for QO the theory’s other configurational variables. (9.21) corresponds to [586]
finding a hidden time candidate thidden—the conjugate to pthidden —alongside a ‘true
Hamiltonian’ HTrue.

One might solve the original equation Quad for a particular p that is designated
to be a pt , i.e. conjugate to some candidate notion of t . However this approach has
an added problem in justifying this choice. Common choices at this stage are the
scale variable giving a scale time candidate (Chap. 20), or the matter field giving a
matter time candidate (Chap. 22). The scale variable has the virtue of being singled
out among all the other variables, since there is precisely one independent such vari-
able. However, this is clearly not monotonic for the significant case of recollapsing
universes. On the other hand, while ‘the matter variable’ may be unique in simple
models, there are obviously multiple matter variables in more general models. It is
then unclear how to pick ‘the time to use’ amongst these. We shall see in Sect. 12.15
that different choices of time are capable of leading to inequivalent Quantum Theo-
ries, compounding the significance of such ambiguities.

Interestingly, the York time candidate (after physicist Jimmy York Jr.)

tYork := 2

3
p/

√
h = − 4

3
K (9.22)
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is monotonic in sizeable regimes. This is a type of ‘dilational momentum’, i.e. mo-
mentum conjugate to a scale quantity. Moreover, K is mean curvature of the ex-
trinsic kind (cf. Sect. 8.4, and given here in the notation of a prescribed function K
rather than a functional K). So this is constant on each slice of constant York time.
This approach’s associated slices are therefore of constant mean curvature (CMC).
Chapter 21 considers further the York time candidate as an example of (9.21) in
more detail.

Another proposed way forward involves introducing a matter field—e.g. the ‘ref-
erence fluid’ matter outlined in Chap. 22—that specifically results in a reference
matter time candidate. In this case, (9.19) is realized as

pt ref +HTrue
(
QO,PO, t

ref)= 0, (9.23)

where QO are now the original theory’s other variables together with the other ap-
pended variables. This differs from (9.21) in that time is to be found among fields
appended to one’s theory rather than already hidden within. A particular case is uni-
modular time, which arises as the momentum conjugate to the cosmological con-
stant upon elevating this to a dynamical variable.

N.B. Part I’s Time, Timefunction and Clock Postulates are applied in Part II as
selection principles to discern between the above wide range of candidates. By these
and further criteria (Chap. 22), Machian emergent time ‘wins out’. Moreover, not all
approaches have a time; e.g. Sects. 9.12 and 10.6 outline further Problem of Time
strategies based, rather, on timelessness or on histories in place of time.

9.12 Fully Timeless Strategies

Fully Timeless Approaches strategies9 take Temporal Relationalism’s primary time-
lessness at face value by addressing timeless propositions alone. This can cause at
least some practical limitations, but can none the less address at least some ques-
tions of interest. The remaining issue is determining the extent to which the totality
of Physics can be recovered from such an approach. One well-documented case
[694] involves passing from the notion of ‘being at a time’ to timeless correlations
between a subsystem configuration under study and a clock configuration. The ques-
tion then arises [692] whether the notion of ‘becoming’ can also be supplanted, by
which Physics could be taken to involve just questions about ‘being’ rather than
about ‘becoming’.

9.13 Providers, Algebraic Structure, and Beables

Figure 9.5 outlines the next two aspects of Background Independence.

9Many of these are quantum-level approaches, for which the motivation is stronger, as further
detailed in Chaps. 12, 26 and 51).
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Fig. 9.5 Generator Providers are a more straightforward and general concept than Constraint
Providers. Generator Providers additionally cover purely timeless formulations and next chapter’s
Spacetime Relationalism version as well. The further structures that the rest of this chapter focuses
on are, firstly, the algebraic structures formed by the generators themselves. One type of Generator
Closure Problem arises if the generators fail to close due to unexpected brackets relations arising.
Another arises if these fail to close by themselves, forcing inclusion of further generators by which
a larger group is involved. Secondly, we consider entities which commute with the generators:
observables or beables. The Figure’s left-to-right order of these three concepts is a natural chain of
decreasing primality on structural grounds. Finally, a reverse operation to Constraint Provision is
the encoding of constraints. I.e. upon finding constraints, one aims to subsequently build auxiliary
variables into the theory’s action; variation with respect to this encodes the constraints required by
the theory (see Chap. 33 for details)

9.14 Aspect 3: Constraint Closure

Do constraints beget more constraints? More concretely, if the constraints CC vanish
on a given spatial hypersurface, what can be said about ĊC? If ĊC is equal to some
f (CC) alone, it is said to be weakly zero in Dirac’s sense [250], denoted by ≈ 0.
There is however a lack of rigour in such ‘Lagrangian’ formulations of ‘constraint
propagation’ through evaluation of ĊC from the Euler–Lagrange equations.

Let us first consider the joint space of the Hamiltonian variables Q and P , as
standardly equipped with the Poisson brackets algebraic structure { , }: phase space
Phase (Appendix J.11).

This formulation furthermore turns out to possess a rigorous algorithm for han-
dling whether constraints beget further independent constraints. This is the Dirac
Algorithm [250, 446] (laid out in Appendix J.15). This determines how classical
brackets of known constraints can in general lead to further constraints, to specifier
equations and to inconsistencies. Thereby, Constraint Closure is indeed a necessary
check for the constraints already in hand, and one which is capable of invalidat-
ing candidate Constraint Providers. The Dirac Algorithm, moreover, serves as an
archetype of how to approach this facet.

The end-product algebraic structure of constraints is, schematically,

{CF, CF′ } ≈ 0. (9.24)

F here indexes first-class constraints, which are those that close among themselves
under Poisson brackets. A constraint is second-class if it is not first-class. First-
and second-class constraints use up 2 and 1 degrees of freedom respectively; gauge
constraints are a subset of first-class constraints. See Appendix J.15 for more details,
and also as regards means of removing second-class constraints.

In particular, the Dirac Algorithm can be applied to determine whether the con-
straints provided by Temporal and Configurational Relationalism—Chronos and
Shuffle respectively—form a complete and consistent picture. A common consid-
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eration is whether the Shuffle close among themselves in the form

{ShuffleG, ShuffleG′ } = CG G′ G′ ′
ShuffleG′ ′, (9.25)

where CG G′ G′ ′
are constants, so that this is a Lie algebra (Fig. 9.6.a–b). In this

case, the attempt to render g physically irrelevant is vindicated, insofar as this pro-
duces gauge constraints Gauge which realize that irrelevance. [On many occasions,
Gauge = Flin as well, though Chap. 24 shows that this is not always the case.] If
also (Fig. 9.6.c)

{Shuffle, Chronos} closes, Chronos is established as a good g object. (9.26)

The final consideration is whether (Fig. 9.6.d)

{Chronos, Chronos} closes. (9.27)

E.g. if this were to produce a new linear constraint, it would be enforcing an en-
larged g. If Chronos and Shuffle do beget unexpected further constraints, then one’s
attempted relational formulation has a Constraint Closure Problem: Facet 3) of the
Problem of Time.

Example 1) Electromagnetism has the Abelian algebra of constraints10

{(G|ι), (G|μ)} = 0. (9.28)

Example 2) Its Yang–Mills generalization has the Lie algebra of constraints

{(GI |ιI ), (GJ |μJ } = fIJ
K(GK |ιIμJ ) (9.29)

for fIJ K the structure constants corresponding to the gauge group g in question.
Example 3) As a first model involving Chronos as well, Shape and Scale RPM’s

constraint algebra’s nonzero Poisson brackets are

{Li,Lj } = εij
kLk, {Pi,Lj } = εij

kPk. (9.30)

The first of these means that the Li close as a Lie algebra, which is a subalgebra
of the full constraint algebra (itself a larger Lie algebra in this case). The second
means that Pi is a ‘good object’—in this case a vector—under the rotations gener-
ated by the Li . E additionally closes with these gauge constraints, in a manner that
establishes it as a scalar under the corresponding transformations.

Example 4) For full GR, the algebraic structure formed by the constraints is
(Fig. 9.6.e–h)

{(Mi | ιi ), (Mj | χj )} = (Mi | [ι,χ]i ), (9.31)

10Field Theory constraint algebraic structures are most usefully presented in terms of smearing
functions, as explained in footnote 1; the undefined symbols in this Sec’s presentations of Electro-
magnetism, Yang–Mills Theory and GR are just such smearings.
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{(H | μ), (Mi | ιi )} = (£ιH | μ), (9.32)

{(H | μ), (H | ω)} = (Mih
ij | μ

←→
∂ jω). (9.33)

This closes in the sense that there are no further constraints or other conditions
arising in the right hand side expressions. Therefore at the classical level for full
GR, the Constraint Closure Problem is a solved problem.
In more detail, the first Poisson bracket means that Diff (�) on a given spatial
hypersurface themselves close as an (infinite-d : Appendix H) Lie algebra. The
second means that H is a good object—a scalar density—under Diff (�). Both
of the above are kinematical rather than dynamical results. The third is however
more complicated in both form and meaning [832]. In particular, its right hand
side expression containing hij (h(x)) has the following consequences.

i) The transformation itself depends on the object acted upon, in contrast with
the familiar case of the rotations.

ii) The GR constraints form a more general algebraic entity than a Lie algebra:
a Lie algebroid. More specifically, (9.31)–(9.33) form the Dirac algebroid
[248, 249].11

iii) Also, if one tried to consider Riem(�) without Diff (�) being physically ir-
relevant, (9.33) would in any case enforce this.

iv) Finally, by not forming a Lie algebra, the constraints—and Diff (m,Fol)—
clearly form a structure other than Diff (m). Indeed, the vast difference in size
between such algebras and algebroids corresponds to the variety of possible
foliations.

Example 5) Minisuperspace just has the Abelian constraint algebra

{H,H} = 0. (9.34)

This is much simpler than (9.31)–(9.33) because the spatial covariant derivative Di
now annihilates everything by homogeneity.

9.15 Aspect 4: Assignment of Beables

Given Q, P , one can also contemplate Taking Function Spaces Thereover. For now,
in particular, u consists of some class of functions U(Q,P ) or functionals U[Q,P ]
(indexed by U). This provides a first notion of observables. At the classical level, this

11See Appendix V.6 and [154] if interested in algebroids in general or the Dirac algebroid in par-
ticular. Hitherto this has usually been called ‘Dirac algebra’, though ‘Dirac algebroid’ is both more
mathematically correct and not open to confusion with fermionic theory’s Dirac algebra (6.9).
Moreover, the Dirac algebroid is manifested even in Minkowski spacetime M

n, upon considering
arbitrary spatial hypersurfaces therein [250]; these correspond to fleets of arbitrarily accelerating
observers.
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is a triviality, but at the quantum level self-adjointness and Kinematical Quantization
already impinge at this stage.

For constrained theories, observables are subject to ‘forming zero classical brack-
ets with the constraints’. In this way, further constrained notions of observables or
beables are a logically posterior consideration to having found constraints, intro-
duced a classical brackets algebraic structure, and Constraint Closure has been es-
tablished. Observables are more useful physically than just any functions (or func-
tionals) of Q and P , due to their containing solely physical information. The Jacobi
identity (E.1) applied to two constraints and one observable requires that the input
notion of constraints is a closed algebraic structure: Eq. (J.42). Applied instead to
one constraint and two observables, the Jacobi identity establishes that observables
or beables themselves form a closed algebraic structure: Eq. (J.44). In this sense,
observables form an algebraic structure that is associated with the one formed by
the constraints.

Let us also use an extension from the notion of observables—which eventually
carry nontrivial connotations of ‘are observed’—to beables, which just ‘are’. The
latter, denoted BB, are a somewhat more general notion, so as to cover a number of
further ‘realist’ approaches at the quantum level, as explained in Chap. 50.12

The unrestricted beables U are the mathematically simplest notion; finding these
at the classical level requires no working whatsoever. At the other extreme, Dirac
beables alias Dirac observables [247] are quantities that (for now weakly classical)
brackets-commute (Fig. 9.7) with all of a given theory’s first-class constraints:

{CF, D} ≈ 0. (9.35)

Various interpretations proposed for these provide further colourful names for these,
such as ‘evolving constants of the motion’ [743], or ‘perennials’ [404, 405, 587].

As a third alternative, Kuchař introduced [587] another type of observables,
which were indeed subsequently termed Kuchař observables and to which this book
refers to as Kuchař beables K (indexed by K). These are quantities which form zero
classical brackets with all of a given theory’s first-class linear constraints,

{Flin, K} ≈ 0. (9.36)

Whereas Gauge = Flin in the more commonly encountered cases, Chap. 24’s
counter-examples imply the need for a further notion of g-beables alias gauge-

12Moreover, this generalization does not concern a change of definition, but is rather a more in-
clusive context in which the entities are interpreted. The term ‘beables’ was originally coined by
physicist John Bell [126, 127]. Both his and the Author’s use of this word extend to include re-
alist interpretations of QM. However, our uses differ as to what ‘realist interpretations’ we wish
to include; most of those from Bell’s day have ceased to be tenable positions, with the ones I dis-
cuss specifically in Part III being largely conceptually and technically unrelated to these earlier
uses (Sect. 50.4). To a lesser extent, classical whole-universe modelling also motivates use of the
beables concept. Finally note that these two motivations combine further in the arena of Quantum
Cosmology.
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Fig. 9.7 a) and b) are respectively strong and weak beables conditions for BB corresponding to
a constraint subalgebraic structure CW. c) Beables themselves form an algebraic structure, with
structure constants B . Dirac, Kuchař, gauge and Chronos beables each follow this pattern as par-
ticular subcases

invariant quantities G (indexed by J) obeying

{Gauge, G} ≈ 0. (9.37)

Finally, in cases in which Chronos closes by itself, a notion of Chronos beables C

(indexed by H) becomes meaningful, obeying

{Chronos, C} ≈ 0. (9.38)

As specific examples, D = K = G = U for unconstrained theories. For Minisu-
perspace and Spatially-Absolute Mechanics, the K = G = U are also trivially any
quantities of the theory since these theories have no linear constraints at all, but
the D = C are nontrivial due to the presence of the constraint Chronos. For Electro-
magnetism and Yang–Mills Theory D = K = G �= U , since these just have first-class
linear constraints which are gauge constraints. For RPMs more generally, we shall
see that the K = G are nontrivial, and include pure shapes and scales; these, the U ,
C and D are all mutually distinct notions. For GR, U �= K �= D, the C are undefined
due to H not closing by itself, whereas the K include, formally, the 3-geometries
themselves.

Physicist Carlo Rovelli’s partial observables [752] do not require commutation
with any constraints, so they are a particular interpretation of unconstrained observ-
ables. For a constrained system, these contain unphysical information; however one
is to consider correlations between pairs of them that are physical. One often imag-
ines each as being measured by a localized observer, so this approach usually uses
the term ‘observables’ rather than ‘beables’. Moreover, via these correlations, this
scheme also eventually involves a notion of ‘complete observables’ that is similar
to Dirac’s notion of observables.

Finally, the Problem of Beables—more usually termed ‘Problem of Observables’,
and which is Facet 4) of the Problem of Time—is that it is hard to construct a set of
beables, in particular for Gravitational Theory. More specifically, Dirac observables
or beables are harder to find than Kuchař ones (Chap. 25), and the quantum coun-
terparts of each are even harder to find than classical ones (Chap. 50). The Dirac
case are sufficiently hard to find for full GR that Kuchař [587] likened strategies
relying on having already obtained a full set of these to plans involving having al-
ready caught a Unicorn. As regards this issue indeed being related to Background
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Independence and time, Background Independent theories have total Hamiltonians
of form H = ∫

�
d� mFCF for Lagrange multiplier coordinates mF, so that

dD

dt
= {D,H } =

{
D,

∫

�

d� mFCF

}
=
∫

�

d� mF{D, CF} ≈ 0. (9.39)

This may appear to manifest frozenness—in the form of observables or beables
being unable to change value—though Chap. 32.6 reveals straightforward interpre-
tations along these lines to be fallacious [724].



Chapter 10
Classical-Level Background Independence
and the Problem of Time. ii. Spacetime
and Its Interrelation with Space

GR has more Background Independence aspects than theories of Mechanics [41].
This is because GR possesses a nontrivial notion of spacetime, which geometrizes a
wider range of features than Mechanics’ notion of split space-time does. The latter
is far more of a composition of separate notions of space and time: multiple copies
of a spatial geometry strung together by a time direction, whereas the former is a
co-geometrization of space and time. GR spacetime also possesses its own versions
of Generator Providing Relationalism, the corresponding Generator Closure, and
observables as commutants associated with these generators.

10.1 Aspect 5: Spacetime Relationalism

Let us start afresh, now with primality ascribed to spacetime rather than (as in
Chap. 9) to space, configuration or Dynamics. GR-like spacetime’s own Relational-
ism then takes the following form.

STR-i) There are no background spacetime structures; in particular there are no
indefinite-signature background spacetime metrics. Fixed background spacetime
metrics are also more well-known than fixed background space metrics.

STR-ii) Consider not just a spacetime manifold m but also a gS of transformations
acting upon m that are taken to be physically redundant.

For GR, gS = Diff (m). m can additionally be equipped with matter fields in ad-
dition to the metric. STR-i) can then be extended to include no background internal
structures associated with spacetime; note the difference between these and struc-
ture on spacetime, in direct parallel to Sect. 9.8’s distinction. STR-ii)’s gS can fur-
thermore have a part acting internally on a subset of the fields. The internal part
of STR-ii) is then closer to the standard spacetime presentation of Gauge Theory
(Chap. 6) than the internal part of Configurational Relationalism is. On the other
hand, Configurational Relationalism is more closely tied to Dirac observables or
beables, since these are configuration-based notions.

© Springer International Publishing AG 2017
E. Anderson, The Problem of Time, Fundamental Theories of Physics 190,
DOI 10.1007/978-3-319-58848-3_10
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Fig. 10.1 a) Spacetime diffeomorphisms close as a Lie algebra. b) The (strong case of) spacetime
observables condition. c) Spacetime observables themselves close as an algebraic structure

10.2 Closure of Diff(m)

The Diff (m) indeed straightforwardly form a Lie algebra, in parallel to how
Diff (�) does:

|[(Dμ |Xμ), (Dν |Y ν)]| = (Dγ | [X,Y ]γ ). (10.1)

and Fig. 10.1.a). [ , ] is here the differential geometric commutator of two vectors.
Diff (m) also shares further specific features with Diff (�), such as its right hand
side being of Lie derivative form. So all three kinds of Relationalism considered up
to this point are implemented by Lie derivatives.

Some differences are that whereas the generators of Diff (�) are conventionally
associated with dynamical constraints, those of Diff (m) are not. Diff (�)’s—but not
Diff (m)’s—Lie bracket is moreover conventionally taken to be a Poisson bracket.

10.3 Further Detail of This Book’s Concepts and Terminology

Let us next consider the nomenclature ‘absolute’, ‘relational’ and ‘background-
(in)dependent’. Physicist Domenico Giulini [362], building upon James L. Ander-
son’s precedent [12, 13], defines ‘absolute’ and ‘Background Dependent’ to be ex-
actly the same notion; see Sect. 27.8 for details of how this is characterized. As
given, this applies to what the Author terms Spacetime Nonrelationalism, though
it can be extended to Spatial and Temporal Nonrelationalism as well. On the other
hand, the Author identifies classical Background Independence as the multi-aspect
precursor of the multi-faceted classical Problem of Time. Relationalism—viewed as
the triple of Temporal, Configurational and Spacetime Relationalisms1—is a portion
of the preceding. Because of this, the Author takes on board Giulini’s conceptualiza-
tion, but re-names his ‘Background Dependence’ as ‘Nonrelationalism’ (giving an
‘expected synonym’ absolute = nonrelational). Additionally, the Author continues
to define Background (In)dependence in the more general way explained in Sects. 9
and 10.

Moreover, Giulini’s definition is not straightforward, nor even claimed to be a
completed item, much less one that is adhered to in other parts of the literature,

1See [38] for yet further notions of Relationalism.
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where yet other distinctions between uses of ‘absolute’ and ‘Background Depen-
dent’ can be found. Furthermore, let us caution that Chaps. 9 and 10’s ‘8-aspect’
classical Background Independence2 refers to ‘differentiable structure through to
metric-level Background Independence’, as does much other literature in making
unqualified reference to Background Independence. This limitation is lifted in Epi-
logue II.C.

The preceding Sec’s Diff (m) is to be interpreted actively—point-shuffling
transformations—as opposed to passively (changing coordinates). In setting up GR,
Einstein originally placed stock in General Covariance, which has passive connota-
tions. However, Kretschmann pointed out that any theory could be cast in generally
covariant form. On the other hand, active diffeomorphisms continue to play a foun-
dational role in the physics of GR (below). This can cause confusion because there
is a mathematical sense in which active and passive diffeomorphisms are equiva-
lent (see Appendix D.2). The claim, however, is that there is physical distinction
between conceptualizing in terms of passive and active diffeomorphisms, with the
latter being a more insightful position [483, 752]. Understanding this requires more
detailed examination of the active diffeomorphisms in the GR context.

Let us start by setting 〈M,m〉 = 〈m,g〉 in Appendix D.4. Then, as Isham com-
ments, “Invariance under such an active group of transformations robs the indi-
vidual points in m of any fundamental ontological significance” [483]. To further
understand what this means for GR spacetime in the presence of matter fields, Isham
continues as follows. “For example, if s is a scalar field on m the value s(X) at a
particular point X ∈ m has no invariant meaning”. See also in this regard the ‘hole
argument’ in the Philosophy of Physics literature [275, 808], though we caution that
this argument has many other parts which this paragraph does not refer to.3

N.B. next that the Einstein field equations are invariant under the group of space-
time diffeomorphisms Diff (m). As a first point, this is to be contrasted with SR,
for which the Poincaré invariance group is much smaller. The main issue, however,
is that for m and gμν( �X), g̃μν( �X) two metrics which solve Einstein’s field equa-
tions, the expression that the two metrics are related by a diffeomorphism [locally
φ : Xμ → φμ( �X)] is

g̃μν( �X) = ∂φρ

∂Xμ

∂φσ

∂Xν
gρσ (φ( �X)). (10.2)

Active diffeomorphism invariance of the theory amounts to diffeomorphisms φ be-
ing guaranteed to map solutions to solutions. This property clearly continues to hold

2This is usually referred to as just metric-level Background Independence, though this does not
do justice to how much of its content rests upon notions of diffeomorphism, which themselves are
meaningful down to the level of differentiable structure.
3E.g. a hole argument was used soon after GR’s inception—in Kretschmann’s criticism of
Einstein—so as to overrule attributing physical significance to what are now known as passive
diffeomorphisms. Indeed, discussion of the hole argument started before a sharp active–passive
distinction had been made, then served as one reason to make such a distinction, and only subse-
quently became an argument focusing upon the role of the active diffeomorphisms.
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even if the theory is formulated in a coordinate-independent manner (a notion ex-
plained in Appendix D). Thus this is conceptually unrelated to spacetime coordinate
transformations. So whereas any theory can be recast in a form which is invariant
under passive spacetime diffeomorphisms, active spacetime diffeomorphism invari-
ance is a property of theories themselves. This is a feature possessed by metric-level
Background Independent theories such as GR, but not by dynamical Field Theories
that live upon fixed backgrounds [337].

Now that diffeomorphisms and their interplay with the equations of motion have
been introduced, we proceed closely following [12, 13, 362] via the following defi-
nitions.

Definition 1) An equation of motion on m is (spacetime) diffeomorphism invariant
iff (if and only if) Diff (m) is a permitted invariance group for it.

Definition 2) Any field which is either non-dynamical, or whose solutions are all
locally diffeomorphism equivalent, is an absolute structure.

Definition 3) Finally, a criterion for a theory to be (spacetime) Background Inde-
pendent is iff its equations are Diff (m)-invariant as per Definition 1), and its fields
do not include absolute structures as per Definition 2). [In this book, however, we
consider a more general multi-aspect notion of Background Independence.]

Let us next consider some corresponding statements about Diff (�) for Geometro-
dynamics. Here the role of the Einstein field equations as equations to be solved is
replaced by just Mi . Moreover, solutions are now pairs (h,K) or (h,p). The next
parallel concerns φ ∈ Diff (�) mapping solutions of the form e.g. (h1,K1) to solu-
tions (h2,K2). Again, statements involving this hold even if the theory is formulated
in a coordinate-independent manner, so this is conceptually unrelated to spatial co-
ordinate transformations. So whereas any theory can be recast in a form invariant
under passive spatial diffeomorphisms, active spatial diffeomorphism invariance is
a property of certain theories themselves. This is a feature possessed by metric-level
Background Independent theories such as GR as Geometrodynamics, but not by any
dynamical Field Theories upon fixed backgrounds.

We end by pointing out that the Diff (m) algebra (10.1) and GR known to respect
Diff (m)-invariance, Spacetime Relationalism is a resolved problem at the classical
level. Upon solving the Einstein field equations, the resulting Lorentzian metric on
m provides meaning to each of timelike-, null- and spacelike-separated, and to
causality [483]. This provision of meaning holds notwithstanding of these notions
themselves not being preserved by Diff (m). Involving Diff (�) at the classical level
is even more straightforward. As per Chap. 12, however, diffeomorphism invariance
at the quantum level is not at all straightforward; indeed this is a major unresolved
part of the Problem of Time.

10.4 Spacetime Observables

Diff (m) is closely related to spacetime observables SQ in GR. These are functions
on spacetime which are manifestly Diff (m)-invariant, i.e. obeying
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|[(Dμ | Yμ), (SQ | ZQ)]| = 0 (10.3)

for smearing variables Yμ and ZQ. The last sentence of Sect. 10.2 furthermore im-
plies that there is conventionally no complete spacetime analogue of the previous
Chapter’s notion of beables or observables. These differences stem from time being
ascribed further distinction in dynamical and then canonical formulations, as com-
pared with spacetime formulations. (10.1) is to be additionally contrasted with the
Dirac algebroid (9.31)–(9.33). Clearly there are two very different algebraic struc-
tures that can be associated with GR spacetime. The first is associated with unsplit
spacetime, and the second with split spacetime including keeping track of how it is
split; see Sect. 27.5 for further details about spacetime observables.

10.5 Classical-Level Background Metrics

For now, let us consider the split

gμν := ημν + k γμν (10.4)

(or with some other background metric g0
μν in place of ημν ). Here k is mathemati-

cally a perturbative ε and physically proportional to the fundamental constant com-
bination

√
G/c. Introducing this split brings in both [477] a background topologi-

cal manifold m and a background metric ημν which includes a background causal
structure. This approach is invariant under the infinitesimal spacetime diffeomor-
phisms,

γμν → γμν + 2 ∂(μξν). (10.5)

One problem here is that the notion of spacelike with respect to gμν does not in
general coincide with that with respect to ημν . gμν is here split into ημν the provider
of causality (which however becomes obsolete in this role) and fundamental variable
γμν (which is not however observable).

For contrast, the spatial split

hij = δij + k fij (10.6)

introduces both a background topological manifold � and a background metric δij .
This approach is invariant under infinitesimal spatial diffeomorphisms

fij → fij + 2 ∂(iξj). (10.7)

This case is less severe due to the lack of signature and causal structure.

10.6 Paths and Histories Strategies

Here one considers finite paths instead of instantaneous changes. Histories, more-
over, carry further connotations than paths; for now at the classical level, these
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Fig. 10.2 Web of the various types of strategy and their relations. * indicates the 6 out of the
10 strategies covered by Kuchař and Isham’s reviews [483, 586] that can be taken to start at the
classical level. Cf. Fig. 12.1 for the full 10 of these and the quantum-level developments since

possess their own conjugate momenta and brackets. Histories Theory has a mix-
ture of spacetime properties and canonical properties, and has more quantum- than
classical-level motivation.

10.7 Web of Classical Problem of Time Strategies

Figure 10.2’s branches reflect the long-standing philosophical fork between ‘time
is fundamental’ and ‘time should be eliminated from one’s conceptualization of the
world’. Approaches of the second sort are to reduce questions about ‘being at a
time’ and ‘becoming’ to mere questions of ‘being’.

A finer classification [24, 37, 483, 586] of the strategies is into Time before
Quantum, Time after Quantum, Timelessness, not Time but History, and not time
but change.

10.8 Aspect 6: Foliation Independence

GR spacetime admits multiple foliations. At least at first sight, this property is lost
in the geometrodynamical formulation.

Foliation Dependence is a type of privileged coordinate dependence. This runs
against the basic principles that GR contributes to Physics. Conversely, Foliation
Independence is an aspect of Background Independence, and the Foliation Depen-
dence Problem is the corresponding Problem of Time facet. This issue clearly in-
volves time since each foliation by spacelike hypersurfaces is dual to a GR time-
function. Moreover, Refoliation Invariance is encapsulated by evolving via each of
Fig. 10.3.e)’s red and purple hypersurfaces giving the same physical answer as re-
gards the final hypersurface. So whereas Foliation Independence is a matter of free-
dom in how to strut spatial hypersurfaces together, Refoliation Invariance instead
concerns passing between such struttings.

The space–time split of GR spacetime has been shown to possess Refoliation In-
variance ([573, 832], Chap. 31). By this property, GR spacetime is not just a single
strutting together of spaces like Newtonian space-time is (Fig. 2.1.c). GR spacetime
manages instead to be many such struttings at once in a physically mutually consis-
tent manner (Fig. 10.3.b). Indeed, this is how GR is able to encode consistently the
experiences of fleets of observers moving in whichever way they please.
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Fig. 10.3 The Foliation Dependence Problem is encapsulated by whether evolving from an initial
hypersurface via the red (R) hypersurface produces the same final-hypersurface physical answer as
evolving via the purple (P) hypersurface. A priori, this involves forming the left hand side’s ‘com-
mutator pentagon’ of hypersurfaces. However for GR the two end-product hypersurfaces coincide
(PR = 2 = RP) because of the form of (9.33)

Refoliation Invariance compares triples of hypersurfaces. In both cases, one starts
from the same hypersurface and subsequently applies the same two operations, but
in opposite orders in each case. The question is then whether the outcome of these
two different orders is the same (Fig. 10.3). Moreover, one can see that this is in
direct correspondence with the commutator pentagon of Fig. E.1.a). Since the indi-
vidual operations involved are actions of H, one is led to the commutator of two H’s.
Then indeed, as physicist Claudio Teitelboim pointed out [832], the form of this part
(9.33) of GR’s Dirac constraint algebroid guarantees Refoliation Invariance. This is
achieved by the two end hypersurfaces coinciding up to a diffeomorphism of that
hypersurface, as per the right hand side of (9.33). This constitutes the ‘Refoliation
Invariance Theorem of GR’.

Chapter 31 further develops embeddings, slices and foliations as more advanced
foundations for the ADM split (which assumes spacetime). Chapter 32 proceeds to
consider a first answer to Wheeler’s question (9.1) given by physicist Sergio Hoj-
man alongside Kuchař, and Teitelboim [454]. They obtained the form of H by as-
suming as their first principles the deformation algebroid of the two operations in
Fig. 10.3.c)–d) for a hypersurface; this takes the same form as the Dirac algebroid.
This approach does however still presuppose spacetime, now in the more specific
sense of embeddability into spacetime.

Chapter 32 additionally considers applications of the Foliation Formulation to
observables, and as a building block for various Internal Time, Matter Time and
Histories Approaches. Moreover, one most usually makes a choice to work with
one of split or unsplit spacetime. A few approaches to Background Independence
and Quantum Gravity, however, involve both at once [566, 768]. In this case, all of
Temporal, Spatial and Spacetime Relationalism are manifested together.

10.9 Aspect 7: Spacetime Constructability

Let us next consider assuming less structure than is present in GR’s notion of space-
time. In general, if classical spacetime is not assumed, one needs to recover it in a
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Fig. 10.4 3 types of
Spacetime Construction:
spacetime from space, from
discrete spacetime and from
discrete space. The fourth
construction indicated is of
space from discrete space

suitable limit. This can be a hard venture; in particular, the less structure is assumed,
the harder it is. Some quantum-level motivation for this due to Wheeler [899] is out-
lined in Sect. 12.12. This aspect was originally known as ‘Spacetime Reconstruc-
tion’, though the Author takes this name to be too steeped in assuming spacetime
primality. Thus we use instead the terms ‘Spacetime Constructability’ for the Back-
ground Independence aspect, ‘Spacetime Construction Problem’ for the Problem
of Time facet in cases in which this is blocked, and ‘Spacetime Construction’ for
corresponding strategies. Moreover, already at the classical level, Spacetime Con-
structability can be considered along two logically independent lines.

A) From space, as an ‘embed rather than project’ ‘inverse problem’ to the previ-
ous Section’s, which is harder since now only the structure of space is being
assumed.

B) From making less assumptions about continua.

A) and B) combine, incipiently to give a total of four construction procedures
(Fig. 10.4). We further expand on this number in the sense of ‘less layers of mathe-
matical structure assumed’ in Fig. 10.9.

For now, we concentrate on A). This provides a second answer to Wheeler’s
question (9.1). The first answer—Hojman, Kuchař and Teitelboim’s Deformation
Approach [454]—assumes embeddability into spacetime,. The second answer—the
Relational Approach of Barbour, physicists Brendan Foster and Niall ó Murchadha
and the Author [62, 109]—however, goes further by not assuming spacetime. This
approach is based, rather, on 3-spaces σ in place of hypersurfaces �, and starts
from Temporal and Configurational Relationalism first principles. It proceeds by us-
ing the Dirac Algorithm on a more general Htrial obtained as the Chronos from a more
generalstrial The combination of GR’s particular H alongside local Lorentzian Rel-
ativity and embeddability into GR spacetime then arises as one of very few consis-
tent possibilities. The few alternatives to this arising in this working differ substan-
tially in causal structure and as regards whether they admit Refoliation Invariance.
Indeed, as Chap. 33 details, these few alternatives are foundationally interesting
through having, in turn, local Galilean-type Relativity, local Carrollian Relativity,
and a privileged CMC foliation corresponding to York time. Note that these now
arise from the Dirac Algorithm as the choice of factors among which one needs to
vanish in order to avoid the constraint algebroid picking up an obstruction term. This
is substantially different from the form of Einstein’s dichotomy between universal
local Galilean or Lorentzian Relativity!
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Finally, emergent constructed spacetime’s Relationalism, kinematics and Re-
foliation Invariance are cast in a Temporal Relationalism incorporating form in
Chap. 34. Thereby, all facets of A Local Classical Problem of Time are addressed
within the space-or-configuration primary Relational Approach.

10.10 Model Arenas, Diffeomorphisms and Slightly
Inhomogeneous Cosmology

Whereas Minisuperspace exhibits ‘8 out of 9’ of the aspects of Background Inde-
pendence, we have also explained how homogeneity implies that several of the con-
sequent Problem of Time facets are very quickly resolved. On the other hand, RPMs
exhibit ‘6 out of 9’ of the aspects of Background Independence [37]. This includes
the Configurational Relationalism aspect that Minisuperspace does not possess, but
three other facets are blocked from appearing by the absence of spacetime in this
model.

Moreover, while the RPM and Minisuperspace cases are simple to calculate with,
they miss the subtleties specifically associated with diffeomorphisms [483, 586].
The diffeomorphism-specific facets are the Thin Sandwich version of Configura-
tional Relationalism, Spacetime Relationalism, further specifics about the Problem
of Beables, and the Foliation Dependence and Spacetime Construction Problems.

A first arena4 in which these appear nontrivially is Slightly Inhomogeneous Cos-
mology (SIC). A particular such involves inhomogeneous perturbations about the
spatially-S3 Minisuperspace with single scalar field matter model of Sect. 9.9. At
the level of Semiclassical Quantum Cosmology, this particular case becomes a
Halliwell–Hawking type model [35, 419], named in part after physicist Jonathan
Halliwell; this is the current book’s choice of most complicated recurring model
arena. RPMs and Minisuperspace complementarily support by one or the other hav-
ing all other Background Independence aspects and consequent Problem of Time
facets of this model. Here one considers the first few (usually two) orders of the
perturbation of the metric. Each of these form a simplified q in place of the full
Riem(�). Chapter 30 subsequently shows that SIC already exhibits the Thin Sand-
wich Problem—which happens to be solvable in this case—and also considers this

4For those interested, yet other model arenas of comparable complexity to those in this book in-
clude 2 + 1 Gravity [193] and Ex III.13, the parametrized particle [586], parametrized Field Theo-
ries [584, 586], Strong Gravity—the strong-coupled limit of GR, of relevance near singularities—
[472, 716, 717] and this book’s index, the bosonic string as a model arena of Geometrodynamics
[568, 586, 594]. Model arenas for Loop Quantum Gravity include Electromagnetism and Yang–
Mills Theory [330], the Husain–Kuchař model—which has GI and Mi without an H—[461]

and BF theory—a type of Topological Field Theory— [330, 663] and this book’s index. More
complex models include various types of Midisuperspace [95]: Einstein–Rosen cylindrical gravi-
tational waves [572], spherically-symmetric Midisuperspace models [588], and spatially S

3 or T3

Gowdy cosmologies [131, 132]. The above models are in part named after physicists Viqar Husain,
Nathan Rosen and Robert Gowdy; BF is named after analogues of the electromagnetic B and F
fields.
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model arena from a Histories Theory perspective. See Fig. 10.5 for a facetwise com-
parison of SIC, Minisuperspace and RPM.

10.11 Summary so Far: Seven Gates

Figure 10.6 depicts the current Chapter’s Problem of Time facets as gates, expanding
on a quantum-level presentation of Kuchař’s[587]. For most of these gates, this and
the previous Chapter also supplied a simple classical-level means of passage (at
least formally, and piecemeal).

10.12 Frontiers

Facet Interference However, the Devil is in the detail. There is a strong ten-
dency for the Background Independence aspects—and consequent Problem of Time
facets—to interfere with each other rather than standing as independent obstacles
[483, 586]. The main point of the parable of the gates is that, in dealing with time in
QG, going through a further gate has a major propensity to leave one outside of gates
that one had previously passed through. This is due to the Problem of Time facets
bearing rich conceptual and technical relations amongst themselves due to their aris-
ing from a joint cause. I.e. the need to bridge the gap between Background Depen-
dence and Background Independence groups of Paradigms of Physics. In [24, 37],
the Author portrayed this jointness in the form of the facets being an Ice Dragon,
whose different body parts which coordinate in defense when one confronts it; the
‘ice’ itself alludes to the Frozen Formalism Facet. By this jointness of cause, it is
likely to be advantageous to indeed treat the facets as parts of a coherent package
rather than disassembled into mere piecemeal problems. Moreover, addressing this
matter requires many reconceptualizations, to which a Kuchař-type enchanted castle
gates parable is more robust, so the current book uses the latter. These facet inter-
ference difficulties largely lie outside the scope of Part I’s introductory outline; they
are however the raison d’être for Parts II and III.

Further Aspects and Consequent Facets Some of the above aspects and corre-
sponding facets meaningfully subdivide. For instance, the notions of closure and
observables can be unpackaged as per the first four rows of Fig. 10.7. This untan-
gles some of the various roles played by observables or beables, as well as pointing
to further notions of such. For instance, there are ‘Chronos beables’: quantities C

(indexed by H) that commute with Chronos but not necessarily with Shuffle, which
exist for theories in which Chronos closes by itself as an algebraic structure.

The aspects and corresponding facets considered so far are not, however, a com-
plete set. For instance, Chap. 9.3’s ‘spacetime versus space’ dilemma as regards
ontological primality is not exhaustive, since it tacitly favours 3 + 1 formulations
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Fig. 10.6 A Local Resolution of the Problem of Time is to pass consistently through facets 1)
to 7), depicted, following Kuchař, as castle gates. We elaborate on this not only as a parable but
as a picture as well, by grouping and decorating the gates so as to indicate a number of signifi-
cant subsets of the gates. The significant subsets of gates indicated zonally are, firstly, the green
‘Barbourville’, consisting of Temporal and Configurational Relationalism. Secondly, the grey cob-
bled ‘Diracville’: the domain of the Dirac Algorithm, in which the gates are additionally depicted
with keyholes. Spacetime versus space is indicated with tall and short gates respectively. Rela-
tional facets are depicted as pointy-topped gates, each admitting a Lie implementation as marked
by a flag. All gates have an algebraic element to either their definition [Diff (�) and Diff (m) as
indicated], or to their classical resolution (listed below). Four of these algebraic structures involve
Poisson brackets; these are indicated by shading in red.
Some means of passage through classical-level gates are as follows. Emergent Machian time gets
one past Temporal Relationalism. Best Matching lets one through Configurational Relationalism;
Sect. 14.4 provides a more widely applicable means of passage in this case. Nontrivial termination
of the Dirac Algorithm unlocks the Constraint Closure gate, and likewise in the subcase in which
termination additionally provides Spacetime Construction for the taller double-gate version. This
involves the Dirac algebroid, Diff (m,Fol), in the first case, and this being singled out from a larger
family of algebroids in the second; these are the keys that fit the corresponding keyholes. Teitel-
boim’s Refoliation Invariance depiction of the Dirac algebroid’s bracket {H,H} secures passage
through the Foliation Dependence Problem gate. Moreover, the preceding trio are jointly resolved
by the Dirac algebroid in the case of classical GR. The Problem of Beables is to be resolved by
finding an algebraic structure of beables associated with the Dirac algebroid

over 1 + 3 ones. A trilemma of spacetime, space–time split spacetime (3 + 1) or
time–space split spacetime (1 + 3) primalities is more exhaustive. This extends the
8-fold Fig. 9.1 into the 14-fold Fig. 10.8. Then much as the space–time split primary
formulation contributes threefold in the first three rows of Fig. 10.7, the time–space
split primary formulation contributes threefold in the last three rows. An additional
multiplicity arises from threadings and histories not being expected to involve the
same brackets structure (Fig. 10.8). [Epilogue II.A continues this discussion by con-
sidering null splits as well.]

Aspect 8) Global Validity The underlying Background Independence aspect is
that we would prefer that all our notions of Background Independence are globally
well-defined.
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Fig. 10.7 A further subdivision of the classification of Background Independence aspects leading
to Problem of Time facets. One can also imagine a 1 + 3 split counterpart of the first three rows,
which further extend this to include the further inputs envisaged in Fig. 10.8. Moreover, much as
the 1 + 3 threading PDEs are distinct from the 3 + 1 ADM ones: each formulation has its own
realization of conjugate momenta and brackets

Fig. 10.8 Threading formulations augment the number of aspects and facets to 14

Wherever this fails, Facet 8) Global Problems of Time arises. This used to be
referred to in the singular; e.g. Kuchař [586] considered the part of this directly
pertaining to timefunctions; this is already visible in point 1) of Sect. 7.7. However,
global issues are legion. Timefunctions may be only locally defined in space, or only
locally valid in time itself; one can add ‘in spacetime’, ‘in q’. . . to this list (Epilogue
II.B). Moreover, most of the other facets and strategies can be beset by global issues.
Another classification of Global Problems of Time is into effects involving mesh-
ing conditions of charts on manifolds versus the more involved patching of PDE
solutions. The first is mathematically basic (Appendix D.2) whereas the second is
not (Appendix O). Epilogue II.B considers further classifications and details of a
selection of classical Global Problems. A number of open problems requiring more
advanced mathematics arise from the above considerations and their even more ex-
tensive quantum-level counterparts.

Global validity approximately doubles the total number of aspects:

(primary entities) × (provider + algebras)× (local + global)

= {3 + 1 + 3} × {1 + 1 + 1} × 2 = 42. (10.8)
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Not all of these aspects are always present, moreover, due to some amounting to
choices of perspective or only being realized for some cases of algebraic structure
formed by the generators. This count does not yet include Global Problems with
the strategies themselves, nor does it cover the Histories Theory counterparts of the
aspects. Nor does it preclude there being dualities between some of the features of
3 + 1 and 1 + 3 splits.

Aspect 9) No Unexplained Multiplicities Background Independence is to have
no physically meaningless ambiguities (cf. the Identity of Indiscernibles). If this
fails, we have Facet 9): the Multiple Choice Problem. This only really becomes
relevant upon making quantum-level considerations (Chap. 12). In particular, it does
not refer to the multiplicity of timefunctions in a classical GR type setting, since
these are well-understood as coordinates on a manifold. It refers, rather, to the effect
of multiple timefunctions at the quantum level [586],

A Local Resolution of the Problem of Time This is the conceptually well-
defined practical restriction to exclude Multiple Choice and Global Problems. The
‘local’ avoids the Global Problems of Time and the ‘a’ avoids the Multiple Choice
Problems. In the spirit of the following remark of Isham [483], this is the arena we
consider in most of Parts II and III. “The global issues are interesting, but they are
not central to the problem of time and therefore in what follows I shall assume the
topology of the spacetime manifold m to be such that global time coordinates can
exist.” On the other hand, the current book also supplies a number of Global and
Multiple Choice Research Projects in Epilogues II.B, III.A and III.B, alongside an
outline of some of the more advanced types of mathematics that these require.

Background Independence at Further Levels of Mathematical Structure This
refers to the levels of mathematical structure commonly assumed in Classical
Physics; see Fig. 10.9. I.e. how far should one go in allowing these to be dynamical
[43], and then subject to quantum fluctuations as Isham pioneered [480–482, 492–
494, 497, 498]. First note that the Background Independence attempted—from Ein-
stein to, 1) Ashtekar variables programs such as Loop Quantum Gravity [752, 845],
and 2) to this book’s main Relational Approach—is at the metric level (and, in fact,
at the differentiable manifold level [483, 586]). Such metric and differentiable mani-
fold level Background Independence is a very major distinguishing feature between
GR on the one hand and Newtonian Mechanics, SR, QM and QFT on the other.
This is as opposed to further Background Independence at the topological manifold
level of mathematical level and below (or different levels, i.e. not based on layers
of structure upon sets, as outlined in Sect. 12.17, Epilogue III.C and Appendix W).
Moreover, humankind largely remains physically and mathematically unprepared
for handling the various possible deeper levels (Epilogues II.C and III.C outline the
physical status quo). The topological manifold level version of such considerations
dates back to Wheeler [898]. This reflects the progression in notions of space from
flat space to curved differentiable manifolds to topological manifolds. Topological
spaces take this one step further.
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Fig. 10.9 Conventional levels of mathematical structure used in Physics to model space. As re-
gards the upper levels, (metric information) = (conformal structure) + (localized scale). In the
indefinite spacetime metric case, the conformal structure can furthermore be interpreted as causal
structure

In Epilogues II.C and III.C, much of this book’s 9-fold (or 21-fold) account of
Background Independence and the Problem of Time is argued to have a formulation
which persists upon considering this descent in levels of mathematical structure.
On the other hand, e.g. spacetime–space distinction varies from level to level, as
does whether and how the analogues of Refoliation Invariance and Spacetime Con-
structability can be established. In particular, we use ‘space’, ‘time’, ‘spacetime’,
‘slicing’, ‘surround’, ‘construct’, ‘thread’ and ‘constitute’ as level-independent con-
cepts, though some of the properties of the usual uses of these terms are level-
dependent. In this manner, there is some version of the enchanted castle’s gates at
each level of mathematical structure.

Note also the following distinction in considering deeper levels of structure.

i) ‘Single-floor’ considerations: that the metric alone is dynamical (standard GR)
or that the topological manifold alone is dynamical.

ii) ‘Tower’ considerations, in which a range of adjacent levels are dynamical, e.g.
taking metrics and topological manifolds to be dynamical.

Overall, the single-floor case may be interpreted as removing the upper layers of
structure so as to focus on the dynamical nature of the new topmost layer.

We finally point to the idea that building spacetime from ‘discrete spacetime’ or
‘discrete space’ can be generalized to far more options in terms of levels of mathe-
matical structure. Namely, there are many intermediate mathematical formulations
which assume a subset of the features of the continuum mathematics conventionally
used in Theoretical Physics.



Chapter 11
Quantum Gravity Programs

11.1 Basic Considerations

We have now presented Background Independence and the Problem of Time for
classical theories. Our goal, however, is to consider what Background Independence
aspects and Problem of Time facets are exhibited by Quantum Gravity programs.
The current Chapter prepares for this by providing an introduction to Quantum
Gravity; Chap. 12 then meets our goal to conclude Part I.

Let us begin with some general foundational considerations about Quantum
Gravity. Firstly, note that some of Nature’s interactions are quantized, and consider
arguments by which Quantization should apply to all interactions [235, 552], thus in
particular applying to Gravitation as well. If Quantization did not apply to some in-
teraction, say Gravitation, then this could be harnessed to violate Quantum Theory’s
Uncertainty Principle [291]. If one were to furthermore retain the classical Einstein
field equations but now sourced by quantum matter,

Gμν = 8π G

c4
〈T̂μν〉, (11.1)

then there would be problems due to superpositions gravitating differently from pure
states. In particular, upon performing a measurement, the passage from the former
to the latter has the inconvenient feature of being instantaneous in an acausal man-
ner [552, 874]. Moreover, such arguments do not preclude GR being too much of
an effective theory to meaningfully quantize [195], much as one does not quantize
e.g. the Navier–Stokes equation of Fluid Mechanics [600]. Developing this perspec-
tive faces the major difficulty that the Quantum-Gravitational analogue of the more
fundamental smaller-scale theory for the constituent water molecules—itself mean-
ingfully quantized—remain the subject of speculation. None the less, the rest of this
book concentrates upon approaches which do involve Quantization.

Secondly, let us consider the qualitative similarity between gravitational and elec-
tromagnetic radiation, which Einstein was already aware of in 1916 [283]. Losses
from gravitational radiation would therefore also affect atoms. Gravity is weak,
however, as quantified by (2.14) redressed as an electromagnetic to gravitational
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ratio. In fact, classical collapse of the atom due to gravitational radiation would take
of the order of 1030 years (Ex VI.5). This timescale did not affect Einstein’s own ar-
gument because in that era the Universe was assumed to be infinitely old. However,
Cosmology has since pointed to a finite age of the Universe (7.18) that is far below
this figure, by which arguments of classical instability to gravitational radiation are
rendered less pressing.

Our third point starts from Heisenberg and Pauli’s proposal of QED in 1929 [444]
containing the additional claim that Quantum Gravity would readily follow along
similar lines. While this claim is incorrect, much can be learned from the major hole
in their argument: that since gravitational charge is (gravitational) mass itself, the
Equivalence Principle gives that is no gravitational analogue of an adjustable charge-
to-mass ratio (cf. first paragraph of Chap. 7). This was first spotted by physicist
Matvei Bronstein in 1936 [173], but he was soon executed by Stalin’s regime and
his work long remained forgotten. However, the same conclusion was arrived at
independently in later works, such as physicist Asher Peres’ study with Rosen [709]
of uncertainties in the measurement of averaged Christoffel symbols stemming from
the impossibility of concentrating a mass in a region smaller than its Schwarzschild
radius.

Fourthly, Bronstein was probably also the first person to envisage interpreting the
Planck units as characteristic scales for Quantum Gravity. In this regard, we already
presented the most usual Planckian quantities in the preface as Eqs. (4) to (6); what
we now provide is some further context for these.

In Black Hole Physics, the Planck mass corresponds to the (Compton wave-
length) � (Schwarzschild radius) balance of scales. On the other hand, the cos-
mological balance (Compton wavelength) � (Hubble radius) does not involve G.
Indeed, this can be rephrased as a quantum and SR energy balance � lH � Mc2,
for M the enclosed mass and lH the Hubble radius of the currently observable uni-
verse. The Planck length enters Quantum Cosmology, rather, in the context of the
extremely Early Universe: the era in which the ‘scale of the whole Universe’ was
between one and a few Planck lengths.

Moreover, some quantities’ fundamental units manage to depend on only a subset
of the three most fundamental constants. E.g. ‘Planck’ force is a purely-classical GR
‘maximum tension’ FPl = c4/G = 1.210296(46) × 1044 (kg m s−2 = : Newtons),
and ‘Planck’ power is likewise a purely-classical GR ‘maximum power’ PPl =
c5/G = 3.62851(44) × 1052 (kg m2 s−3 =: Watts). Indeed, ‘Planck’ velocity is just
the pure SR c, ‘Planck’ angular momentum the purely quantum �, and ‘Planck’
moment the quantum SR �/c.

Some further Planck quantities of note are as follows. Planck density ρPl comes
out as, usingmPl and VPl ∼ l3Pl in ρ := m/V , c5/�G2 = 5.15500(13)× 1096 kg m−3.
Compare with 103 kg m−3 for water or 1017 kg m−3 for nuclei, with matter layers
in neutron stars expected to be between slightly more dense and a factor of 106 less
dense than nuclei. Additionally, the Planck temperature TPl is obtained by applying
E = kBT—for kB the Boltzmann constant 1.3806488(13) × 1032 kg m2 s−2 K—
resulting in

√
� c5/G/kB = 1.416808(33) × 1032 K. This is well in excess of as-

trophysical temperatures; e.g. at the centre of the Sun, T � 107 K. Finally, ‘Planck’
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entropy is just kB, which is a complete void in all of the fundamental theory depen-
dent constants.

Moreover, if the number of theories with fundamental constants exceeded the
number of independent fundamental units, then Quantum Gravity would more
closely resemble Fluid Mechanics with its numerous dimensionless groups [600].
I.e. one would have a situation in which dimensional analysis does not suffice as a
telling diagnostic. This could in principle not just obliterate the significance of the
Planck scale but also that of the GUT ‘energy desert’ and of the meaningfulness
of the confluence of the matter-sector coupling constants. Indeed, one might here
reflect on how new Science students are taught about the potential dangers of ex-
trapolations. For instance, Lord Kelvin’s estimate of the lifetime of the Sun was out
by around two orders of magnitude, due to nuclear processes not yet being known
in his day.

Let us end by presenting various classifications of approaches to Quantum Grav-
ity; some of the major approaches in the development of Quantum Gravity are then
the subject of each of the current Chapter’s remaining sections.

1) Canonical versus Covariant Approaches. The Covariant versus Canonical Quan-
tization distinction can be envisaged as choosing two different paths round the
‘Gordian cube’ (Fig. 1.b–c). GR-centred approaches begin with classical Canon-
ical formulations—such as Geometrodynamics or Ashtekar variables—and then
set about Canonically Quantizing these (in Sects. 11.4 and 11.9 respectively). Al-
ternatively, QFT-centred approaches (Sects. 11.2 and 11.7) consider (sufficiently
weak) Gravitation as just another field on M

4. QFTiCS (‘in curved spacetime’:
Sect. 11.3) is a subsequent step, albeit limited by each curved spacetime assumed
continuing to play the role of a fixed background. Path Integral Approaches
(Sect. 11.6) offer additional options with QFT input. The further alternative of
attempting to general-relativize Quantum Theory more thoroughly is much rarer
in the literature, though mathematical physicists Klaus Fredehagen and Rudolf
Haag have worked in this direction [318].

2) Whether or not to alter one’s Gravitational Theory. Possible changes here in-
clude incorporating each of Supersymmetry and extended objects (Sects. 11.7–
11.8 and 11.10–11.11).

3) Whether to incorporate Background Independence, and to which extent (the main
subject of Chap. 12). I.e. is what one is quantizing purely a Relativistic Theory
of Gravitation, or is it a Theory of Background Independence as well (Quan-
tum Gestalt programs). From the latter perspective, models of just Quantum
Background Independence then make for an interesting complement to fixed-
background Quantum Gravity programs.

4) Spacetime versus space primality primality. Some classical roots for this onto-
logical dichotomy have already been presented in Chap. 9, whereas Chap. 12
provides further quantum-level commentary.

5) Top-down approaches take a classical theory and quantize it. On the other hand,
bottom-up approaches start from quantum-level first principles and then attempt
to recover a suitably realistic classical limit (as outlined in Sect. 12.17). Almost
all programs in existence either are, or were initially formulated as, top-down.
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6) Finally, theories can be based on continuum or discrete mathematics. This fol-
lowing on from Chap. 1’s sketch, and can furthermore apply in further detail
as regards the level of mathematical structure that is quantized: [471, 477, 482,
492–494, 498] and Sect. 12.17), e.g. just metric-level versus differentiable man-
ifold, topological manifold. . . level as well.

11.2 Covariant Approach to Quantum Gravity

This approach came historically first, as indicated in Fig. 11.5.b)’s ‘family tree’ for
the various Quantum Gravity programs outlined in the rest of this Chapter.1 It con-
sists of a QFT of perturbatively small fluctuations of the metric over flat Minkowski
spacetime M

4, as studied in the 1930s by Rosenfeld [741, 742], and by Fierz and
Pauli [300]. It follows on from the classical scheme outlined in Sect. 10.5.

This approach takes a particulate stance on Gravitation: a graviton propagating
on a fixed background, which is usually M

4. The privileged structures possessed by
the Minkowskian Paradigm—as expounded in Chap. 4—then come into play. As
for the electromagnetic force (Sect. 6.3), Gravity’s long range leads to the corre-
sponding mediator particle standardly being conceived of as massless. It addition-
ally follows from Sect. 6.3 that gravitons possess even spin. Gravitons cannot more-
over just be spin 0. The argument for this stems from Gravitation being sourced by
the energy–momentum–stress tensor. Moreover, spin 0 couples to Tμμ alone [299],
Tμμ = 0 for Electromagnetism, and yet Gravitation is also observed to bend light.
So one proceeds to consider spin 2, out of this being the next simplest case, and
also due to further quite restrictive subtleties that eliminate the viability of massless
particles of yet higher spin. E.g. Weinberg’s papers [881, 882] detail further reasons
to restrict attention to spin ≤ 2.2 The field corresponding to spin 2 is the perturbed
metric, and thus a symmetric (0, 2) tensor.

Some insights are gained from considering gravitons as a quantum-level parallel
of classical linearized gravitational waves (Chap. 7.5 and Ex V.13 versus Ex VI.6).
Indeed, the degrees of freedom count coincides with the 2 degrees of freedom per
space point of the linearized theory.

The graviton conceptualization, alongside a few aspects of Poincaré Covariance,
give back GR as a low-energy limit of a massless spin-2 QFT. Moreover, this can
be arrived at by gauging the Poincaré group, resulting in the (infinitesimal form of)
Diff (m)-invariance.

Note furthermore that gravity gravitates, corresponding to GR-type field equa-
tions being nonlinear. Gravitons consequently form vertices with each other, for

1Since the approximate dates and ancestry of the various Quantum Gravity programs in this Chap-
ter are rather nontrivial, this ‘family tree’ figure may quite often be a useful resource as regards
outlining how these programs ‘fit together’ both conceptually and historically.
2Spin-0 and spin-2 mediators together is also a tenable possibility, as in e.g. Scalar–Tensor Theories
of Gravitation.
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Fig. 11.1 Notation for the graviton propagator, followed by some Feynman diagram vertices in-
volving gravitons

which Yang–Mills Theory provides some insights [238, 239]. The graviton propa-
gator in harmonic gauge and Fourier-transformed form is

1

2

ημρηνσ + ημσηνρ − ημνηρσ

k2 + i ε
; (11.2)

see Fig. 11.1 and Ex VI.18 for some consideration of vertices involving gravitons.
One can proceed to consider Feynman diagrams involving gravitons, which began to
be calculated by Feynman and DeWitt in the 1960s (see e.g. [238, 239, 297] and the
review [137]), and on to effects on Particle Physics processes such as via graviton
scattering. The S-matrix for graviton–graviton scattering turns out to be finite to 1
loop but infinite to 2 loops. Whereas Yang–Mills Theory is a useful intermediate
more specifically due to the development of Fadde’ev–Popov (Chap. 52) and BRST
(Sect. 43.1) techniques, such developments unfortunately to date fall short of being
able to fully handle the case of GR.

It was furthermore established that [163] any Quantum Theory of gravitons cou-
pled to a conserved energy–momentum–stress tensor Tμν must give the same per-
turbative low-energy scattering results as GR.

From a foundational point of view, Weinberg [880–882] additionally determined,
firstly, that introducing interactions enforces coupling to a conserved Tμν . Secondly,
that this is a universal coupling, i.e. rederivation of the Equivalence Principle under
the assumption of Lorentz invariance. On the other hand, the extent to which the
Equivalence Principle holds at the quantum level has also remained an open question
[365]. For instance, to what extent can free fall even be defined in Quantum Physics?

The graviton concept, moreover, has limited scope. With labelling particles by
(inertial) mass and spin being tied to Poin(4), which in turn encodes the privileged
M

4 background, conceiving of Gravitation in terms of such gravitons breaks down
at some point. For sure, the graviton concept is dubious [12, 471, 474] in strong
field and Background Independent situations, which include in particular many of
the more interesting parts of Black Hole Physics and Early-Universe Cosmology.
Problems can also arise if some matters are taken too literally, such as asymptotic
flatness or scattering ‘in’ and ‘out’ states being at infinity. None the less, gravitons
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are expected to be a good model in many relevant instances: large but not infinite re-
gions of slowly varying low curvature in which Newton’s Law of Gravitation holds
to good approximation. This corresponds to a flat spacetime ‘tangent space approx-
imation’ to curved spacetime holding well in many familiar regimes, by which the
Minkowskian Paradigm of Chap. 1 is well validated.

Moreover, even in its own terms, perturbative Covariant Quantization of GR has
the following major technical shortcoming. If a Field Theory’s coupling constant
has dimension {mass}D in � = 1 = c units, then an order-N Feynman diagram’s in-
tegral goes like

∫
pA−NDdp, forA a physical process dependent butN -independent

constant. For interactions with D < 0, these Feynman diagram integrals all blow up
beyond some N = N0. Thus such interactions have problems with (at least naïve)
renormalizability. In particular, this applies to GR’s G, for which basic dimensional
analysis gives D = −2 (see e.g. [193, 884]). Subsequently in the early 1970s, theo-
retical physicists Gerard ’t Hooft and Martinus Veltman [827] carefully established
that GR is non-renormalizable (see also [373] for consideration of 2-loop correc-
tions).

Let us end by pointing to some further aspects of the conceptual interpretation of
Covariant Quantization which remain unclear.

1) The background-to-perturbation split is ambiguous. Why should causality be de-
termined by η rather than by the actual physical metric g?

2) Since the physical null cone undergoes quantum fluctuations, why should mi-
crocausality with respect to η be involved in detail [477]? E.g. [236] the pole in
the spacetime Green’s function shifts upon summing Feynman diagrams which
involve gravitons. In this way, the null cone actually experienced depends on the
quantum state. . . .

3) A consequence of the problem with background metrics laid out in Sect. 10.5
is that equal-time commutation relations with respect to g do not in general im-
ply equal-time commutation relations with respect to η. Moreover, this clashes
both with GR’s notion of coordinate time and with Diff (m)-invariance, and also
affects the interpretation below of the Canonical Approach.

4) QFT’s involvement of time ordering of field operators clashes with the multi-
plicity of GR’s coordinate time conception.

5) Cosmological Constant Problem. Effective Field Theory would have ‘Λ’ (i.e.
the dimensionless quantityG�Λ/c3) be around 120 orders of magnitude larger.
This casts doubts about whether effective Field Theory applies to the cosmolog-
ical arena.

6) On the other hand, QFT’s effective theory concept can be argued to devalue G’s
fundamentality. Quantum Theory is highly universal, whereas 1/G is just the
coefficient of the leading term in an effective action.

7) Finally, perhaps conventional space and time only apply at scales much greater
than the Planck length, from which they are separated by a phase transi-
tion [485]. In such cases, the physics of the other phase—and of the phase
transition—would also need to be considered.
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11.3 Quantum Field Theory in Curved Spacetime (QFTiCS)

Next consider extending study from QFT in M
4 to QFTiCS, as started to occur

in the 1970s. It is pertinent here that all uses of Poin(4) in the Wightman axioms
1)–5) entail assumptions of dependence upon a substantially symmetric background.
Wightman-6) also relies on the background Minkowski metric η to assess what is
spacelike (without relying upon any kind of symmetry). These features pose serious
difficulties with extending the Wightman axioms to QFTiCS.

1) The generic spacetime possesses no symmetries, thus causing problems with ex-
tending the Wightman axioms 1) to 5) [473, 875]. In M

4, the modes that simplify
QFT are eigenfunctions of the ∂/∂t operator [325]. In particular, the construc-
tion of the Fock space (Chap. 6) is based upon the split into positive and negative
modes. Standard QFT’s ‘natural modes’ are tied to M

4’s natural rectangular co-
ordinates t , x, y, z, which indeed rest in turn upon Poin(4). Unfortunately, even
in other spacetimes that have a considerable number of Killing vectors, not all
the beneficial properties of these natural modes are recovered [143]. Moreover,
generic GR spacetimes have no Killing vectors at all. A few instances in which
conformal Killing vectors meaningfully deputize for Killing vectors are known,
e.g. in relation to well-known maps between FLRW spacetimes and (pieces of)
M

4, as which result in similar-shaped Penrose diagrams as in Fig. 7.1.b)–d).3

2) Moreover, such spacetimes admit unitarily inequivalent Hilbert space construc-
tions of Quantum Theory without a known means of picking out a preferred
such [875]. Such an element of choice also enters the notion of ‘vacuum state’,
yet QFTiCS in general has no unique notion of vacuum. One can furthermore
expand in modes in multiple ways, which are interrelated by Bogoliubov trans-
formations (see Ex VI.2 for an outline or [143, 874] for more details). E.g. in
a setting with ‘in’ and ‘out’ vacua in asymptotic regimes either side of a time-
dependent interaction region, the ‘in’ and ‘out’ states are related by such a trans-
formation.

3) The spectrum condition (cf. Wightman-2) becomes compromised as follows
[875]. Generic spacetimes are non-stationary and thus do not possess a time-
like Killing vector, without which the total energy E is not conserved. On the
other hand, the QFT definition of the energy–momentum–stress tensor Tμν re-
quires spacetime smearing. In M

4, since E is conserved, one can apply such
a smearing of time without changing the value of E, so there is a unique and
well-defined notion of E. But this possibility disappears in the generic QFTiCS
case, as does any reason to expect the time-smeared E to remain positive [143].
Following Wald [875], the difficulties arising from the lack of an appropriate
notion of total energy for QFTiCS can be overcome by replacing the spectrum
condition by a ‘microlocal spectrum condition’; see also [473]. This acts so as
to restrict the singularity structure of the expectation values of the local QFT

3The positive norm notion itself, however, does not require Killing vectors [695].
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correlators4 (such as 〈φ(x1) . . . φ(xn) 〉) in the ‘coincidence limit’ (x1 → x2 in
the given example).

4) For free fields in M
4, the notions of ‘vacuum’ and of ‘particles’ are intimately

tied to the notion of positive frequency solutions. However, this rests upon the ex-
istence of a timelike Killing vector field. For QFTiCS, a notion of ‘vacuum state’
can be defined instead along the following lines. Call a state quasi-free [875] if
all of its n-point correlators 〈φ(x1) . . . φ(xn) 〉—here given in the scalar field
case—can be expressed in terms of the 2-point correlator by the same formula
that holds for the ordinary vacuum state in M

4. Call a state Hadamard (after the
19th and 20th century mathematician Jacques Hadamard) if the singularity struc-
ture of its 2-point correlator 〈φ(x1)φ(x2) 〉 in the coincidence limit is the natural
curved spacetime generalization of the singularity structure of 〈0|φ(x1)φ(x2)|0〉
in M

4. A quasi-free Hadamard state provides a ‘vacuum state’ notion, which
leads to a corresponding notion of ‘particles’ in QFTiCS. Moreover, such a no-
tion of vacuum state is highly non-unique. Indeed, for spacetimes possessing a
noncompact Cauchy surface, different choices of quasi-free Hadamard states in
general give rise to unitarily inequivalent Hilbert spaces [875]. I.e. in this case
it is not even clear which Hilbert space of states to use. If a spacetime does not
possess symmetries or other special properties, no preferred choice of quasi-free
Hadamard state is in evidence. Finally note that, in Wald’s view [875], seeking
for a ‘preferred vacuum state’ in QFTiCS shares many elements with seeking for
a ‘preferred coordinate system’ in classical GR, by which the former would also
be a misguided search as well.

5) Wightman-6) alone readily generalizes to generic curved spacetimes; moreover
even this becomes problematic beyond the QFTiCS regime, i.e. upon the metric
becoming dynamical.

6) The labelling of particle types in M
4 by Poin(4) representations is also in general

a lost commodity once one passes to QFTiCS.
7) Finally, a number of aspects of requiring of Poincaré invariance in standard QFT

can be replaced by requiring that the quantum fields be locally and covariantly
built from GR’s notion of metric. One can try to make do with Diff (m), how-
ever this case has no frames in which the physics simplifies, and Representation
Theory becomes much harder (see Appendix V).

In a QFTiCS setting with ‘in’ and ‘out’ regions to either side of a time-dependent
interaction region, pair production near the horizon can lead to one particle falling in
and the other escaping. From afar, this takes on the appearance of radiation: Hawk-
ing radiation. This justifies treatment of black holes in thermodynamical terms:
black holes interact with their environments after all, so their having a nonzero
temperature makes sense. Black holes are, in fact, quantum-mechanically grey. See
Fig. 11.2.a) for the associated Penrose diagram, and Ex VI.3 for further details.

The Hawking temperature is

TH = �κ/2π kBc (11.3)

4See Appendices Q.9 and U.6 for a conceptual outline of these.
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Fig. 11.2 a) The Early-Universe arena for Semiclassical Quantum Cosmology involves perusing
a less controversial part of the Universe than the immediate vicinity of the singularity predicted by
GR. Note also the expectation that there is a common Semiclassical Quantum Cosmology treatment
not just for GR but for a wide range of different Gravitational Theories as well. b) Stellar collapse
followed by black hole evaporation due to Hawking radiation. This is a modification of the Penrose
diagram of Schwarzschild spacetime (Fig. 7.1.e). The extrapolated end-phase of the evaporation
is, moreover, explosive; the end-products of this remain disputed. [This is marked by ‘?’ on the
diagram, and could furthermore substantially modify the diagram.] The mass of an early-universe
object that would be in its end-phase of Hawking radiation today is 1012 kg (and no accepted phys-
ical process is known to produce such). The associated Information Paradox also remains disputed.
This is between black hole radiation’s supposedly perfect black body thermal spectrum carrying
no information of what the black hole was formed from, versus quantum evolution being unitary.
See e.g. [647] for further discussion. With there being no accepted cosmological or astrophysical
processes for producing such objects, we do not particularly expect to observe Hawking radiation.
Moreover, the Planck-sized universe lies well outside the scope of Semiclassical Quantum Cos-
mology. Then again, the end-phase of Hawking radiation also lies well outside the scope of a
semiclassical analysis. Compare also the suggestion that the structure of any piece of spacetime
may be ‘foamy’ if examined at a scale approaching the Planck scale. On the one hand, this is many
orders of magnitude below where the averaging implied in many e.g. cosmological GR models
applies. On the other hand, Planck-sized universes and end-stages of Hawking radiation are phys-
ically very special situations associated with a priori justified occurrences of very high densities
and curvatures. Because of this, Quantum Gravitational effects there have further credibility than
suggestions that any region of spacetime is foamy if only we could look closely enough

for κ the black hole’s surface gravity. Computing κ for the Schwarzschild solution
(Ex V.8) renders this explicitly in terms of Planck units,

TH = � c3

8π GMkB
= mPl

M

TPl

8π
. (11.4)
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For a solar-mass black hole, this is just 10−8K , which is well below the cosmic
microwave background temperature (� 3K). On the other hand, it becomes of the
order of the Planck temperature once a black hole has radiated away enough mass
to itself approach the Planckian regime.

Furthermore, for accelerating observers there is an analogous Unruh temperature
[861]

TU = �a/2π kBc, (11.5)

which is predicted to be experienced by observers undergoing acceleration a in M
4.

Finally, the Salecker–Wigner clock inequalities (5.18) extend to the GR context
[113]. This can for instance be envisaged by combining the Schwarzschild radius
with the inequalities. This gives an alternative derivation of the Hawking lifetime of
a black hole as an upper bound on the longevity of a black hole playing the role of
a clock (Ex VI.3).

11.4 Canonical Quantum Wave Equations

Chapters 8 and 9 already provided an account of the classical development of the
Canonical Approach, as supplemented by Dirac’s extension of the Principles of Dy-
namics covered in Appendix J. Developing this work and subsequently understand-
ing it [237, 899] took until the 1960s; moreover significant steps in its Quantization
entered at this point.

Let us first extend the simple scheme for Quantization presented in Chap. 5,
so as to further cover constrained systems in Background Independent settings. As
per Chap. 9.10, GR gives rise to a stationary wave equation—the Wheeler–DeWitt
equation Ĥ� = 0—in place of a time-dependent one. These authors called this the
Einstein–Schrödinger equation; a more detailed form for this is

0 = Ĥ� := −�
2‘

1√
M

δ
δhij

{√
MNijkl

δ�
δhkl

}
− ξRM(x; h]’�

− √
hR� + 2

√
hΛ� + Ĥmatter�. (11.6)

Here ‘ ’ implies in general various well-definedness issues as further outlined in
Chaps. 40 and 43, which are in any case absent from finite models such as (11.9),
and operator-ordering issues which still partly remain for these finite models.

This is accompanied by the quantum GR momentum constraint

0 = M̂i� = 2 i �hikDj
δ

δhjk
� + M̂matter

i �, (11.7)

and by the Klein–Gordon type inner product

〈ψ1 [h]|ψ2 [h]〉 = 1

2 i

∏
x∈�

∫
d�ijNijkl(h)

{
ψ1 [h]

←→
δ
δhkl

ψ2 [h]
}
. (11.8)
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This however runs into further technical problems as outlined in Sect. 12.2 and
Ex VI.11.vi)

Misner’s introduction of Minisuperspace was largely motivated by the wish
to study more tractable versions of (11.6). His original models [657, 659] were
isotropic and anisotropic, in each case without fundamental matter. For this book’s
main Minisuperspace model, with single minimally-coupled scalar field matter, the
Wheeler–DeWitt equation reads

0 = �
2 {∂2

Ω − ∂2
φ}� = exp(6Ω){exp(Ω)− 2Λ− V (φ)}�. (11.9)

The unreduced RPM model arena counterpart is

E� = Ê� = −�
2 �M�/2 + V �; (11.10)

compared to Minisuperspace this model permits tractable study of accompanying
linear quantum constraints and of structure formation. Sect. 9.11’s other classical
arrangements of H have distinct quantum realizations—in particular, the 1970s also
saw the rise of a formal scheme for Quantization based on the York time candidate
[923]—though we postpone these to the next Chapter.

We end by returning to Sect. 11.2’s point 3) concerning equal-times commutation
relations applying once again in attempting to interpret Canonical Approaches. It is
no coincidence that the formalism appearing frozen in time arises from an equation
which would often be interpreted as an energy equation; this rests on energy being
the quantity conjugate to time. Finally, the additional complications with the notion
of energy in GR (Appendix K.5) further exasperates the already difficult position of
the Time–Energy Uncertainty Principle for Quantum Gravity.

11.5 Quantum Cosmology

Consideration of this arena started with the above account of quantum Minisuper-
space models in the 1960s through to the 1980s. In particular, such models with
scalar field matter took off in the 1980s in relation to Hartle–Hawking’s no bound-
ary proposal (named in part after physicist James Hartle): that

the boundary condition for the Universe is that it has no boundary. (11.11)

Subsequently Quantum Cosmology became a possible explanation for, firstly, the
origin of inflation. Secondly, for the origin of cosmic microwave background fluc-
tuations and galaxies—the currently observed inhomogeneities—originating from
quantum cosmological fluctuations [419] as amplified by inflation.

Moreover, Quantum Cosmology remains beset by conceptual difficulties [99,
101, 260, 340, 411, 413, 418, 421, 427, 428, 430, 432, 441, 442, 483, 496, 551,
552, 586, 589, 692–694, 862, 912], including the following.

1) What is the mathematical form of the quantum wavefunction of the Universe �?
E.g. does it really come from a frozen quantum wave equation?
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2) What interpretation is to be accorded to Quantum Cosmology? E.g. the Copen-
hagen Interpretation of QM ceases to be possible here, since there is no longer a
surrounding classical large system.

3) Quantum Cosmology has robustness issues, as regards whether ignoring certain
degrees of freedom compromises the outcome of calculations [591].

4) Quantum Cosmology entails additional Arrow of Time issues. A quantum cos-
mological perspective might even shed further light on the origin of various other
branches of Physics’ arrows of time [101, 413, 433, 752]. Unfortunately this in-
teresting question lies outside the scope of this book.

See Sect. 12.2 and Part III for further discussion of Quantum Cosmology Moreover,
some of the above issues lead to previously solely philosophical contentions about
Quantum Theory—in particular as applied to closed systems such as the whole
Universe—to enter the realm of testable Physics.

11.6 Path Integral Approach for Gravitational Theories

This approach was initiated by Misner in 1957 [655] and begins by considering the
GR version of the transition probability (6.34) type Feynman integral expression

T [hin, tin,hfin, tfin ] := 〈hin, tin |hfin, tfin 〉 =
∫ tfin
tin

∫

�

Dμ[g] exp(isEH [g]/�).
(11.12)

Here Dμ is a measure of integration. Also, this runs over all spacetime met-
ric geometries on T × � in between 〈 �,hin 〉 and 〈 �,hfin 〉, for time interval
T := [tin, tfin ].

This approach exhibits a Measure Problem; see Appendix P.2 for an outline of
what measures are. It is a problem because the measure involved is usually but a for-
mal rather than explicitly-known computational object in the case of Gravitational
Theories.

Some further features of the Path Integral Approach for Gravitational Theories
are as follows; consult Sect. 12.8 and Chap. 52 for further details.

0) While this is not necessarily a Background Dependent pursuit, this is not a
Canonical Approach.

1) It is, rather, a spacetime primary formulation. It is furthermore paths or histories
that are now to be considered as primary.

2) The ‘wrong sign’ of the GR action causes further problems for Path Integral
Approaches.

3) Moreover, these problems are ameliorated [474] by working in a Euclidean-
signature sector, where

〈hin, tin |hfin, tfin 〉 =
∫ tfin
tin

∫

�

Dμ[g] exp(−sEucl
EH [g]). (11.13)
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Now the integration is over all Euclidean-signature metric geometries on T × �
in between.

4) However, GR’s action is not positive-definite, which causes further unbounded-
ness problems.

5) Moreover, Discrete Approaches to Quantum Gravity have better-defined path
integrals. Such approaches started historically with Regge Calculus in the 1960s
[660] (named after physicist Tullio Regge see Ex VI.16 for more).

6) Time ordering and positive frequency impinge upon [477] the passage between
Euclidean and Lorentzian sectors. At the perturbative level about flat spacetime
this reduces to Wick’s result from QFT (Ex II.3). However, the curved spacetime
counterpart of this picks up ambiguities as regards the choice of complex contour
[420].

7) Let us finally point to some approaches which involve both Path Integrals and
Canonical formalism. QFT can rely on the Canonical Approach for computing
what its Feynman rules are. In this way, Ordinary Quantum Theory ‘in terms of
path integrals’ is in fact in some cases a combined Path Integral and Canonical
Approach. Then in Quantum Gravity, such a combined scheme would pick up
both approaches’ problems.

11.7 Covariant Approaches to Alternative Theories

The 1970s also saw the beginning of a search for an extension of GR that provides
a renormalizable or finite perturbation from a QFT perspective. Three types of ex-
tension are as follows.

1) Add symmetry-preserving terms.
2) Add non-unified extra degrees of freedom.
3) Alter the symmetries evoked.

Historically, early attempts involved 1), in particular Higher Derivative Theories
(adding terms such as R(4)2 and R(4)μνR(4)μν ). However, physicist Kellogg Stelle
[811] established the alternative that renormalizability can be attained here, but only
wherever non-unitarity applies instead. One of these theories is the Weyl2 Theory,
with action

sWeyl ∝
∫

d4x
√|g| C(4)μνρσC(4)μνρσ . (11.14)

This is conformally invariant, and also arises from gauging the conformal group,
much as GR arises from gauging the Poincaré group (Ex VI.20).

The 2-d and 3-d counterparts of GR are overly simple. Riemann curvature has
only 1 independent component in 2-d , so the Ricci scalar R(2) carries all the geo-
metrical information; it has only 3 in 3-d , so the Ricci tensor R(3)μν is all. There is
consequently no Weyl tensor for d < 4. The physical consequences for 3-d GR are
that there is no curvature other than where the sources are, no gravitational waves,
and the degrees of freedom count per space point gives zero (though global degrees
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of freedom can still remain). On the other hand, in 2-d , the integral of R(2) is a topo-
logical invariant, rendering trivial the use of such as an action. There is, however,
a different way of obtaining a non-trivial Gravitational Theory in 2-d [836].

Moreover, that the integral of R(2) is a topological invariant in 2-d and then a
nontrivial action term for d ≥ 3 is but the first of a series of objects behaving in
this manner. A new member of the series becomes nontrivial upon increasing the di-
mension by two. The next member is R(d)2 − 4R(d)μνR(d)μν +R(d)μνρσR(d)μνρσ . The
corresponding action integral is a topological invariant in 4-d—proportional to the
well-known Euler characteristic [68] in the case of a compact oriented manifold—
and becomes a nontrivial action term in 5-d and higher, for the so-called Gauss–
Bonnet or Lovelock Theory [230]. While at first sight this term looks like it will
produce a higher-order Gravitational Theory, careful inspection of the field equa-
tions reveals that these are actually just second-order. Indeed, the existence of this
action term in d ≥ 5 indicates the breakdown of the Lovelock simplicity postulates
[629] which hold for d ≤ 4 curvature scalars.

Theories involving connections instead of a metric can also be considered (see
Appendix D), or ones in which the connection that is not necessarily the metric one.
This is one way into torsion being present: as the difference of two connections,
though one can also conceive of torsion existing a priori. Non-symmetric metrics
can also be evoked. Non-minimal coupling can be involved as well, for instance in
Brans–Dicke Theory (after physicists Carl Brans and Robert Dicke), with action

sBD ∝
∫

d4x
√|g|{�R(4) −ω |∂�|2/�

}
, (11.15)

for a parameter ω, and its Scalar–Tensor Theory generalization [910].
For later use, let us also at this point introduce tachyons: hypothetical matter

species, for which c is not a maximum speed but rather a minimum speed. These
are conceptually problematic due to ensuing causal paradoxes, so theories without
these are favoured.

Unification schemes were more straightforward while Gravitation and Electro-
magnetism were the only known theories to unify [369]. E.g. Kaluza–Klein Theory
[67] and Weyl’s failed unified theory [893] were along these lines, and the second
half of Einstein’s life were spent looking for such theories. In particular, Kaluza–
Klein theory’s U(1) is curled up small, came to inspire a much wider range of
‘compactifications’ to hide extra dimensions [385].5 Unification became a harder
proposition with the formulation of distinct and successful theories of the strong and
weak forces. None the less, theoretical physicist Edward Witten considered a bigger
version of Kaluza–Klein theory for this case [914]. Moreover, the GUT timescale
is 10−35 s (GUT scales are 4 orders of magnitude out from EPl or lPl, but 8 orders
of magnitude out from tPl). This modest difference in orders of magnitude suggests
Gravitation could be an extra ingredient for unification.

5Extra spatial dimensions are relatively uncontroversial. However, considering time to have more
than one dimension would, carry many technical and conceptual difficulties, starting with the dif-
ficulties with ultrahyperbolic PDEs outlined in Sect. 31.3.
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Conventional GUT’s, moreover, just look to unify the three non-gravitational
forces. Some restrictions in combining Gravitation with the Particle Physics of the
other fundamental forces of Nature are as follows.

No-Go Theorem 1 (Weinberg) In QFT, there is an upper bound on spins, from a
standard lack of currents to couple to [885].

Note in particular that spin-2 lies within this upper bound.

No-Go Theorem 2 (Coleman–Mandula) (after physicists Sidney Coleman and Jef-
frey Mandula). For a QFT whose S-matrix obeys certain plausible technical con-
ditions [887], if there is a mass gap then the Lie algebra of symmetries must be a
direct product

Poin × ginternal. (11.16)

Already in the QFT or Particle Physics context, Supersymmetry [887] eludes
the Coleman–Mandula Theorem, because its statement does not extend to preclude
Lie superalgebras. This is a transformation mapping between bosons and fermions;
moreover it is a mixture of internal and spacetime symmetries. More specifically,
applying the transformation twice in general leads to translation in spacetime:

Q̂|b〉 = |f〉, Q̂|f〉 = |b〉, Q̂2 |b〉 = |‘b over there’〉, (11.17)

where b are bosonic species and f are fermionic ones. In such theories, each particle
has a superpartner whose spin differs by 1

2 , i.e. squarks and sleptons (spin 0), and
gauginos and Higgsinos (spin 1

2 ). One describes these by passing from the Poincaré
group to the Poincaré supergroup, whose Representation Theory describes this en-
larged set of particles.

Suggested benefits for Particle Physics in a world with Supersymmetry include
the following.

1) Resolving the Hierarchy Problem (breadth of different fundamental particle
masses).

2) Improving the confluence of GUT coupling ‘constants’ (Fig. 11.3).
3) Cancellation of anomalies is a common feature of Supersymmetry. This stems

from (6.14) causing fermions to contribute Feynman diagrams of the opposite
sign to the bosonic ones, with Supersymmetry furthermore fixing the proportions
of these to be such that many cancellations occur.

One practical problem with Supersymmetry is that no superpartner pair has had both
its species observed. This may be suggestive of Supersymmetry being a mathemat-
ical but physically spurious construct. For sure, if there is fundamental Supersym-
metry, at the point at which this book was finished, there was no direct evidence of
Supersymmetry being present in Particle Physics.

Moreover, one can indeed formulate Gravitational Theory in accord with Super-
symmetry: Supergravity. Here the graviton has a spin- 3

2 superpartner: the gravitino.
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Fig. 11.3 a) Standard Model’s inverse running coupling constants, 1/α. b) Minimal Supersym-
metric Standard Model’s inverse running coupling constants form a triple intersection

For 4-d N = 1 Supergravity the action is the 4-bein version of the GR Einstein–
Hilbert action plus the Rarita–Schwinger action for the gravitino field ψμ,

sRS ∝
∫

d4x εμνρσ ψ̄μγ5γνDρψσ (11.18)

(named after physicists William Rarita and Julian Schwinger). More extended Su-
pergravity has multiplets running from spin 0 to spin 2, incorporating matter species
as well (see Appendix V if interested). Preclusion of still larger multiplets including
yet higher spins restricts the maximum size of Supergravity theories; the limiting
dimension 11 materializes in this manner.

In Supergravity, further loop terms are finite [138]. Gauging super-Poin(d , 1)
gives back Supergravity. Also note Supergravity’s N = 8 limitation on the number
of supercharges, and dimensional rigidity: at most 11-d Supergravity. String The-
ory is also ameliorated by passage from bosonic strings to supersymmetric strings:
superstrings. Through Higher Derivative Theory and Supergravity, the search con-
verged successfully to String Theory in the mid to late 1980s.

11.8 Perturbative String Theory

In this approach, point particles are replaced by strings; this turns out to smear away
various of QFT’s notorious problems (Fig. 11.4). A string length lS subsequently
enters this approach’s physics; the most natural size for this is of the order of lPl. This
serves as a minimum length: l < lS has no operational significance in perturbative
String Theory. A major reason for entertaining this ‘string hypothesis’ is, moreover,
that it underlies a well-behaved formula for graviton scattering [385].

N.B. that String Theory concerns special-relativistic strings. In the bosonic case,
the historical Nambu–Goto action for a such is

s∝
∫

d2σ

√
{Ẋ · X′ }2 − Ẋ2 ·X′ 2. (11.19)
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Fig. 11.4 In String Theory, SR particle worldlines a) become string worldsheets, b) for an open
string and c) for a closed string. QFT vertices are smeared out, e.g. from the 3-particle vertex d) to
the ‘trousers topology’ e). The string theoretic analogue of Feynman diagrams are correspondingly
thickened, e.g. from f) to g). In this way, extended objects such as strings smear out Feynman
diagrams, causing a number of key calculations to become better behaved (less singular)

This is however hard to work with in practice, so the equivalent Polyakov action,

s∝
∫

d2σ ∂aXμ∂
aXμ, (11.20)

subsequently became widely used.6

String Theory in fact began as an unsuccessful theory of the strong force in the
1960s and 1970s. However, closed strings were found to incorporate Gravitation in
the sense of necessarily including a spin-2 excitation. Consequently, by the onset
of the 1980s string revolution—initiated by theoretical physicists Michael Green,
John Schwarz and Edward Witten [385, 386]—String Theory was considered to be
a Unified Theory including Gravitation. The above sense involves thinking in terms
of the graviton—a perturbative particle concept—and associated fixed-background
considerations (the above actions depend implicitly upon background metrics). The
strings propagate on fixed background spacetimes, so at least this formulation of
String Theory involves fixed-background SR-like notions of time, space and space-
time, rather than GR-like ones. In particular, such fixed-background spacetimes are
very often confined to being static. What happens instead is that GR’s Einstein field
equations are emergent, due to closed strings having to contain a spin-2 excita-
tion that one interprets to be the graviton. As a result of this, problems associated
with GR might not be fundamental but refer, rather, to aD-dimensional background
spacetime metric structure that the strings move in. Moreover, these perturbative and
Background Dependent assumptions cease to apply in some of the subsequent de-
velopments (Sect. 11.12). One often considers D-dimensional Poincaré-invariance,
though the propagation could also be on some fixed (usually also highly symmetric)
curved spacetime background.

Whereas worldsheets are usually modelled as living on fixed backgrounds, a sec-
ond more restrictive kind of Background Independence applies. I.e. worldsheet dif-
feomorphism invariance and conformal (alias Weyl) invariance hold therein.

6These actions are named after theoretical physicists Yoichiro Nambu, Tetsuo Goto and Alexander
Polyakov.
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Incorporating SR and Quantum Theory together into String Theory turns out
to be restrictive at the level of quantum commutator closure if anomalies are to be
avoided. A Virasoro algebra (Appendix V.3) results if the spacetime dimension is 26
for a bosonic string [385]. This dimension is fixed so as to avoid an anomalous term.
Taken by itself, the bosonic string has various problems including the presence of
tachyons. However, repeating the above considerations for the superstring, one finds
that [385] tachyons are avoided alongside 10-d being the new anomaly-avoiding
critical dimension of spacetime. Spacetime dimension 10 is more likely than 26,
firstly by being closer to the physically observed dimension 4. Secondly, because
Supersymmetry exhibits a pattern modulo 8 in the dimension [887], 10-d spacetime
and 2-d worldsheets go well together. See Sect. 11.12 for a third reason.

String Theory does not only include a spin-2 graviton, but also has enough room,
firstly, to contain the other three known forces of Nature, thus unifying the four
forces. Secondly, building blocks for matter—in particular chiral fermion species—
are accommodated.

One still needs to be able to shed 6 spatial dimensions in order to pass to the
approximate regimes corresponding to everyday existence. The most traditional ap-
proach to this is to reuse Kaluza–Klein type compactification. More precisely, the
other 6 dimensions could be [386] curled up small in the form of a particular type of
complex manifold (Appendix F.1) called a Calabi–Yau space.7 The geometry of this
might be hoped to explain hitherto theoretically unaccounted for Standard Model
parameters, such as fundamental particle masses, mixing angles, the observed Stan-
dard Model’s SU(3) × SU(2) × U(1) gauge group, or the three generations of par-
ticles observed.

Superstring Theory is highly rigid in form. As well as requiring spacetime di-
mension 10, Superstring Theory is a whole package in contrast to how one can add
a range of extra terms to QFT actions. Moreover, there are in fact five superstring
theories.

Type I, which also contains open strings and possesses SO(32) symmetry.
Type IIA, with non-chiral massless fermions.
Type IIB, with chiral massless fermions.
Heterotic (meaning its right- and left-moving strings differ) String Theory with

either SO(32) symmetry or E8 ×E8 symmetry.8

All five possess the crucial closed strings whose spectra include the massless
spin-2 excitations that this approach identifies with GR-type gravitons.

On the other hand, Calabi–Yau spaces, compactifications in general and other
means of hiding or not perceiving extra dimensions are substantially non-unique

7These are named after mathematicians Eugenio Calabi and Shing-Tung Yau. See [673] for an
especially accessible presentation of the various layers of structure leading to the definition of
these.
8See Appendix E for a start on what E8 is.
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[148, 262]. So in the absence of further credible selection principles, it is very dif-
ficult to extract highly unique predictions about fundamental Particle Physics from
String Theory. This is a separate issue from some of String Theory’s results being
applicable as mathematical methods for various much lower-energy (and thus prac-
tical) scenarios. Providing methods that can be used in multiple largely unrelated
situations is not to be confused with providing a new Paradigm for Fundamental
Physics as a whole. The latter would additionally involve finding a consistent physi-
cal interpretation for the mathematics, as opposed to one which shifts from applica-
tion to application. Furthermore, it is not yet known what String or M-Theory are a
theory of, as is reflected by the meaning of ‘M’ for now being left open. String and
M-Theory remain, rather, a work in progress as regards what foundational meaning
and paradigmatic interpretation they might possess.

While String Theory is free from anomalies and has finite diagrams order by
order, if one considers all the orders together, there is a lack of Borel summability.9

See Exercise Set VI and Sects. 11.12, 19.10 and 57.4 for further String and M-
Theory concepts, results and discussions.

11.9 Ashtekar Variables and Loop Quantum Gravity

The 1986 classical-level introduction of Ashtekar variables (Sect. 8.15) was im-
mediately followed up by Canonical Quantization. While this approach has sim-
plified constraints as compared to Geometrodynamics, it is not equivalent to Ge-
ometrodynamics in various ways. One such is through inclusion of degenerate tri-
ads whereas Geometrodynamics did not include degenerate metrics. Another is that
this approach, at least as presented so far in this book, involves complexified GR. To
end up with real-valued GR, reality conditions are eventually required. Moreover,
Kuchař [587] pointed out that these involve mathematics that is comparably unas-
sailable to that which would be required for Quantum Geometrodynamics. One way
around this is a real formulation involving the Barbero–Immirzi parameter β; this
formulation has often since been used.10

Another of this program’s early developments was to pass furthermore to
SU(2)(�) holonomy variables; these encode the geometrical effects encountered
in taking a ride around each loop in �. If interested, see Appendices F.4 and N
for an outline of the mathematics of loops, holonomies and holonomy variables.
This was followed up by considering the loop representation [330]. These develop-
ments amount to using a particular means of solving the SU(2) Yang–Mills–Gauss
constraint. Rovelli and physicist Lee Smolin [758] additionally showed that the cor-
responding quantum theory could be formulated in terms of Penrose’s spin networks

9This construct is named after early 20th century mathematician Émile Borel; see e.g. [194, 269,
394] for further discussion of this in the context of String Theory.
10This is named after physicists Fernando Barbero and Giorgio Immirzi. See Sect. 24.9 for the
geometrical meaning of this parameter and of the corresponding version of Ashtekar variables.
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(see Sect. 43.5). One can additionally contemplate solving Mi by considering the
Diff (�)-invariant counterparts of loops: knots (Appendix N.13).

This Loop Quantum Gravity [752, 845] has technical advantages over Geometro-
dynamics at the quantum level, as outlined in Chap. 43. On the other hand, these ad-
vantages do not by themselves alter significant Problem of Time features or strate-
gies. A further issue is that, despite various candidates being proposed [842, 845],
there is no clearly motivated, established form for Loop Quantum Gravity’s quan-
tum Hamiltonian constraint [679, 794]. Yet without this, one is dealing with mere
kinematics, whereas from Sect. 2.4 onward, this book has been arguing that predic-
tive power in Physics comes, rather, from Dynamics.

Ashtekar variables and Loop Quantum Gravity largely depend on 4-d spacetime
features. One of these is the relation between 3-d space and the existence of knots.
None the less, there is a 3-d spacetime counterpart of Loop Quantum Gravity [193];
it is the higher-d cases that are harder to realize.

Loop Quantum Gravity considers Quantization of area and volume. E.g. for area
associated with a surface � (within β-real formulations)

Â� |ψ〉 = 8π l2Plβ
∑
I

√
j{j + 1}|ψ〉, (11.21)

where one is summing over all the lines in the spin network that thread the surface �
(Fig. 43.1.b).

Loop Quantum Gravity also gives an expression for black hole entropy; this how-
ever depends on β; matching this with (7.16) fixes

β = ln(2 j + 1)
/

2π
√

j{j + 1} = ln 2/
√

3π; (11.22)

the last equality is for j the minimal spin [which is 1/2 for SU(2)].
Finally, physicist Martin Bojowald developed Loop Quantum Cosmology [152]:

Loop Quantum Gravity’s counterpart of the Minisuperspace model arena. This has
led to some claims about singularity avoidance, though generic such statements re-
main inconclusive.

11.10 Canonical Approach to Supergravity

Supergravity can also be considered from the canonical point of view; moreover, it
manifests Background Independence. See [552] for an outline, or [232, 233, 314,
715, 868] for detailed accounts. This is habitually studied from a spacetime-first
ontology, performing a space–time split, and then passing to a canonical formula-
tion. To accommodate fermions, this is done as a first-order formulation rather than
directly in terms of metric variables. Note also Teitelboim’s alternative route [834]
starting from Canonical GR and asking for a square root of the GR Hamiltonian
constraint H.

Supergravity in 3 + 1 dimensions was furthermore shown [515] to be compatible
with the Ashtekar variables development.
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Conceptual development of Canonical Supergravity largely ceased in the 1980s.
However, this has been found to differ from GR in a number of ways as regards
the form of its of Background Independence [32, 36], even at the classical level.
Thereby Canonical Supergravity features as a further example in Part II of this book.

11.11 Brane, Null Line, and Relational Alternatives

Passing from point particles to strings is nonunique along the following lines.

1) It admits an arbitrary-d generalization as regards which extended objects to in-
volve, which can be followed up by the ‘democratic’ use of extended objects of
all codimensions C. These other extended objects are called (mem)branes [719].
Whereas the notion of space felt by a species is the full space for a Field The-
ory, and just a point for a particle, it could also be a lower-d space to which a
given matter species is confined, giving strings and membranes. Configurations
are now the values at each point of the space of extent of an object.11 Examples
include p-branes, which are form fields (Appendix D.2), and D-branes, which
are where open strings end.12 Theoretical physicists Andrew Strominger and
Cumrun Vafa [819] furthermore established the standard form of the black hole
entropy (7.16) from brane microphysics, for a class of supersymmetric black
holes.

2) One might instead consider null lines instead of strings. This emphasis here is
on causality; this approach leads to Penrose’s Twistor Theory (see Sect. 36.2 for
a brief outline, or [707] if interested in the details).

3) Finally, one might view String Theory as following up Particle Physics’ empha-
sis on particles by replacing these with strings. Relationalism on the other hand
would ascribe reality to relations between particles. A further separate matter is
modelling extended objects themselves from a relational point of view; it is not
known whether this would return one to standard String and M-Theory or to an
alternative.

Whereas 3)’s Relationalism was already presented in the Preface as a means of
cutting the Gordian cube, Supersymmetry, strings and twistors can each be viewed
as a different type of cut. Additionally, in further developing String Theory—to
produce M-Theory—it is habitually 1) but not 2) or 3) which is taken on board.
(Note however the twistor string theory development [918].)

11Branes provide further ways of hiding extra dimensions, such as ‘warping’, which are a further
large source of phenomenological nonuniqueness.
12The ‘D’ here stands for Dirichlet boundary-value problem [220], named after 19th century math-
ematician Gustav Dirichlet.
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Fig. 11.5 a) The M-Theory web. This features not only the 5 superstring theories but also 11-d
Supergravity as a lower-energy limit. b) Family tree of Quantum Gravity Programs. The underbrace
marks the scope of the last all-embracing review, by DeWitt [237–239]

11.12 M-Theory

M-Theory has the following additional inputs.

A) Dualities, which are interrelations of the five string theories and 11-d Supergrav-
ity. In particular, T-duality relates a theory that is compactified on a circle of ra-
dius R to one on a circle of radius 1/R (the ‘T’ here stands for ‘torus’). Also, S-
duality relates the strong-coupling limit of one theory to the weak-coupling limit
of another (the ‘S’ here stands for ‘strong’). See Fig. 11.5.a) for the M-Theory
web between these and 11-d Supergravity. So, following on from Sect. 11.8, the
third argument for the stringy dimension 10 is how this can morph by T-duality
into Supergravity and M-Theory’s dimension 11.

One consequence of T-duality is that in M-Theory notions of space may be more
complicated than elsewhere in Theoretical Physics. E.g. [782] considers both space
and time from an emergent perspective in M-Theory.

M-Theory specifically possesses M2 and M5 branes (spatially 2- and 5-d respec-
tively). The M2 brane can be thought of as a string with an extra dimension blown
up; conversely one can pass from it to a string by compactifying one dimension.

B) Holography concerns the possibility of a theory’s degrees of freedom residing
within a lower-dimensional theory on a screen (e.g. a boundary surface). This
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originated (see e.g. the review [917]) in ’t Hooft’s work on black holes. Theo-
retical physicist Juan Maldacena’s [635] AdS–CFT conjecture is a subsequent
major development. This concerns, on the one hand anti de Sitter space (AdS),
which is maximally symmetric like M

4 but with negative cosmological con-
stant Λ. On the other hand, CFT is Conformal Field Theory [674, 719]: a type
of QFT. Some forms of the conjecture concern being able to represent AdS (and
asymptotically AdS) spacetimes in terms of the CFT on their boundary. This
boundary can, moreover, be considered to be a type of background. If the con-
jecture holds, it amounts to a map between a QFT on a fixed background and a
GR-like theory in the bulk interior.

We finally point to Spacetime Relationalism’s axiom i) precluding perturbative
String Theory from being amongst the relational theories; on the other hand, one
would expect a sufficiently final form of M-Theory to comply.

11.13 Conclusion: A Family Tree Overview

We end with Fig. 11.5.b)’s approximate family tree of Quantum Gravity programs.



Chapter 12
Quantum-Level Background Independence
and the Problem of Time

We culminate Part I by outlining Background Independence at the quantum level.
Many of the more difficult parts of the Problem of Time [24, 26, 37, 40, 483, 552,
581, 584, 586, 589, 752, 899] occur because the ‘time’ of Background Indepen-
dence GR and the ‘time’ of the ordinary Background Dependent Quantum Theory
are mutually incompatible notions. This causes difficulties in trying to replace these
two branches of Physics with a single framework in regimes in which neither Quan-
tum Theory nor GR can be neglected. As explained in Chap. 11, such a replacement
is required for parts of Black Hole Physics and Early-Universe Cosmology. The
Problem of Time moreover is pervasive throughout sufficiently GR-like attempts
at formulating Quantum Gravity, at both the quantum and classical levels. For now,
we take the geometrodynamical and spacetime formulations of GR to be representa-
tive, and concentrate on these. Parts II and III subsequently comment on differences
between these and Loop Quantum Gravity, Supergravity and M-Theory, as well as
on Background Independence and the Problem of Time at the topological level and
beyond.

12.1 Quantum Frozen Formalism Problem

The Schrödinger-picture Frozen Formalism Problem involves stationary alias time-
less or frozen wave equations such as (5.11). These occur for GR and for model
theories with Background Independence, in a setting in which in which one would
expect—cf. the quantum ‘evolution postulate’—time-dependent wave equations
such as (5.10), or, possibly (6.1) or (6.8). This frozenness is well-known to be a
consequence of the GR Hamiltonian constraint H being of the mathematical form
Quad of Eq. (8.26). RPMs’ E constraints are also of this form (9.3).

The next two paragraphs and Sects. 12.2, 12.6, 12.8, 12.9 and 12.10 introduce
various strategies for this.

One of this book’s main points is that the Wheeler–DeWitt equation of GR,
Ĥ� = 0, can be traced back not only to the classical Hamiltonian constraint H
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but furthermore to Temporal Relationalism. Temporal Relationalism provides con-
straints for the range of formulations of theories which implement this princi-
ple. These constraints are interpreted as equations of time, denoted in general by
Chronos; this interpretation provides a classical emergent Machian time resolution
of the ab initio timelessness of these formulations. Both H and E can be taken to arise
in this manner. Moreover, in each theory which possesses a Chronos, this leads to an
also apparently frozen quantum wave equation ̂Chronos� = 0. Whereas Chronos is
of the form Quad, not all programs’ Quad gets interpreted as an equation of time, in
which case we write, rather, Q̂uad� = 0 at the quantum level.

Inner Product Problem alias Hilbert Space Problem. In Quantum Theory, the
wave equation does not suffice to obtain physical answers, since are of the form
〈ψ1 |Ô|ψ2 〉, so an inner product input is also required. The Schrödinger inner prod-
uct serves this purpose in Ordinary QM. Klein–Gordon Theory has its own dis-
tinct Klein–Gordon inner product; see e.g. Eqs. (6.4) and (11.8). Recollect that
a Schrödinger inner product will not do in this setting because M

4 is indefinite,
which argument carries over to GR’s Riem(�) and minisuperspace Mini(�) as
well. However, a Klein–Gordon interpretation fails here too, on the further grounds
outlined in Sect. 12.2 and Ex VI.11.vi). RPMs are different in this regard, since
they—like Ordinary QM—have a positive-definite q, yielding a positive-definite
inner product for which a Schrödinger interpretation is appropriate. Note moreover
that the Inner Product Problem is a temporal issue—a subfacet of the Frozen Formal-
ism Problem—due to the ties between inner products, conservation of probability
and unitary evolution outlined in Sect. 5.3.

We finally point to Quantum Theory including further objects such as quantum
operators and path integrals; see Chap. 52 as regards a Temporal Relationalism im-
plementing form for these.

12.2 Timefunction-Based Strategies for Frozenness

External time is inappropriate for GR-like theories. This is firstly since it does not
feature in the quantum wave equation for GR. Secondly, external time is incompati-
ble with describing truly closed systems, which include in particular closed-universe
quantum cosmologies. Moreover, how Quantum Theory is to be interpreted for
whole-universe models is a recurring theme in this book. These matters leave us
in need of some distinct conception of time; some possibilities for this are as fol-
lows.

A) Emergent Time before Quantization. If one considers there to be no time at the
primary level for the whole-universe models, we have already seen subsequent
classical resolution by an emergent Machian time tem being abstracted from
change. Unfortunately, this classical resolution fails to unfreeze the quantum
equation ̂Chronos� = 0. None the less, this can also be resolved by abstracting
time from now quantum change, as follows.
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B) Emergent Time after Quantization. A such can be considered in situations in
which there are slow, heavy ‘h’ variables that provide an approximate time-
standard with respect to which the other fast, light ‘l’ degrees of freedom
evolve [419, 552, 586]. This occurs e.g. in the Semiclassical Approach for SIC
[35, 419], h is scale (and homogeneous matter modes) and l are one or both of
small anisotropies or small inhomogeneities. The Semiclassical Approach con-
sists of the following steps.

i) Make the Born–Oppenheimer ansatz (named after Max Born and physicist
Robert Oppenheimer)

�(h, l) = ψ(h)|χ(h, l)〉, (12.1)

followed by the WKB ansatz (named after physicists Gregor Wentzel, Hendrik
Kramers and Léon Brillouin)

ψ(h) = exp(i S(h)/�). (12.2)

Each of these is accompanied by a suite of approximations, detailed in Chap. 46.
ii) We form the h-equation

〈χ |Q̂uad� = 0. (12.3)

To first approximation, this yields a Hamilton–Jacobi equation,1

{
∂S

∂h

}2

= 2{E − V (h)}, (12.4)

where V (h) is the h-part of the potential. Furthermore, one way of solving this
is for an approximate emergent semiclassical time t sem(h).

iii) We next consider the l-equation

{1 − |χ〉〈χ |}Q̂uad� = 0. (12.5)

In this initial form, this is a fluctuation equation. Moreover, it can be recast—
modulo some more approximations—into an emergent-WKB-time-dependent
Schrödinger equation for the l-degrees of freedom. E.g. the mechanical case of
this is

i �
∂|χ〉
∂t sem

= Ê l |χ〉. (12.6)

The emergent-time-dependent left hand side arises from the cross-term
∂h|χ〉∂hψ (Ex VI.14). Ê l is here the remaining piece of Ê , which plays the
role of Hamiltonian for the l-subsystem.

1For simplicity, we present the rest of this Section for Mechanics with one h degree of freedom;
see [37] for consideration of multiple such and other generalizations.



184 12 Quantum-Level Background Independence and the Problem of Time

iv) In this book’s main approach, Quad arises as an equation of time Chronos.
t sem can then be interpreted as [29, 37] a semiclassical Machian emergent time
(whether for the above model arena or for GR Quantum Cosmology). To ze-
roth order in l, this and the classical tem(J)

0 coincide. However, this fails to be
Machian in the sense of not permitting either classical or semiclassical l-change
to contribute. To first order in l, however,

t sem
1 = F [h, l,dh, |χ(l, h)〉], (12.7)

which is now clearly distinct from the h–l expansion of (9.4),

t
em(J)
1 = F [h, l,dh,dl]. (12.8)

This pairing of the previously known emergent semiclassical time and the clas-
sical Machian emergent time is new to the Relational Approach, as is the
Machian reinterpretation of the former. Clearly also the difference between
these two emergent times is in accord with the ‘all changes have an opportu-
nity to contribute’ implementation of Mach’s Time Principle.

As we shall see in Part II, the above derivation of a time-dependent Schrödinger
equation ceases to function if the WKB scheme (ansatz and approximation). More-
over, in the quantum-cosmological context, the WKB scheme is not known to be a
particularly strongly supported ansatz and approximation to make (see Chap. 46).
This book props this up by combination with further Problem of Time strategies,
which need to be individually developed from the classical level upwards. We return
to this point in Sect. 12.9 after having surveyed the rest of the individual strategies
and facets.

C) Further alternative strategies involve quantum-level continuations of Chap. 9.11’s
approaches. Since these involve continuing to use at the quantum level a candi-
date time found at the classical level, they are known as time before quantum
approaches.

i) Riem time arises from the hyperbolic reformulation (9.20) of H, due to the
DeWittian indefiniteness. This leads to a Klein–Gordon-like quantum equation,

c−2∂2
t � = − �True� +C[h]�. (12.9)

A conceptual outline of this approach is that

perhaps the ‘�M ’ in H is actually a wave operator, �M . (12.10)

One can next attempt the corresponding Klein–Gordon inner product interpre-
tation. Unfortunately, this fails due the GR potential not being as complicit
as Klein–Gordon theory’s simple mass term (see Chap. 21, Ex VI.11.iv) and
[581, 584] for details). This approach was traditionally billed as finding time
after Quantization. It can however be set up just as well before Quantization
[26].
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ii) One could instead use a hidden time candidate, in terms of which a parabolic
reformulation for H of type (9.21) arises, which is then promoted to a hidden-
time-dependent Schrödinger equation

i �
∂�

∂thidden
= ĤTrue�. (12.11)

In particular, York time is an interesting candidate of this type, details for which
are provided in Chaps. 21 and 44.

iii) If one uses the reference matter time candidate instead, another parabolic re-
formulation (9.23) ensues. This is then promoted to a reference-matter-time-
dependent Schrödinger equation2

i �
∂�

∂tref
= ĤTrue�. (12.12)

12.3 Quantum Configurational Relationalism

We next consider Quantization for a physical theory subject to a group g of physi-
cally meaningless transformations. Ab initio, there are two ways of quantizing such
a theory.

1) Reduced Quantization. Here one first reduces out the constraints corresponding
to g at the classical level, and then one quantizes.

2) Dirac Quantization. Here one quantizes first. The constraints corresponding to
g are now promoted to further quantum wave equations

Ĝauge� = 0, (12.13)

which are then solved at the quantum level.

An issue with 1) is that Quantum Theory is capable of discarding a physically-
accepted g, by which being able to classically reduce out the classical g (‘Best
Matching’) does not necessarily imply an g-free quantum system (see Chaps. 42,
43, and 49 for details). On the other hand, the indirect g-act, g-all method
(Sect. 9.10 and Chap. 13) continues to be applicable at the quantum level, whether
as a means of formulating 2) or as an indirect means of expressing all subsequent
objects required by one’s theory if neither 1) or 2) can be solved.

12.4 Quantum Constraint Closure

Commutator brackets play an even more central role in Quantum Theory than Pois-
son brackets did at the classical level. Moreover, the quantum notion of equal-time

2The partial derivatives here are, strictly, an indication that a Minisuperspace model is for now
being presented for convenience. See Chap. 47 for formal equations for this approach to full GR.
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commutation relations poses significant difficulties in the context of GR. This is due
to Ordinary Quantum Theory’s ‘equal-time’ notion carrying connotations of there
being a unique preassigned time, which does not fit GR’s conception of time.

A first instance of equal-time commutation relations is in Kinematical Quantiza-
tion (Chap. 39).

At the quantum level, constraints take the form of operator-valued equations.
Moreover, passage from classical to quantum constraints is subject to operator-
ordering ambiguities and well-definedness issues. One is then also to consider com-
mutator brackets between these quantum constraints. For sure, algebraic closure of
constraints is not automatically guaranteed in postulating the form these are to take
at the quantum level:

ĈC� = 0 �⇒ [̂CC, ĈC′ ]� = 0. (12.14)

Commutator bracket algebraic structures are furthermore not in general isomor-
phic to their classical Poisson brackets antecedents or approximands. Chapter 39
outlines the topological underpinnings of this discrepancy [475]. For constraint al-
gebraic structures, this means that the quantum version is not necessarily isomorphic
to the classical one. One consequence of this is that algebraic closure of classical
constraints does not imply an isomorphic algebraic closure of quantum constraints,
nor indeed of any other kind of quantum-level closure:

{CC, CC′ } ≈ 0 �⇒ [̂CC, ĈC′ ]� = 0. (12.15)

Furthermore, the latter set of constraints in general requires a distinct indexing set in
place of C. It is clear from Sect. 6.5’s description that anomalies are one manifesta-
tion of non-closure, and additionally a means by which a classically accepted gmay
need to be replaced by a distinct g′ at the quantum level. While not all anomalies
involve time or frame, a subset of them do, and these then form part of the Problem
of Time. These issues are further developed in Chap. 49.

Breakdown of the closure of the constraint algebraic structure at the quantum
level was termed the Functional Evolution Problem in [483, 586]. However, ‘func-
tional’ carries field-theoretic connotations—it is the type of derivative that features
in the field-theoretic form of the problem. Chapters 18 and 24 iron this out in
species-neutral terms. Furthermore, to additionally include the classical case and
maximally clarify the nature of this problem, we consider it better to refer to this
facet as the Constraint Closure Problem.

Finally, this is an opportune point at which to mention that many approaches to
Quantization (see [475] or Chaps. 39–42) are of at most limited value in the case of
GR. This is due to the classical GR constraints forming the Dirac algebroid, whereas
many an established approach to Quantization can only cope with Lie algebras.
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12.5 Quantum Assignment of Beables

In Quantum Theory, observables or beables carry the further connotation of being
self-adjoint operators B̂, by which their eigenvalues are real-valued and so can cor-
respond to measured or experienced physical properties.

For systems which additionally possess quantum constraints, the B̂ are addition-
ally to form zero quantum commutators with the quantum constraint operators. Ex-
amples of such notions are as follows.

Quantum Dirac beables: D̂ such that [̂CF , D̂]� = 0, (12.16)

quantum Kuchař beables: K̂ such that [F̂lin, K̂]� = 0, (12.17)

quantum g-beables: Ĝ such that [Ĝauge, Ĝ]� = 0, (12.18)

need not coincide with the previous, and a further notion of

quantum Chronos beables: Ĉ such that [ ̂Chronos, Ĉ]� = 0 (12.19)

exists in cases for which ̂Chronos closes as a subalgebraic structure. Quantum par-
tial observables are defined as a continuation of their classical definition as well.
The difference is that their capacity to ‘predict numbers’ now carries the inherent
probabilistic connotations of Quantum Theory.

The Problem of Quantum Beables is that it is hard to come up with a sufficient
set of these for QG theories.

Let us finally note that in the Heisenberg picture of QM, the apparent manifesta-
tion of frozenness is, rather,

[Ĥ , B̂]� = 0 (12.20)

with similar connotations to its classical antecedent (9.39).

12.6 Quantum-Level Timeless Approaches

Here the apparent timelessness of Sect. 12.1 is interpreted at face value by entertain-
ing a Fully Timeless Worldview, and determining the extent to which Physics can be
recovered therein. The familiar forms of notions such as temporal evolution, becom-
ing and history would subsequently need to arise—as some kind of phenomenolog-
ical semblance of dynamics or of history—from considerations of pure being. So
far, this has often pointed toward adopting new interpretations of Quantum Theory.
Four approaches along such lines are as follows.

A) The Naïve Schrödinger Interpretation. This is due to Hawking and physicist
Don Page [441, 442], though its name was coined by Unruh and Wald [862].
This concerns the probabilities of being for questions about properties of the
Universe, such as what is the probability that the Universe is large? Flat?
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Isotropic? Homogeneous? Take note that these questions make no reference to
‘when’, ‘how long for’ or ‘whether that state is attained in permanence at some
point’. Answers to these questions arise by considering the probability that the
Universe belongs to region R of q that corresponds to a quantification of a par-
ticular such property, schematically

Prob(R) ∝
∫

R
|�|2

DQ, (12.21)

for DQ the volume element in q. This is a Timeless Approach in the sense of
making no reference to time, rather than of restriction to a single instant. This ap-
proach is termed ‘naïve’ due to it not using any further features of the constraint
equations, which limits this approach’s applicability [586].3 It is ‘Schrödinger’
in the sense of involving a Schrödinger inner product [439] for computing time-
less relative probabilities. Finally, it is an ‘Interpretation’ in the sense of being
an alternative to the standard Copenhagen Interpretation of QM.

B) The Conditional Probabilities Interpretation, due to Page alongside physicist
William Wootters [694], goes further by addressing conditioned questions of be-
ing. An example of such a question is ‘what is the probability that the Universe
is flat given that it is isotropic?’ See Sect. 51.2 for discussion of the particular
objects that this approach is to compute. [694] moreover gives convincing ar-
guments as regards external notions of time being incompatible with describing
truly closed systems. Such a system’s only physical states are, rather, eigenstates
of the Hamiltonian operator, whose time evolution is essentially trivial.

C) Records Theory [21, 99, 101, 340, 411, 694] involves localized subconfigura-
tions of a single instant of time. This approach requires considering—in each
of space and configuration space q—notions of localization, probability dis-
tribution, information, correlation and pattern more generally. This book gives
further novel analysis of classical and quantum Records Theory in Chaps. 26
and 51 respectively. Whether a semblance of dynamics or history can arise from
this approach, however, remains an open question.

D) Evolving constants of the motion is a ‘Heisenberg’ rather than ‘Schrödinger’
picture of QM; see Chap. 50 for an outline and e.g. [752] for more.

C) and D) benefit from classical precursors whereas A) and B) are purely quantum
approaches.

12.7 Quantum Spacetime Relationalism

Is spacetime—or any of its aspects—meaningful in QG? How does spacetime—
or any originally missing aspects thereof—emerge in a suitable classical limit? Is

3This approach is not expected to cover all physically meaningful propositions or investigations.
None the less, some elements of this approach resurface within various of the approaches below.
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there a notion in QG which resembles the causality of SR, QFT and GR? If so,
which aspects of classical causality are retained as fundamental, and how do the
others emerge in the classical limit? Such questions lead to a Spacetime Relational-
ism versus Temporal-and-Configurational Relationalism debate. This in turn feeds
into I) the quantum-level Feynman Path-Integral Approach versus Canonical Ap-
proach debate. II) Consideration of whether quantum-level versions of Refoliation
Invariance and Spacetime Constructability aspects of Background Independence are
required. Some further specific quantum level issues about spacetime are as fol-
lows.

1) Whether a hypersurface is spacelike depends on the spacetime metric g; how-
ever in QG this would be subject to quantum fluctuations [483]. In this way,
the notion of ‘spacelike’ would depend on the quantum state, as would causal
relations, including the microcausality condition (6.27) that is crucial for stan-
dard QFT. Most pairs of events �X, �Y ∈ m would not be expected to be spacelike
separated by at least one Lorentzian metric [318]. Moreover, if all metrics are
‘virtually present’ due to fluctuations, this is manifested e.g. in the path integral
sum (6.27)’s right hand side being in general nonzero. In formulations in which
spacetime is primary, this gives one further reason for difficulties with the notion
of equal-time commutation relations in QG [483].

2) Relativity places importance upon labelling spacetime events by times and spa-
tial frames of reference which are implemented by the deployment of physical
clocks. What happens if one tries to model this using proper time at the quantum
level [483]? Unfortunately, proper time intervals are built out of g, and thus are
only meaningful after solving the equations of motion. This is rendered yet more
problematic by g’s quantum fluctuations. On the other hand, attempting to cir-
cumvent this by casting time in the role of a quantum operator is in contravention
of standard Quantum Theory for deep-seated interpretational reasons (Chaps. 5
and 6).

3) From a technical perspective, replacing Poin(4) by Diff (m) vastly complicates
the Representation Theory involved (Appendix V). Furthermore, the Represen-
tation Theory of the Dirac algebroid is even more difficult than that of Diff (m).

4) Finally, if one’s approach attempts to combine spacetime and canonical concepts,
there is additional interplay as e.g. outlined Chap. 55.

12.8 Path Integral Approaches

The Problem of Time facets do not take an entirely fixed form. If one splits space-
time and works with a Canonical Approach, the Frozen Formalism Problem, Inner
Product Problem and Foliation Dependence Problem: Aspect 6). occur. On the other
hand, none of these occur if an unsplit spacetime formulation is used; Path Integral
Approaches are along these lines. One might be tempted because of Path Integral
Approaches being very successful in QFT, but these face their own set of very major
problems if one attempts to apply them to Gravity. In this way, the Canonical versus
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Path Integral dilemma amounts to choosing between two very different sets of hefty
problems. This is rather reminiscent of Frodo offering the Ring to Galadriel, which
she refuses on the grounds that her subsequently corrupted self would just become
a substantially different kind of tyrant to Sauron [849]; due to this, the dilemma
paraphrases her response.

0) ‘In place of an Inner Product Problem, you will set up a Measure Problem. It shall
not be limited to cases with timelike Killing vectors, but now requires Diff (m)-
invariance. . . ’ Having an explicit Diff (m)-invariant measure is a different—
but also considerable—problem, and also a reason why the Measure Prob-
lem remains time-related. More specifically, the Measure Problem is a further
quantum-level part to Spacetime Relationalism. Finally, this is the most direct
reason for a self-contained book on the Problem of Time to carry an outline of
what measures are (Appendix P).

The long string of issues 1) to 7) of Sect. 11.6 then continues to apply, playing
the analogous role of Galadriel’s subsequent justification of how her corrupted self
would be: “beautiful and terrible as the Morning and the Night!. . . Stronger than the
foundations of the earth.” In particular, upon passage to curved spacetime, what was
flat spacetime’s straightforward Wick rotation from imaginary time back to real time
becomes an ambiguity which is a further subfacet of the Problem of Time [193]. On
these grounds, one might leave Path Integral Approaches to the QFT regime rather
than entertaining their extension to Gravitational Theory, or not.

12.9 Consistent Histories Approaches

While path integrals are occasionally already called sum over histories formula-
tions, in this book we adopt a more structured notion of history: consistent histories,
which are paths that are furthermore decorated by projectors. See Appendix U.1 for
an outline of projectors and Chap. 53 for details about consistent histories. In partic-
ular, Histories Theory [340, 428] gives a further family of approaches to the Problem
of Time, based on the following.

Not Time but Histories Postulate. Ascribe primality to histories (rather than to
time).

Moreover, Histories Theory alters some of the mathematics involved in Quantum
Gravity, and is one of the ways of attempting combined Spacetime-and-Canonical
Approaches. However, such programs remain largely incomplete (e.g. [566] is only
a classical-level treatment).

There is also a histories before Quantization to histories after Quantization
dilemma. The Isham–Linden approach [504] is of the first kind: a classical Histo-
ries Brackets Approach which, upon Quantization, becomes the Histories Projection
Operator Approach. On the other hand, the older Gell-Mann–Hartle [340] version
of Histories Theory is a purely quantum consideration. These two approaches differ
furthermore as regards the particular form taken by the projectors, with the latter
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involving a discrete sequence of these, to the former’s continuum; see Chap. 53 for
further details.

Decoherence—a concept introduced in a more basic setting in Background Read-
ing II.4—plays a key role in quantum-level Histories Theory, in the form of a deco-
herence functional; this point is further developed in Chaps. 48 and 53.

Combining the Emergent Semiclassical, Records and Histories Approaches is
furthermore of particular interest [413] along the following lines. There is a Records
Theory within Histories Theory [340, 411]. Histories decohering provides one pos-
sible way of obtaining a semiclassical regime in the first place. I.e. finding an un-
derlying reason for the crucial WKB assumption without which the Semiclassical
Approach does not work. What the records are will answer the also-elusive question
of which degrees of freedom decohere which others in Quantum Cosmology. See
[340, 411, 414] and Chap. 54 for more details about this approach.

12.10 Web of Quantum Problem of Time Strategies

This is presented in Fig. 12.1.

12.11 Quantum Foliation Independence: Aspect 6)

A Quantization of GR that retains the nice classical property of Refoliation In-
variance would be conceptually sound and widely appealing. There is however no
known way of guaranteeing this at the quantum level. If this property is not retained,
�in, Kuchař argued that [586] starting with the same initial state “on the initial hy-
persurface and developing it to the final hypersurface along two different routes
produces inequality”,

�fin-via-1 �= �fin-via-2 (quantum Foliation Dependence criterion). (12.22)

Moreover, this “violates what one would expect of a relativistic theory.”
On the other hand, association of times with foliations is expected to break down

if the spacetime metric quantum-mechanically fluctuates as per the next Section’s
discussion.

12.12 Quantum Spacetime Constructability

Fluctuations of the dynamical entities are inevitable at the quantum level. For GR,
as Wheeler pointed out [899], these are fluctuations of 3-geometry. These fluctuat-
ing geometries are, moreover, far too numerous to be embeddable within a single
spacetime. Consequently, the beautiful geometrical manner in which that classical
GR manages to be Refoliation Invariant breaks down at the quantum level.
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Wheeler [899, 900] gave the following additional argument. Precisely-known
position q and momentum p for a particle are a classical concept tied to the notion
of its worldline. However, this perspective breaks down in Quantum Theory due
to Heisenberg’s Uncertainly Principle. In QM, worldlines are replaced by the more
diffuse notion of wavepackets. Moreover, in the case of GR, the Uncertainty Princi-
ple now applies to the quantum operator counterparts of hij and pij . But by formula
(8.21) this means that hij and Kij are not precisely known. The idea of embed-
dability of a 3-space with metric hij within a spacetime is consequently quantum-
mechanically compromised. Schematically,

(
metric-level geometry

embedding data h,K or h,p

)
→
(

operators ĥ, p̂ subject to
Heisenberg’s Uncertainty Principle

)
.

(12.23)
Thus Geometrodynamics (or similar formulations) would be expected to take over
from spacetime formulations at the quantum level. It not then clear what becomes
of notions that are strongly associated with classical GR spacetime. One such is
causality. Another—if one ascribes to Wheeler’s belief [897, 899] that the quantum
replacement for spacetime is ‘foamy’—is locality. In particular, microcausality is
violated in some of these approaches [474, 477, 483].

A further issue concerns recovering continuity in suitable limits in approaches
that treat space or spacetime as primarily discrete. Additional features of spacetime
—e.g. its dimensionality—may require emergence in discrete (or bottom-up: see
Chap. 11) approaches to Quantum Gravity [5, 151, 217, 403, 710, 804, 911]. This
is not a given, since some approaches produce non-classical entities or too low a
continuum dimension. Recovery of a semiclassical regime, or for the purpose of the
recovery of standard Particle Physics results, has also been a long-standing difficulty
with Loop Quantum Gravity [112, 320, 756, 845].

Investigation of the semiclassical and quantum commutator bracket counterpart
of the classical Dirac algebroid has also begun [155]. The extension of such work
to a family of such algebraic structures in parallel with Sect. 10.9 remains to be
tackled.

12.13 Summary of a Local Problem of Time

Impasses arise from Background Independence versus Background Dependence
clashes in attempting to put together GR and Quantum Theory are Problem of Time
facets. Kuchař and Isham [483, 586] provided a classification of these very interest-
ing foundational features. In this way, the Problem of Time is the Quantum Gravi-
tational manifestation of the absolute versus relational motion debate.

Part I also argued that Temporal Relationalism can be approached via Machian
emergent time at both classical and quantum levels, providing in particular clas-
sical and semiclassical resolutions. In response to Sect. 1.5, this approach—and
many other approaches to time in QG—are concentrated principally within Broad’s
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Worldview (with occasional use of the Fully Timeless Worldview instead) as op-
posed to more widely spanning philosophers’ further worldviews on time.

Classical means of handling Configurational Relationalism and Constraint Clo-
sure carry over to the quantum level (Fig. 10.6). This is subject to the caveat of not
having a firm replacement for the Dirac algebroid structure of the classical GR con-
straints. Moreover, considering systematic approaches for finding enough observ-
ables or beables for Gravitational Theories lies outside the scope of Part I; indeed,
the Problem of Beables remains unresolved for these theories. Finally, while Space-
time Relationalism, Foliation Independence and Spacetime Constructability were
well-addressed at the classical level, they are harder to handle at the quantum level;
even semiclassical versions of the last two remain largely unknown.

Background Independence is furthermore endemic in approaches which imple-
ment GR-like features. For instance, it is between relevant and central in Geometro-
dynamics, Loop Quantum Gravity, Canonical Supergravity and M-Theory (but not
the perturbative part of String Theory); these represent a sizeable proportion of
Quantum Gravitational research.

12.14 Aspect 8: Global Validity

We next outline the global—rather than just local—version at the quantum level.
Here Chap. 11’s classification by entities to be meshed together further expands into
‘patching representations’, ‘patching functional differential equation solutions’, and
‘patching unitary evolutions’. Moreover, these remain little understood conceptu-
ally, let alone technically. Many of the facets and strategies have additional globality
issues at the quantum level, as outlined in Epilogue III.B.

12.15 Aspect 9: No Unexplained Multiplicities

Let us first explain what we meant in Chap. 10 by the corresponding Problem of
Time facet—the Multiple Choice Problem—only becoming relevant upon making
quantum-level considerations. This is not the same as it being a quantum-level
phenomenon; one is rather dealing with a four-legged beast with two legs in the
classical realm and the other two in the quantum realm. More specifically, that
canonical equivalence of two classical formulations of a theory need not imply uni-
tary equivalence of the Quantization of each (Fig. 12.2). Representation of most
classical canonical transformations by unitary operators cannot in fact be attained
while concurrently maintaining the irreducibility of the canonical commutation rela-
tions [483]: the so-called Groenewold–Van Hove phenomenon [376]. In this manner,
a single classical theory can lead to multiple inequivalent quantum theories. These
arise since Quantization amounts to requiring some preferred subalgebraic struc-
ture of classical phase space functions to be selected [475]. See Epilogue III.A for
further details and references.
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Fig. 12.2 Multiple Choice Problem: if the classical objects c1 and c2 are canonically related, their
Quantizations q1 and q2 need not be unitarily related

Fig. 12.3 Evolution of conceptualization and nomenclature of Problem of Time facets over the
course of this book. The first row are Kuchař and Isham’s [483, 586]. The last full row are the
underlying Background Independence aspects arrived at in the current book. This Figure’s colour
scheme for the first seven is further used in Part II’s presentation of each facet and of how facets
interfere with each other. Moreover, 8/9ths of these aspects are already classically present: all bar
the issue of physically and conceptually unaccounted-for multiplicities. Generator Closure then
furthermore applies to Spacetime Relationalism, which also has its own ‘generator complying’
notion of observables, and, at the quantum level, a Measure Problem

Kuchař [586] characterized the Multiple Choice Problem an ‘embarrassment of
riches’, in contrast to the Global Problem of Time for timefunctions’ being an ‘em-
barrassment of poverty’. This is since, given the Multiple Choice Problem, it is not
clear which of these inequivalent Quantizations would be realized by Nature at the
quantum level. For instance, this could render Loop and Geometrodynamics for-
mulations of GR inequivalent at the quantum level; which—if any—of these would
Nature choose to realize?

The above considerations of multiplicity become a temporal matter through e.g.
applying to pairs of internal times, of frame variables, or, more circuitously, of clas-
sical beables subalgebraic structures selected for the purpose of Quantization. This
diversity leads us to henceforth use the plural Multiple Choice Problems for Facet 9).

12.16 Conclusion. i. Summary Figures

Figure 12.3 summarizes the progress made in understanding of the Background
Independence aspects and Problem of Time facets.

On the other hand, Fig. 12.4 juxtaposes the temporal features from earlier Chap-
ters with some of the relations between these and Problem of Time facets. Parts II
and III return to some, but by no means all, of these time features in various ap-
proaches to the Problem of Time.
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12.17 ii. Quantum-Level Frontiers

1) Enlarged set of Background Independence aspects and thus of Problem of
Time facets. Sect. 10.12 presented 42 classical Background Independence aspects;
at the quantum level, subalgebraic structure selection additionally involves Multiple
Choice aspects. The count of aspects consequently increases to

(primary entities) × ((provider + algebras)× (local + global)

+ (algebras again due to Multiple Choice))

= {3 + 1 + 3} × {{1 + 1 + 1} × 2} + {1 + 1}} = 56. (12.24)

This count includes everything laid out in Chap. 10.12’s, as well as now Multiple
Choice issues that enter through the strategies’ choices of timefunctions or frames.

2) Particularly significant combinations of facets and strategies. Aside from the
groupings in Fig. 10.6, the following combinations of facets are of particular signif-
icance.

i) ‘A Local Canonical Approach’ involves facets 1) to 7) but with facet 5) confined
to playing a secondary role.

ii) ‘A Local Path, Spacetime or Covariant Approach’ involves keeping facets 3) to
7) while dropping facets 1) and 2).

iii) ‘A Local Canonical-and-Covariant Approach’ involves keeping all of facets 1),
2) and 5) at once.

iv) Part II demonstrates ‘factorization’ into facets 1)–3), 4) and 5)–7) at the classical
level, though Part III then shows that the first two factors merge at the quantum
level.

N.B. that the number of facets—and of strategies for each facet—renders it highly
impractical to study the Problem of Time exhaustively. Instead, in Parts II and III,
I concentrate on a particularly desirable ordering of the facets, with composite strate-
gies following suit. This ordering begins with Configurational and Temporal Rela-
tionalism, and then considers Constraint Closure as a means of Spacetime Con-
struction. From here, one can separately deal with spacetime’s own Relationalism
and Refoliation Invariance on the one hand, and with Assignment of Beables on
the other. The corresponding strategies are the Classical Machian Emergent Time
Approach, followed by its semiclassical counterpart, which is then supported by
Histories and Records Theories. The histories decohering provide a semiclassical
regime, whereas the records explain which species decohere which others. The his-
tories and the Semiclassical Approach can each provide the semblance of dynamics,
with which a pure Records Approach would have difficulties. Finally, the Semiclas-
sical Approach casts the whole scheme in a Machian framework.

3) Further theories of Gravitation. Part II shows that Supergravity has a sub-
stantially different manifestation of Background Independence from GR even at the
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classical level. Since Supergravity is a lower-energy limit of M-Theory, this exam-
ple could furthermore be considered a prequel to investigating Background Inde-
pendence and the Problem of Time in M-Theory.

4) Universal strategies. Some Problem of Time strategies are universal in the sense
that they exist regardless of what the underlying theory is, at least for a large number
of steps. For instance, universality applies to Emergent Machian Times Approaches,
Timeless Approaches and Histories Approaches. A further consequence of univer-
sality is that Parts II and III are not only of interest for the specific theories used
there as examples, but also of much wider interest throughout Gravitational Theory.

5) Quantum Background Independence for deeper levels of structure. Quanti-
zation of the deeper levels of mathematical structure is outlined in Epilogue III.C. At
the topological manifold level, Topological Field Theory (TFT) [915, 916] is an in-
teresting less structured variant of QFT. Along the other side of the Planckian cube,
questions yet again by Wheeler [897, 898] pointed to the interesting issue of incor-
porating topology change in quantum GR [350, 351]. He envisaged this in terms of
‘spacetime foam’, and Path Integral Approach sums over topological manifolds and
transition amplitudes between different spatial topological manifolds.

On the other hand, Isham [480–482, 497] went beyond the topological manifold
level to consider Quantization at the level of topological spaces. In fact, he has
also considered quantizing even more general structures that are no longer based on
equipped sets. See Epilogue III.C and Appendix U for an outline, and [260, 491–
494, 498] for a more full account. Within the Equipped Sets Foundational System
of Mathematics, the structures involved start to simplify as one approaches the sets
themselves (via collections of subsets). As regards modelling the Universe, however,
this may just be a further encroachment by Background Dependent thinking. One
idea here is that basing topological spaces on progressively simpler structures might
be replaced by basing topological spaces on increasingly general structures, such as
sheaves and topoi. See Appendix W for an outline of each; the latter also provides
a replacement for the conventional set-theoretic foundations of Mathematics. This
corresponds to the flat space, curved differentiable manifold, topological manifold,
topological space, topos. . . progression in notions of space and of spacetime. It is
also a wide enough arena in which to investigate the extent to which our Universe
can be modelled by the conventional ‘continuum’ ideas [480, 481].

12.18 Exercises VI: Quantum Gravity, Background
Independence and the Problem of Time

Exercise 0) Given that we have considered QFT and GR, consider the third ‘dou-
ble combination’ vertex of the ‘Planckian cube’ (Fig. 1): Quantum Newtonian
Gravity. i) Compare its characteristic lengthscale (3) with the Bohr radius and the
Hubble radius, so as to produce two arguments against the physical relevance of
this regime. ii) Provide a third argument based on decoherence: on what timescale
would such a quantum system decohere?
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Exercise 1) [A feel for the extremeness of the Planck units.] Derive each of the
Planckian quantities in the Preface and in Chap. 11, alongside the order of magni-
tude estimates these were compared to there.

Exercise 2) [Naïve power-counting renormalization arguments.] Reconsider these
(Sects. 6.5 and 11.2) in arbitrary-d .

Further Reading 1) i) Work through [143] as regards which features of M4 QFT
are lost in various simple curved-space models. ii) Also work through [874]’s treat-
ment of Bogoliubov transformations of Hawking radiation.

Exercise 3) i) Justify the Penrose diagram (Fig. 11.2.b) for a star collapsing to form
a black hole which subsequently undergoes Hawking evaporation. ii) Also estimate
the Hawking lifetime of a solar-mass black hole. iii) Compute the heat capacity of
a black hole. iv) Show that the end-point of evaporation is explosively unstable, at
least if the known Laws of Physics are taken to their logical conclusion. v) Finally
give an alternative derivation of Hawking lifetime from the Salecker–Wigner clock
inequalities (5.18).

Exercise 4) i) Canonically quantize Electromagnetism. Naïvely, Aμ would have 4
field-theoretic degrees of freedom. However, the Gauss constraint is present, and
additionally (4.10) is invariant under the gauge transformations (6.18). Thus Elec-
tromagnetism has two degrees of freedom per space point, corresponding to light
having two polarizations. Get round this feature by working in the Coulomb gauge.
ii)† Consider how the Yang–Mills counterpart of a) fares.

Exercise 5) i) Show that the ansatz (10.4) leads to a wave equation and inter-
pret the two ensuing polarizations. ii) Derive the gravitational wave formula
(time-averaged luminosity) ∝ 〈...

J ij
...
J ij 〉 for slowly-moving weakly gravitating

sources. Here, J = Iij − I δij /3: a tracefree quadrupole moment, with function de-
pendence on the t − r of the asymptotic background flat spacetime. iii) Provide
electromagnetic counterparts for i) and ii). iv) Give order of magnitude estimates
of the timescales on which atoms modelled purely classically would succumb to
collapse due to each of electromagnetic and gravitational radiation.

Exercise 6) Formulate quantum linearized GR.
Exercise 7) Work through Appendix I.1’s account of the geometry of Minisuper-

space.
Exercise 8) [Canonical isotropic Minisuperspace.] i) Show that the Hamiltonian

constraint is now π2
φ/2a

3 − π2
a /24a6a − m2a3φ2/2 = 0 for minimally-coupled

scalar field matter; consider also the effect of adding a cosmological constant term.
ii) Let the scalefactor a be an intrinsic time. Write down a classical ‘true Hamilto-
nian’ for this and promote it to a quantum wave equation. iii) Repeat with Misner
time Ω = −lna instead. iv) Choose instead to turn the above Hamiltonian con-
straint into a Klein–Gordon type equation. v) Demonstrate inequivalence between
this and the preceding. vi)† Show how Configurational Relationalism, Refoliation
Invariance and Spacetime Construction are all trivialized in isotropic Minisuper-
space, in the setting in which one adheres to the spatial hypersurfaces privileged
by homogeneity.

Exercise 9) [Canonical Bianchi Minisuperspaces.] Consider

ds2 = α2(t)dt2 − a(t)2hij (t)dx
idxj



12.18 Exercises VI: Quantum Gravity, Background Independence 199

for hij = exp(−2Ω)βij and βij = diag(β+ + √
3β−, β+ − √

3β−,−2β+). i)
Show that the GR kinetic term forms the combination −π2

Ω + π2+ + π2−. ii) Solve
the corresponding quantum wave equation in the case with zero potential (this cor-
responds to Bianchi I spacetime). iii) For Bianchi IX, the Ricci 3-scaler potential
is given by Eqs. (I.5)–(I.6); sketch this potential, and explain how Bianchi I bears
relation to it in an asymptotic manner.

Exercise 10)† i) Show that preshape space—unscaled relative coordinate space—is
a sphere Snd−1 in dimension d for n = N − 1 andN the number of particles. ii) Re-
derive the above results by performing Best Matching with respect to translations
and dilations. iii) Calculate the Poisson bracket of E with L. iv) Reduce out the
rotations as well, for 3 particles of equal mass in 2-d , and show that this geometry
is S2 by finding a coordinate transformation to the standard spherical coordinates.
v) Sketch where the qualitatively different types of configuration occur. In particu-
lar, where are the configurations containing tight binaries; why are these common
in the Newtonian gravitational potential version of the 3-body problem? vi) What
are the group orbits for the scale-invariant configuration space of 3 particles in
the centre of mass frame under the action of the rotations in each of 2- and 3-d?
vii) Repeat v) but now with the extra assumption of indistinguishable particles, to
show that the q space geometry is now closely related to R

3. viii) Repeat v) but
now without Best Matching out the dilations; what is q’s geometry? ix) Find the
form and physical meaning of the unit Cartesian vectors in the R

3 of scaled trian-
gle configurations that the S

2 of scaled triangles in 2-d can be taken to sit inside.
How are these related to this model’s R4 of unit Jacobi vectors?

Exercise 11) Show that i) in Electromagnetism the thick sandwich fails to be
Wheeler–DeWitt equation (defined in Appendix O.1). ii) The given expression for
York time (9.22) is the momentum conjugate to the usual 3-d Geometrodynamics’√

h. iii) York time is monotonic in recollapsing FLRW universes. iv) Work through
[124] and [921] to [925] to gain experience of the GR initial value problem and
some practise in manipulating (conformal) Killing equations. v) Explain why a
Schrödinger inner product is unsuitable for an indefinite quantum wave equation.
vi) Show that

E = −
∫

�
hijpijdV

is a conformal Killing vector for the GR configuration space metric but that this
does not respect the potential term as well. [Compare its Poisson bracket with the
potential term with that with its kinetic term.] What are the implications of this for
a Klein–Gordon type interpretation of the equations of Quantum Geometrodynam-
ics?

Exercise 12) i) For massless fermions, show that jμ5 := ψ̄γ μγ 5ψ is a classically-
conserved current. ii) Show that quantum-level conservation is out by a term

− e2

16π2
εμνρσFμνFρσ .
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iii) Show that a δ-function derivative term arises in the corresponding brackets
algebra. iv)† Interpret the above anomalous terms from a topological point of view.

Exercise 13)† Which global problems are already implicit in Chaps. 9, 10 and 12’s
outline descriptions of Background Independence aspects, Problem of Time facets
and strategies?

Exercise 14) Work through the Semiclassical Approach’s emergent time working
from (12.5) to (12.6).

Exercise 15) Set up a histories formulation for i) Newtonian Mechanics. ii)† GR.
Further Reading 2) Read the introductory account to Regge Calculus in [660].

Then work through Barrett and Crane’s improvement of this model [111]. Also
figure out for yourself how Causal Dynamical Triangulation [6], Spin Foams [711]
and the Causal Sets Approach [802, 804] differ in which structures they keep or
discretize.

Exercise 16)† How is the Group and Representation Theory of Diff (S2) is harder
than that of Diff (S1)?

Further Reading 3) At an introductory level, see e.g. [552] for each of the perturba-
tive Covariant Approach and Supergravity, [933] for String Theory, and e.g. [331]
for Loop Quantum Gravity.

Further Reading 4) More advanced reading includes the overviews of Quantum
Gravity in [194, 237–239, 471, 474, 478, 485, 552, 802] and Part III. More spe-
cialized books include [385, 386, 719] on String Theory, [232, 868] on Canonical
Supergravity, and [154, 746, 845] on Loop Quantum Gravity.

Exercise 17)† Show that the Ashtekar variables formulation of GR fits the same
set of Background Independence criteria as Geometrodynamics does. [We shall
see in Part II that e.g. considering Supergravity makes a far larger difference to
Background Independence and the Problem of Time.]

Exercise 18) i) Which terms in the Standard Model Lagrangian account for the
Standard Model vertices (Fig. 6.1.b)? ii) Upon including Gravitation, which terms
account for the further vertices in Fig. 11.1? iii) What further vertices does the
Minimal Supersymmetric Standard Model exhibit? iv) Which further vertices fea-
ture in alternative theories such as Supergravity and Kaluza–Klein Theory?

Exercise 19) (Very long!) Obtain i) the equations of motion and ii)† canonical for-
mulations corresponding to all the actions outlined in Chap. 11.

Exercise 20)† (Very long!) i) Show that gauging the Poincaré group leads to the
Einstein–Hilbert action of GR. ii) Show that gauging the N = 1 Poincaré super-
group leads to the corresponding Supergravity theory’s action; also find the repre-
sentations of the N = 1 Poincaré supergroup. iii) Redo ii) for all possible values of
(N, d) pairs. iv) Redo ii) now involving each of the conformal group and the N = 2
superconformal group.

Further Reading 5) [M-Theory.] See e.g. [136] as regards a canonical formulation,
and [719] for other approaches.

Further Reading 6) See [475, 919] for Geometrical Quantization, Parts II, III and
[483, 586] for the Problem of Time and Background Independence, and [482] and
Epilogues II.C and III.C for Background Independence and Quantization at deeper
levels of mathematical structure.
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Part II
Classical Problem of Time

This Part gives a detailed treatment of the Background Independence aspects exhib-
ited by classical GR, alongside the ensuing Problem of Time facets. In particular, we
concentrate upon interferences between these classical-level facets. We make par-
ticular use of the geometrodynamical formulation of GR, and of Relational Particle
Mechanics (RPM), Minisuperspace and Slightly Inhomogeneous Cosmology (SIC)
model arenas; a wider range of model arenas and alternative theories are on occa-
sion evoked (most frequently Electromagnetism, Yang–Mills Theory, Supergravity
and Ashtekar Variables approaches). In the opening chapters of Part II, we also ex-
pand on Chap. 3’s absolute versus relational motion debate, in particular as regards
Leibnizian and Machian features in Physics, including ephemeris-type times.



Chapter 13
Advanced Nomenclature for Facet Interference

13.1 The Various Primary Ontologies Considered

Part II begins (Chaps. 16–26) by considering worldviews in which primality is as-
cribed to space. Chapter 27 subsequently serves as a spacetime primality counter-
point. This primality, or features of spacetime, then enter a number of subsequent
Chapters such as 31, 32, 34, which foliate spacetime, or 33, which constructs space-
time.

Spatial primality can be argued, for instance, from Mach’s conceptual distinc-
tions between space and time, Broad’s point about co-geometrization not under-
mining conceptual distinction, and Wheeler’s points about spacetime losing pri-
mary significance at the quantum level and the role of Dynamics in the develop-
ment of Physics. These points suggest favouring separate treatment of space and
time—(3, 1) primality—rather than spacetime primality. Epilogue II.A then chips
in with subsequent arguments against null splits and for spatial surface centred
3 + 1 splits over time centred 1 + 3 threading splits. Configurations, configura-
tion spaces and Dynamics are ready elements for programs with spatial primality.
Indeed, Part II’s account of spatial primality begins by considering configurations,
configuration spaces and their Configurational Relationalism, by which this is the
first Background Independence aspect to treat.

In approaches which assume space, Q and q, Fig. 13.1’s ladder of increasing
levels of structure assumed are furthermore encountered.

Rung 1) Fully Timeless Approaches involve a single-instant ontology in terms of
the Q that form q alone. We begin with this in Chap. 14, though its structural spar-
sity leaves one in need of making more use of what structures and concepts remain,
which takes one outside of what is habitually covered in Theoretical Physics. Be-
cause of this, we postpone detailed treatment of I) to 26, first developing II) instead
(Chaps. 14–25) due to its anchorage on the relatively familiar structures below.

Rung 2) ‘Non Tempus sed Cambium’—‘not time, but change’—formulations as-
sume both Q and dQ. Formulations in terms of Q,Q̇ (velocities) or Q,P (mo-
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Fig. 13.1 Ladder of levels of structure assumed, including background, internal and emergent
time, and subsequent extension of Isham and Kuchař’s 3-fold classification—of Tempus Ante
Quantum, Tempus Post Quantum and Tempus Nihil Est—into a 16-fold classification

menta) are also used on some occasions. The change and velocity formulations
amount to extending q to a tangent bundle T(q), whereas formulations in terms
of momenta correspond to a cotangent bundle T∗(q). See Appendix F.4 for a
general outline of Fibre Bundle Theory. These additional structures allow, for in-
stance, for such familiar objects as actions and Hamiltonians. Formulations based
on Q, P and a Poisson bracket { , } thereupon are termed canonical. Finally note
that, in contrast to rung I), rung II) additionally affords use of Mach’s ‘time is
to be abstracted from change’ as a source of emergent times at the secondary
level.

Rung 3) ‘Non Tempus sed Via’ formulations involve finite paths γ : I −→ Q(λ)

rather than just infinitesimal changes on q.
Rung 4) Finally ‘Non Tempus sed Historia’ formulations involve histories η :
I −→ Q(λ), now alongside further structure than is usually ascribed to paths.

N.B. that the distinction between rungs 1) and 2) is a substantial one to emphasize.
This is since both of these [and even on some occasions rungs III) and IV)] have
been termed ‘Timeless Approaches’ alias ‘Tempus Nihil Est ’ [483, 586]. Adhering
to 1) in place of 2) amounts to a stricter brand of timelessness. Namely, ‘there is
no time at the primary level so configuration is all’ versus additionally allotting
primality to change of configuration (or to velocity, or to momentum).

For now, let us view both rungs 3) and 4) as involving ‘thick’ rather than just
‘thin’ infinitesimal changes, in the same sense as ‘thick’ versus ‘thin’ for sandwiches
in Fig. 9.4. We defer making finer distinction between rungs 3) and 4) to Chap. 28
due to parts of this resting on both canonical and spacetime primality positions.
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13.2 The Cubert Classification of Quantization and Facets
Ordering

In keeping track of, and presenting, Problem of Time facet orderings and interfer-
ences, a compact and clear notation for which facets are involved is much to be
recommended [26]. Being clear about at which point Quantum Theory enters each
approach is also crucial. CQBRT, pronounced ‘Cubert’ [26], generalizes a number of
well-known procedural orderings, for instance not only Isham and Kuchař’s Tempus
Ante Quantum, Tempus Post Quantum and Tempus Nihil Est, but also the distinction
between Dirac and Reduced Quantization. The C stands for Closure, the Q for Quan-
tization, the B for Assignment of Beables, the R for Reduction (taking into account
Configurational Relationalism), and the T for assigning a timefunction (thereby re-
solving Temporal Relationalism’s primary timelessness).

A first obvious use is declaring (some subset of) these letters in any order; to
keep this clearly distinct from surrounding text, we reserve the small upright Latin
capital letters for this purpose. Then for instance TQ denotes Tempus Ante Quantum
(more strictly, this is T . . . Q, since addressing facets in between does not detract that
longer ordering from being Tempus Ante Quantum ). Likewise, Q . . . T is Tempus
Post Quantum, and any ordering with no T in it that is held to correspond to a com-
plete approach is Tempus Nihil Est . Similarly also R . . . Q is Reduced Quantization,
whereas Q . . . R is Dirac Quantization. N.B. that ‘Reduced’ is used here of the elimi-
nation of first-class linear constraints Flin, and not of eliminating further non-linear
constraints such as GR’s H as well or instead. For eliminating H classically amounts
to prescribing a timefunction, and as such is the T move. In this way, among many
others, using the CQBRT notation clarifies when practitioners have been calling sub-
stantially different programs by similar names, thus avoiding mistakes of conflation
as well as of misunderstood conceptual and technical content. It also permits ready
identification of substantially similar programs by these having the same, or almost
the same, CQBRT summary name. [Clearly programs with the same CQBRT name
can have further sources of distinction, especially at the technical level.]

CQBRT is a natural successor of Isham and Kuchař’s Tempus Ante Quantum,
Tempus Post Quantum, Tempus Nihil Est classification which is in particular geared
to keep track of the huge amounts of Problem of Time facet interferences in at-
tempting to find an ordering that gets one past all the facet ‘gates’. CQBRT labels
are summaries of path orderings though the ‘gates’ of Kuchař’s enchanted castle of
Problem of Time facets. Thus they are summaries of answers to the questions that
Parts II and III are about. Part II broadly concerns how the letters in a CQBRT path
are ordered prior to hitting upon the letter Q. On the other hand, Part III concerns
how each such classical string may extend to a whole CQBRT path upon follow-
ing through with Quantization (and whatever further facet-addressing features are
required to complete that program).

A second consideration is that even just contemplating Q and T can be envisaged
to come in not 3 but 14 forms, as per the previous Sec’s rungs and Fig. 13.1.

Thirdly, practical experience shows us that one often has to go some of the gates
more than once. Hence there is no limit to how many B’s, say, feature in a CQBRT
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string. Fourthly, is that partly going through a gate is allowed. For instance one
might find the Kuchař beables but be ultimately interested in getting down to the
Dirac beables, or one might reduce out the LQG SU(2)(�) but not yet face reducing
out the accompanying Diff (�). Because of this, as well as Fig. 13.1 permitting ‘T’
to take four values and the void, the other letters in CQBRT are also open to taking
multiple symbols and the void. For instance, we write K in place of B to signify
finding the Kuchař beables. Fifthly, Part III argues the need to often ‘start afresh’ in
dealing with quantum versions of the gates, by which most of the other letters often
appear on both sides of the Q.

Finally, the reader may have noticed that CQBRT itself is only a four-facet string,
to there being rather more Problem of Time facets. Let us first concede that CQBRT

strings will eventually pick up Spacetime Relationalism (S), Foliation Dependence
(F) and Spacetime Construction (Z) letters too, for strategies for ‘A Local Resolution
of the Problem of Time’, and then Global and Multiple Choice letters besides for
‘Full Problem of Time’ resolutions. That said, RT, RTC and RTCB are all common
and also widely natural as factored-out subproblems of the Problem of Time. E.g.
no other facets feature until Chap. 27 in Part II or in the first thirteen Chapters of
Part III). Moreover, at least at the classical level, the B and Z sequels of RTC are
logically independent of each other, giving a branching path through the enchanted
castle’s gates. ZSF is finally a natural order for finishing off ‘A Local Resolution of
the Problem of Time’, based on: ‘supply the Relationalism for the Spacetime thus
Constructed and finally the Foliated version of all this’. So our main classical path
is of the form in Fig. 35.2.e), which is a dRCRTB subcase of CQBRT with the above
obvious ZSF as a side-chain. In designing this, and its quantum counterpart, the main
ambiguities to untangle reside in how to order CQBRT itself.



Chapter 14
Configuration Spaces and Their Configurational
Relationalism

The opening part (Chaps. 14 to 18) on spatially primality approaches is based on
a wide variety of examples of configuration spaces q. The current Chapter, more-
over, covers the start of Chap. 13’s Rung I)—configuration spaces alone—and does
not get far enough to involve Reduction thereupon, by which no Cubert label is
yet merited. We thus begin by giving, and pointing to many further, examples of
configuration spaces.

14.1 Examples of Configuration Spaces

We have already seen q(N,d) = R
dN in Sect. 2.13 in the context of Newtonian

Mechanics on absolute space R
d . Section 9.4 subsequently evoked q(N,d) = R

dN

again, with R
d now playing a fiducial role in defining redundant configurations in

RPMs. Another simple example of configuration space is the space of relative co-
ordinates relative space’, r(N,d) = q(N,d)/Tr(d) = R

nd for n := N − 1. In the
Newtonian Paradigm, this amounts to taking out the centre of mass for convenience.
In the Relational Approach, on the other hand, the centre of mass position for the
whole Universe is a fortiori meaningless. In either case, setting the more usual the-
ories of Mechanics free from overall translations is trivial. See also Appendix G.1
for various useful coordinate systems for r(N,d).

See Appendices G, H, M and N for many further examples of configuration
spaces with less trivial groups of physically-irrelevant transformations g. In the
case of Mechanics, q(N,d) remains a redundant configuration space, whereas the
non-redundant configuration space corresponding to g is the quotient space (see
Appendix M) q(N,d)/g. These examples are clearly also tied to Configurational
Relationalism, to which we next turn in greater detail.

© Springer International Publishing AG 2017
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14.2 Configurational Relationalism. i. Principles Discussed

Two a priori distinct conceptualizations of Configurational Relationalism in the
point particle setting are as follows.

a) g acts on absolute space a(d) (usually taken to be R
d ).

b) g acts on configuration space q(N,d), i.e. it acts, rather, on material entities of
at least some physical content.

b) can be approached via a)’s consideration of the groups acting on R
d . a) is more-

over well-known: the Erlanger Program for Geometry initiated by 19th century
mathematician Felix Klein, to which Appendix B’s standard mathematics applies.
The consequences for N -particle configurations within each geometry are outlined
in Sect. 14.5, whereas Chaps. 16 and 24 introduce the corresponding RPMs.

Some useful limitations on the choice of g,q pairs are as follows.

C) Nontriviality. g cannot be too large; this is a degrees of freedom counting cri-
terion. Using k := dim(q) and l := dim(g), a theory on q/g is inconsistent if
l > k, trivial if l = k and relationally trivial if l = k − 1. Relational nontrivial-
ity is meant here in the sense of requiring at least one degree of freedom to be
expressed in terms of at least one other. This is to be contrasted with degrees
of freedom being meaningfully expressed in terms of some external or elsewise
unphysical ‘time parameter’.

B) Further structural compatibility is required. A simple example of this is that if
one is considering d-dimensional particle configurations, then g is to involve
the same d (or smaller, but certainly not larger).

A) A more general structural compatibility criterion is for g is to admit a group
action on q. A group action’s credibility may further be enhanced though its
being ‘natural’. Some further mathematical advantages are conferred from group
actions being one or both of faithful or free, with the combination of free and
proper conferring yet further advantages. Appendices A.2 and C.6 explain this
terminology and outline the advantages; see also Appendix B.

One might additionally wish to choose g for a given q so as to eliminate all trace of
extraneous background entities. The automorphism group Aut(a) (defined in Ap-
pendix A.2) of absolute space a is an obvious possibility for g. Some subgroup of
Aut(a) [560] might however also be desirable, for instance because the inclusion of
some automorphisms depends on which level of mathematical structure σ is to be
taken to be physically realized. In this way, g ≤ Aut(〈a, σ 〉) for some σ is a more
general possibility. Such subgroups also comply with A) and stand a good chance
of suitably satisfying criteria B) and C); see Sect. 14.5 for examples.

14.3 ii. Direct Implementation

Given a q, g candidate pair, one seeks to represent the generators of g (indexed
by G) as g(Q, ∂

∂Q
) which manifestly act on q, One can subsequently investigate
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whether some candidate objects O(Q) (indexed by v and belonging to some space
of objects o) are g-invariants by explicitly checking that these are indeed preserved
by the generators. For particle configurations, invariants are plentiful and intuitively
clear for a wide range of g, as a direct consequence of the forms taken by the
corresponding g-invariants. E.g. for g = Eucl(d), separations and relative angles
between particles are of this nature, and Fig. G.3 tabulates further such for other g.

14.4 iii. ‘g-Act g-All’ Method: Wider Indirect Implementation

Being g-invariant is not the only way in which a given set of objects can be of
interest. For some q, g pairs, moreover, invariants are unknown or nonexistent.
There are more general concepts of ‘good g objects’, such as g-tensors (of which
g-invariants are but one example: g-scalars). Further possibilities include g-tensor
densities and ‘weak g-tensors’, meaning modulo a linear function of the generators
in parallel to Dirac’s notion of weak equality. Auxiliaries are here being represented
in terms of Q and g-bundle auxiliary quantities g.

The Best Matching method outlined in Chap. 9 is an example for handling non
g-invariant quantities; it is an indirect implementation of Configurational Relation-
alism. It is indeed straightforward to generalize the Best Matching method to ar-
bitrary g. However, since this method involves velocities or changes as well as
Principles of Dynamics actions, we postpone this example to Chap. 16. Let us for
now instead further generalize the indirect implementation of Configurational Rela-
tionalism in a formulation-independent manner. One of the many consequences of
this generalization is that it applies within the current Chapter’s q-only worldview.
Another is rendering Configurational Relationalism’s resolution in a more general
form which can be combined with strategies for further Problem of Time facets.
This is the first instance of Part II’s theme of forming General Strategies for each
facet which have enough scope that they can be combined with each other to form
A Local Resolution of the Problem of Time.

The General Strategy for Configurational Relationalism is the configurational
relationalizing map CR. This contains a g action followed by a move that uses
all of g, so we also refer to it more descriptively as the ‘g-Act g-All Method’
[38]. This approach applies to a vast range of objects O; in the current Chapter,
these are composites of configurational variables alone, O(Q alone), though further
Chapters extend this as per Sect. 13.1]. Such composites cover far more than just
actions S, e.g. also notions of distance (Appendices G.4 and N.8), of information
and correlation (Appendix Q), and quantum operators, alongside quantum versions
of the previous two notions (Chap. 42 and Appendix U). N.B. that the O need not
be g-invariant (if they were, one would be blessed with a direct implementation of
Configurational Relationalism).

In whichever case, we start by applying g-act; this can initially be thought of as

a map o
g×−→ g × o, O  →→

gg O . And we end by applying g-all: some operation

Sg ∈g which makes use of all of the g ∈ g. This has the effect of cancelling out
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g-act’s use of g, so overall a g-invariant version of the O is produced, which we
denote by

CR(O) := Og-inv := Sg ∈g◦ →
gg O. (14.1)

Examples of Sg ∈g include taking infs or sups, extremizing, summing, integrating
and averaging; in each case ‘over g’ is meant. The group averaging subcase of this is
a well-known and substantial basic technique in Group and Representation Theory.
In particular, there are well-defined versions of this for finite groups (Appendix A.5)
and for compact Lie groups (Appendix P.2). The sum and integral cases take the
forms

Sg ∈g include
∑
g∈g
,

∫

g ∈g
Dg. (14.2)

Here Dg denotes the group measure (in particular Appendix P.2’s Haar measure for
compact groups). Finally, Best Matching’s own Sg ∈g is extremization over g (see
Sect. 16.1).

‘Maps’ can furthermore be inserted between g-act and g-all to produce an even
more general

CR(O) := Og-inv := Sg ∈g ◦ Maps ◦ →
g O. (14.3)

‘Maps’ covers a very general assortment of maps, though these are to all be g-
invariant; if not, g would act on a new type of object O ′ = Maps ◦ O . ‘Maps’ is
useful in separating out the g part for study of g-actions thereupon in isolation
from further paraphernalia. E.g. one can view packaging of velocities into kinetic
terms in this manner, alongside multiplication by

√
2W and integration. These form

a sequence of three g-invariant ‘Maps’ which produce a Principles of Dynamics
action S from the thus isolated non-g-invariant objects O: the velocities.

As a further example, consider the Kendall-type g-invariant comparer between
shapes

(Kendall g-Dist) = (Q· −→
gg Q′)M. (14.4)

Statistician David Kendall’s own application of this concerns attaining ‘mini-
mal incongruence’ between planar figures. Compare with Best Matching, though
Kendall’s notion involves just the configurations rather than any notion of change as
enters Best Matching itself. See Appendix G.4 for further comparison of these and
other notions of distance between shapes.

The g-act construct is moreover capable of storing global information. In the
common case in which o and g are topological manifolds (the latter through being
a Lie group) this takes the form of a g-fibre bundle.1 In this case, g-all completes
the computation of a particular section Og-inv, by a procedure that peruses all the
information on each fibre so as to ensure a g-invariant output. This is illustrated free

1See Appendix F.4 for the definitions of g-fibre bundles and section.
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Fig. 14.1 g-act, g-all
technique in the Fibre
Bundles setting

of ‘Maps’ on the first line of Fig. 14.1. Upon including ‘Maps’ as well, because g-
act does not act on ‘Maps’ the first square commutes; the second does not, however,
since g-all does in general act on ‘Maps’. Involving ‘Maps’ in general clearly alters
the output of summing, averaging, inf or sup taking or extremization. So the section
Og-inv which ignores ‘Maps’ is indeed expected to differ in general from the section
O ′
g-inv which entertains some ‘Maps’.

14.5 On the Variety of Relational Configurations and RPMs

Let us next consider a variety of q, g pairs for particle configurations for which
RPM actions S can be built. N.B. that this book considers RPMs as model arenas
for the geometrodynamical formulation of GR, Classical and Quantum Background
Independence and ensuing Problem of Time facets [37, 45, 101, 552, 586], rather
than as an attempt to model the world directly. In this way, mathematically simpler
1- and 2-d RPMs—which already exhibit many of the features of GR that are emu-
lated by RPMs—are often preferable to the 3-d RPMs. This is because many of the
extra complexities of the latter are not in line with GR’s own additional complexi-
ties. The above view also leaves a number of other modelling assumptions for RPMs
open, so we address them below. See Appendix G for the Q and q corresponding
to the main RPM examples considered in this book.

1) For the most habitually considered case of a = R
d , Appendices B and E provide

many g, according to the following sources of variety.

Is scale physically meaningless? It is not in Barbour–Bertotti’s RPM [105], for
which g is the Euclidean group Eucl(d), whereas it is in Barbour’s RPM [102], for
which g is the similarity group Sim(d).2 One relational argument against inclusion
of scale concerns this being a single heterogeneous addendum to the shapes [108].
Conceptual undesirability may also be raised as regards scale playing so dominant

2From here on, terming these ‘Metric Scale and Shape RPM’ and ‘Metric Shape RPM’ respectively
helps get this point across while distinguishing them from yet further RPMs outlined below.
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a role in Cosmology. And yet there are currently no credible alternatives to scale as
regards explaining observational Cosmology [702, 736, 888]. Additionally, as we
shall see in Chaps. 18, 20, 23, 46, retaining scale may enable provision of time [29];
some of these approaches in fact rely on the aforementioned heterogeneity. It is the
scale contribution that renders the GR kinetic term indefinite, a feature not found
elsewhere in Physics and which causes a number of difficulties. On the other hand,
the Metric Shape RPM case corresponding to g = Sim(d) is both mathematically
simpler and recurs as a subproblem within the Metric Shape and Scale RPM cor-
responding to g = Eucl(d). After making clear the nature of the choices involved,
this book mostly uses the above two cases as illustrative examples.

If shears and Procrustean stretches (see Fig. B.1) are considered instead, these
combine with translations and rotations to form the ‘equi-d-voluminal group’
Equi(d), or furthermore with the dilations to form the affine group Aff (d). This
option ensues from preservation of the top form supported in dimension d , which
is built out of the exterior product ∧ instead of preserving the · inner product. This
is the arbitrary-d generalization of the cross product formula ( × )3 for area in 2-d
and of the scalar triple product formula [ × · ] for volume in 3-d . Moreover, each of
Equi(d) and Aff (d) corresponds to a further type of geometry as per Appendix E.1.
Examples of the corresponding RPMs are outlined in Sects. 24.10 and in [36].

2) Are the configurations to be mirror image identified, and are the particles to
be distinguishable? These translate to issues of q topology, involving using not
q but more generally q = ∑N

I=1a/g
′ for g′ a discrete group. In particular,

g′ = Z2 for mirror image identification, ZN for N indistinguishable particles
and Z2 × ZN if both apply; see Appendix G.3 for examples. Finally, partial
indistinguishability is also possible.

3) In cases in which RPM configuration spaces q/g exhibit strata (outline
Appendix M.5), various alternative approaches are pertinent, as laid out in
Sect. 37.5.

4) Other models for absolute space amight also be considered, such as Rd ∪ ∞, Sd

or a more general manifold M. In this setting, multiple particles remain mathe-
matically represented by multiple copies of absolute space, so the corresponding
N -particle configuration space is ×N

I=1M.

The case of Rd ∪ ∞—inclusion of Riemann’s extra ‘point at infinity’ structure – ad-
ditionally admits inversion in S

d−1 and consequently special conformal transforma-
tions as per Appendix E.3. Now consider regarding these as physically meaningless,
i.e. taking g to be the conformal group Conf (d) (of local angle preserving transfor-
mations) or various possible subgroups thereof [36]. The corresponding RPM is
local relative angle alias conformal shape mechanics [36] and briefly outlined in
Sect. 19.4.

Direct experiences in the world around us involve shape and scale. In contrast,
the extra whole-universe model shears and Procrustean stretches among the equi-
d-voluminal and affine transformations identify configurations under distortions of
relative angles and of relative separations. Contrast also with Conf (d)’s additional
special conformal transformations. Neither of these correspond to the totality of
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measurements in local everyday experience. Moreover, physical theories with scale
are quite often considered that possess a distinct scale-invariant or conformally-
invariant phase in an ‘unbroken’ higher-energy regime [395]. This is one way in
which matching everyday experience is not all. Another is through Affine Geometry
entering the analysis of images [788] of everyday experience’s objects. We shall
additionally see that Conf (d) and Aff (d) are useful for modelling aspects of GR and
of further Theories of Gravitation (Chap. 19). This corresponds to Conformal and
Affine Geometry also being two of the simplest variants at the level of Differential
Geometry (Appendix D.2).

As further options, firstly S
2 [37, 537, 539] corresponds to the geometry of ‘the

observed sky’ in place of a ‘dynamical solid geometry’ R3. The corresponding RPM
is outlined in [46]; this arises from modelling absolute space by a = S

n. Secondly,
S

3 arises as a substitute for R3 space in the role of a upon considering that we live
within a closed GR cosmology.3 [46] outlines the RPM corresponding to this case
as well.

5) A further feature of GR which can be entertained at this point is that the notion
of space M itself be dynamical. This could undergo any combination of overall
expansion, anisotropic change, or inhomogeneous change. A further source of
variety here is whether to model particles on a dynamical M [46], fields on a
dynamical M or just the dynamics of M itself. Sections 8.3 and 8.10, as well as
Appendices H and N cover various examples of this.

Many of the above sources of variety can, furthermore, be composed; see Ap-
pendices E and G. In particular, each a = M has its own suite of each of metrics
thereupon and of groups g acting naturally on these. Section 19.8 outlines Super-
symmetry as a sixth source of variety. Finally, direct considerations on some oc-
casions succeed in finding the relational configuration space and then building a
Mechanics thereupon. This is as opposed to finding a relational configuration space
by having an indirectly-formulated RPM and reducing its action. These are cov-
ered in Sects. 16.7; moreover in some cases coincident theories arise from these two
approaches.

Shape Statistics for the theory in question’s configurations is among the struc-
tures alluded to in Sect. 13.1 as remaining available within Timeless World-
views. The Sim(d) case of this is Kendall’s well-developed ‘Shape Statistics’
[536, 539, 792], which motivated his own work on the corresponding notion of
shape. The Author pointed out in [18, 33] that this coincides with Barbour’s notion
of shape [102], meaning that many further questions concerning Metric Shape RPM
had already been answered by Kendall. Moreover, given the variety of notions of
shape pointed out above and in Fig. G.4, and that each has a corresponding Shape
Statistics, we henceforth refer to Kendall’s as Metric Shape Statistics. See Sect. 26
and Appendices R and T for more on Shape Statistics.

3
S

3 is in many senses the simplest closed model for space. Its closest rival is the 3-torus T3, which,
due to arising from the simplest topological identification of R3, is locally flat. However, this has
less (global) Killing vectors, by 6 forming SO(4) to 3 forming ×3

i=1U(1).
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Minimal relationally nontrivial unit [36] is a particularly useful notion. This is
concurrently the smallest relationally nontrivial

1) whole-universe model,
2) dynamical subsystem, and
3) Shape Statistics sampling unit.

The relational triangle (Fig. 9.4.d) is an archetype of this, as reflected both in Bar-
bour’s seminars often having involved shuffling wooden triangles and in Kendall’s
sampling by triangles leading to his spherical blackboard computational tool. Fig-
ure G.4 tabulates further examples, and points to 1-d’s limitations: 1-d has not only
no continuous rotations and the only discrete rotation coinciding with inversion, but
also no nontrivial volume forms by which it is bereft of an affine extension.



Chapter 15
Temporal Relationalism (TR)

We next allow for velocity or change at the primary level. This setting—Rung II)
of Sect. 13.1’s ladder—permits physical theories to take more familiar forms, e.g.
in terms of an action or a Hamiltonian. As this approach obtains an emergent time
at the classical level, it is of Tempus Ante Quantum (TQ) type. The current Chapter
considers this for the 1-d version of the Metric Shape and Scale RPM model arena.

15.1 General Enough Temporal Relationalism Implementing
(TRi) Strategies

Modelling closed universes from a Background Independent perspective gives
Sect. 9.7’s Temporal Relationalism Principle, by which there is ab initio a classical
Frozen Formalism. Adopting this principle, moreover, does not make constructive
use of how one defines ‘universe’. This is in contrast with Chap. 3’s subsequently
discarded Leibniz Perfect Clock Principle. In this way Sect. 3.1’s ‘Pandora’s box’—
that our conception of the Universe has changed since Leibniz’s day due to the in-
ception of GR and the gathering of cosmological data—remains unopened.

The Temporal Relationalism Principle is useful due to admitting sharp mathe-
matical implementations. To begin with, we work at the level of selection principles
for Principles of Dynamics actions, which we build up via various natural compound
object structures built upon the configurations Q. In each case, Principle TR-i)
(Sect. 9.7) is pre-requisite.

A first implementation of Principle TR-ii) consists of a label featuring but be-
ing physically meaningless. This is due to being able to exchange this label for any
other (monotonically related) label without altering the physical content of the the-
ory (line 1 of Fig. 9.2). An action built in this manner is Manifestly Reparametriza-
tion Invariant. This is the approach already followed in Part I due to its short-term
advantage of affording a relatively conventional presentation of subsequent physi-
cal notions. For instance, a primary notion of velocity can then be defined as the
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derivative with respect to λ:

velocity := d(configuration variable)

d(label time
i.e.

dQ

dλ
. (15.1)

In this approach, the tangent bundle T(q) is realized as configuration–velocity
space. One can next build the kinetic term T := ‖Q̇‖M

2/2 = MABQ̇
AQ̇B/2. Let

us assume for now that this takes the most physically standard form: homogeneous
quadratic in the velocities;1 this assumption is removed in Sect. 17.2. Finally, ac-
tion in the sense of the Principles of Dynamics is a map S : T(q) → R. The current
application’s Jacobi action [598] is of the form

SMRI
J :=

∫
dλLMRI

J = 2
∫

dλ
√
TW. (15.2)

A second implementation for TR-ii), which also goes back historically to Jacobi
[364], is Manifest Parametrization Irrelevance: in which no use of λ is to be made at
all. One immediate consequence of this is that there is no primary notion of velocity:
this has been supplanted by a ‘change in configuration’ differential,

d(configuration variable) i.e. dQ. (15.3)

Then similarly to Q,Q̇ being the well-known Lagrangian variables for Mechanics,
we term Q,dQ the Machian variables since these encode Mach’s Time Principle
allowing for change to be involved at the primary level. In either case, one’s primary
ontology is a point and a tangent in configuration space. The first case represents
this as configuration–velocity space and the second as configuration–change space,
but both correspond to the same tangent bundles T(q).

Further consequences are that kinetic energy is supplanted by kinetic arc element

ds := ‖dQ‖M =√MAB(Q)dQAdQB, (15.4)

and the Lagrangian by the physical alias Jacobi arc element

dJ := ds
√

2W(Q). (15.5)

[More strictly, this supplants the Lagrangian L in line 2 of Fig. 9.2.] The formula
for action is now

SMPI
J :=

∫
dJ. (15.6)

1The configuration space metric M = M(Q alone) used here assumed to be independent of the
label time and of the velocities. Also the potential assumed is of the form V = V (Q alone); the
‘potential factor’ itself is of the form W(Q) := E − V (Q). These assumptions make good sense
in the intended whole-universe model setting, as opposed to modelling subsystems or dissipative
systems.



15.1 General Enough Temporal Relationalism Implementing (TRi) Strategies 219

Lemma 1 Equations (15.2) and (15.6) are indeed equivalent. [This is proved in
Fig. 9.2.]

A difference in formalism between the two implementations arises through (15.3)
involving a change covector [37], which, as we shall see below, attaches ‘change
weights’ to further Principles of Dynamics entities. These ‘change weights’ can
furthermore be identified as a Z-valued version of the homothetic weights subcase
of the well-known conformal weights2 In this way, the Manifestly Parametrization
Irrelevant implementation modifies the Principles of Dynamics into a homothetic
Tensor Calculus with Z-valued exponents. This structural observation is subse-
quently useful in keeping track of the many further modifications (arising through-
out Part II and collected in Appendix L) in passing from the habitual Principles
of Dynamics to the Temporal Relationalism implementing Principles of Dynamics
(TRiPoD).

So for instance, kinetic energy and Lagrangian are replaced by kinetic and Jaco-
bian arc elements respectively, which are both change covectors. (15.5) can more-
over be read as these being simply interrelated by a conformal transformation. On
the other hand, the notion of action itself remains invariant under these reformu-
lations: it is a change scalar. Note also that (15.6) signifies that, in terms of the
physical Jacobian arc element, dynamics takes the form of a geodesic principle. In
this way, the problem of motion reduces to the problem of finding the geodesics of
a corresponding geometry. On the other hand, in terms of the kinetic arc element,

SMPI
J = √

2
∫ √

Wds: (15.7)

a parageodesic principle [659], i.e. geodesic up to a conformal factor,
√

2W . This
has the advantage of being tied to q’s geometry, which is a unique geometry for
the family of problems with different potential factors, as opposed to the preceding
involving a different geometry for each of these.

The third implementation of TR-ii) is to carry out the second implementation’s
moves, however now regarding these as the construction of an action corresponding
to a given geometry. Indeed, Jacobi historically wrote down his action principle
in its aspect as a geometrical formulation of Mechanics rather than its aspect as a
Timeless Worldview.

Lemma 2 These two perspectives coincide. [This is a mathematically straightfor-
ward, if conceptually curious, duality.]

The point of using the second implementation rather than the third is that no
reference is now ever made to a parameter that is, in any case, irrelevant. More
generally, it is a conceptual advance for Background Independent Physics to cease

2See Appendix D.7 for conformal and homothetic Tensor Calculi.
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to use names and notions which derive from physically irrelevant or Background
Dependent entities.

In more detail, Jacobi’s construction associates a Mechanics to each given geom-
etry of the homogeneous quadratic form (15.4), which covers (semi-)Riemannian
geometries. This geometry conversely plays the role of configuration space q for
that Mechanics. Mathematical physicist John Synge subsequently generalized this
[598] to a more general notion of geometry, as outlined in Sect. 17.2. One conse-
quently postulates geometrical Jacobi(–Synge) type actions SJS of type Sq-Geom.
By a duality, these happen to also be Manifestly Parametrization Irrelevant and
thus Manifestly Reparametrization Invariant, so the three implementations are in-
deed mathematically equivalent. To celebrate, we subsequently drop MRI, MPI
and q-Geom superscripts. We often also substitute the JS subscript and its com-
mon J label subscript for the label TR for which clearly displays the concep-
tual type of Background Independence aspect incorporated: Temporal Relational-
ism.

Example 1) Jacobi’s action principle for Spatially-Absolute Mechanics, for which
ds =√mIdqIdqI and W(Q) = E − V (q).

Example 2) Scaled 1-d RPM with translations trivially removed [37] is covered
by another case of Jacobi’s action principle. Here ds = √dρidρi and W(Q) =
E − V (ρ). This has the advantage over 1) of being a relational whole-universe
model.

Example 3) Misner’s action principle [659] for Minisuperspace GR is also of this
form. We already presented a subcase of this in Sect. 9.9, whereas Sect. 17.1 con-
siders a further range of such. This is furthermore a subcase of full Geometro-
dynamics’ Baierlein–Sharp–Wheeler [89] action (9.11); the title of their paper is
“Three-dimensional geometry as carrier of information about time”, which sup-
ports the above duality. Upon subsequently passing to the relational GR action,
this can be rephrased in the temporally Machian form ‘geometry and change of
geometry as carrier of information about time’. Moreover, GR’s spatial geometries
are but an example of q geometry, so this can be further generalized as regards
range of theories, to ‘Configuration and change of configuration as carrier of in-
formation about time’.

Example 4) We postpone nontrivially Jacobi–Synge examples to Sect. 17.2.

We keep track of TRiPoD via the end-summary Fig. L.2. The General Strat-
egy for Temporal Relationalism consists of TRiPoD followed by TRiFol (folia-
tions: Chap. 34), TRiCQT (Canonical Quantum Theory: Chap. 41.3) and TRiP-
IQT (Path Integral Quantum Theory: Chap. 52). The main virtue of this formal-
ism is that keeping one’s calculations within this formalism prevents the Frozen
Formalism Problem inadvertently re-entering while one is subsequently addressing
further facets. Finally note that working with TRi formulations is but the larger
of two parts in handling Temporal Relationalism; approaches using this eventu-
ally need to be completed by a Machian ‘time is to be abstracted form change’
step.
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15.2 Equivalence to the Euler–Lagrange Formulation

The familiar Euler–Lagrange formulation of Mechanics has an action of the form

SEL =
∫

dt L =
∫

dt{Tt − V }. (15.8)

Here Tt is the version of the kinetic energy that is in terms of d/dt derivatives. Also
t = tNewton in Mechanics, so this formulation immediately fails to obey TR-i). On
the other hand, the previous Sec’s formulations do obey both TR-i) and ii).

Lemma 3 The previous Section’s formulations are mathematically equivalent to the
Euler–Lagrange formulation (subject to the latter’s Lagrangian L not depending
explicitly on t).

Proof Rewrite

SEL =
∫

dt L as SEL =
∫

dλ ṫ L(Q,Q̇, ṫ): (15.9)

λ-parametrization of the action by adjoining time to the system’s configurational
description (the dot here denotes d/dλ). The original Lagrangian’s explicit t-
independence means that (15.9)’s t is a cyclic coordinate. Thus Routhian reduction
(Appendix J.5) applies, giving

LTR(Q,Q̇) := L(Q,Q̇)ṫ − P t ṫ for
∂L

∂ṫ
= P t = −E, constant. (15.10)

See Sect. 15.9 for the converse working. �

The above also serves to justify the identification of the Jacobi action’s W as
the combination of well-known physical entities E − V . The role of t in (15.8) is
played by tNewton, whereas (15.7) makes no primary mention of any such quantity.
Indeed, the above application of Routhian reduction is termed the parametrization
procedure in the Mechanics literature [598]. This refers to the (Nonrelational!) ad-
junction of the 1-d space of a time variable to the configuration space q −→ q× T.
This is then incorporated by rewriting one’s action in terms of a label-time parameter
λ ∈ T.

15.3 TRi Form of Conjugate Momentum

Using the standard definition of momentum conjugate to Q (J.8), the Manifestly
Reparametrization Invariant form of the Jacobi action gives

P = M
√
W/T ◦Q. (15.11)
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However, Temporal Relationalism has been argued to have no place for velocities or
Lagrangians as primary entities, so a new TRi definition of momentum is required:

P := ∂ dJ

∂ dQ
. (15.12)

Lemma 4 This is equivalent to the standard definition of momentum.

Derivation This follows from the ‘cancellation of the dots’ Lemma which is com-
monplace in the Principles of Dynamics [371]. �

Since (15.12) is a ratio of changes, momentum is also revealed to be a change
scalar. So whereas TRi places a change weight upon each use of T(q), it leaves
T∗(q) invariant. Computing this gives

P = M

√
2W dQ

‖dQ‖M

. (15.13)

15.4 Jacobi–Mach Equations of Motion

The usual form of the equations of motion is Euler–Lagrange’s (J.3). Computing
this for a Manifestly Reparametrization Invariant action gives

d2QA

dt2
+ Γ A

BC
dQB

dt

dQC

dt
= NAB ∂W

∂QB
, (15.14)

where Γ A
BC are the Christoffel symbols of the q geometry.

However, the above make reference to times, velocities and Lagrangians. In TRi
form, the equations of motion are, rather, the Jacobi–Mach equations that follow
from Jacobi’s arc element in terms of Machian variables:

d

{
∂ dJ

∂ dQA

}
= ∂ dJ

∂QA
⇒ (15.15)

√
2W d

‖dQ‖M

{√
2W dQA

‖dQ‖M

}
+ Γ A

BC

√
2W dQB

‖dQ‖M

√
2W dQC

‖dQ‖M

= NAB ∂W

∂QB
. (15.16)

Note that (15.15) is an ‘impulse formulation’ of Newton’s Second Law.

15.5 Differential Hamiltonian

See Appendix J.6) for an outline of the usual theory of the Hamiltonian. The Re-
lational Approach, however, requires instead dH(Q,P ) := dJ (Q,dQ) − P dQ.
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This is a differential change covector version of the Hamiltonian H itself, but based
on the same set of (already TRi!) Hamiltonian variables Q,P , and so it also lives
on T∗(q) for the homogeneous quadratic theories.

15.6 Quadratic Constraints from Temporal Relationalism

In the ADM formulation of GR, the Hamiltonian constraint H (8.23) arises from
varying with respect to the lapse α . However, the Misner formulation has no such
extraneous time-like variable, so does this case still have a H, and, if so, where does
it come from? The answer is provided by Dirac’s Lemma (stated and demonstrated
as Dirac’s argument in Sect. 9.7). We now uplift this to TRi form.

Lemma 5 Geometrical actions Sq-Geom imply at least one primary constraint.

Derivation Sq-Geom is dually SMPI, so it is homogeneous of degree 1 in its changes.
Therefore each of its total of k momenta are homogeneous of degree 0 in the
changes. Consequently, these are functions of k—1 independent ratios of changes.
So there must be at least one relation between the momenta themselves without any
use made of the equations of motion. But this is by definition a primary constraint. �

Moreover, the primary constraints arising from Jacobi square-root type actions
also have a distinctive form. I.e. the quadratic form of this action (a single square
root of a square) in turn provides a single primary constraint that is purely quadratic
in the momenta. This constraint is reminiscent of the squares of the sides of a tri-
angle in Pythagoras’ Theorem, or, more usefully, of direction cosines squaring to
one. In this manner, taking into account this constraint causes one to pass from con-
sidering a point and a vector in q to considering just a point and a direction. Thus
one has not T(q) but a direction bundle alias unit tangent bundle. Finally, in the
current case, instead of the entities in question squaring to 1 as direction cosines do,
the momenta ‘square’ by use of the M matrix’s inner product to the ‘square of the
hypotenuse’, 2W .

Moreover, the primary constraint arising in this manner for GR is indeed H
(Chap. 9 showed this for Minisuperspace, whereas the full GR case is in Chap. 18).
Thus in Background Independent Physics, the Hamiltonian constraint H that is cen-
tral to the dynamics of GR H arises directly from the demand of Temporal Relation-
alism. Its purely quadratic form is furthermore dictated by the precise (quadratic)
way the action complies with Temporal Relationalism. This in turn induces H’s
purely quadratic dependence on the momenta. H is furthermore well-known to give
the Schrödinger-picture manifestation of the most well-known Quantum Problem
of Time facet: the Frozen Formalism Problem. So the Temporal Relationalism the
Background Independence aspect is indeed a deeper and already classically-present
replacement for the Frozen Formalism Problem.
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On the other hand, for Temporally-Relational but Spatially-Absolute Mechanics
following from Jacobi’s action, the quadratic energy constraint

E :=
N∑
I=1

p2
I /2mI + V (q) = E (15.17)

plays an analogous role to H. The I = 1 to N → A = 1 to n indices, q → ρ of
this does likewise for 1-d Metric Shape and Scale RPM (ρ here are relative Jacobi
coordinates of Appendix G.1.) This is the first of many justifications for considering
such Mechanics as useful conceptual guides to some facets of the Problem of Time
for GR itself. In both cases, the quadratic form of the geometrical arc-element in the
action gives rise to an equation of time,

Chronos := ‖P ‖N
2/2 −W(Q) = 0. (15.18)

This is mathematically of the form Quad [cf. Eq. (8.26)] which begets a Quantum
Frozen Formalism Problem. The forms of E and H are immediately recognizable as
elsewise well-known equations because Chronosis a change scalar.

Let us finally comment on the smaller case of Constraint Closure which is inter-
nal to Temporal Relationalism. Since the current Chapter’s finite models only have
one constraint, Chronos, this just forms the trivial Poisson bracket with itself so
Constraint Closure is attained. As we shall see in Chap. 24, however, this argument
breaks down upon passing to Field Theories.

15.7 Mach’s Time Principle and Its Implementations

Temporal Relationalism for the Universe as a whole is to be reconciled with our
everyday experiences along the following lines.

a) Our experiences are of subsystem physics rather than of the Universe as a whole.
b) Mach’s Time Principle—that time is to be abstracted from change—applies,

whereby time emerges at the secondary level.

This sense of Machian holds for geometrical dually Manifestly Parametrization Ir-
relevant implementations to be in terms of change dQ in place of label-time velocity
dQ/dλ. Moreover, Eqs. (15.13), (15.16) involve ratios of changes, as is to be ex-
pected in the Relational Approach. The next issue is which change is involved. Two
diametrically opposite views on this are as follows

1) Time is to be abstracted from any change (a position of Rovelli’s [752, 755]).
2) The most perfect time is to be abstracted from all change,

tem = F[Q, all dQ]. (15.19)

Barbour adopted this position [98, 104], which partly rests upon taking Leibniz’s
Perfect Clock Principle seriously.
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3) The Author’s position [30, 39] represents ‘middle ground’ between 1) and 2), al-
beit with more proximity to 2). 3) is inspired by Clemence’s [211] consideration
of the astronomers’ ephemeris time (Chap. 3.1). This was also of substantial in-
spiration in 2), while being free from Leibniz’s Perfect Clock Principle, by which
the Author was able to go further than Barbour in implementing Clemence’s con-
ceptualization. In more detail, position 3) is that

generalized local ephemeris time (GLET) is to be abstracted from
a sufficient totality of locally relevant change (STLRC). (15.20)

Let us next further explore these three positions by considering the following
alternatives; this can be seen as a further extension of Sect. 1.12’s list of clock
properties.

IA) Any subsystem will serve as a clock.
Or IB) Some subsystems are better than others as clocks, e.g. by Sect. 1.12’s crite-

ria.
IIA) Clocks are localized subsystems—‘a wristwatch’, as typically motivated by

convenience of reading hand, and which is attuned to Newton’s position that ‘the
Universe contains clocks’.

Or IIB) ‘Ephemeris Time Principle’ [211]. The changes of the actual subsystem
under study are to be factored into one’s timekeeping. This is generally much larger
than a ‘wristwatch’ conception of clock: e.g. the Solar System. This is motivated
by the need to at least occasionally check whether recalibration is required.

IIIA) The less coupled a clock and subsystem under study are, the better [335, 727].
This is usually motivated by the isolated experiment under control being a type of
clean stable system upon which to base a clock.

Or IIIB) The clock and subsystem fundamentally have to be coupled. This is occa-
sionally motivated from the idea that keeping time for a system requires participa-
tion. In some formulations there are difficulties as regards a clock keeping time for
a subsystem if it is not coupled to it at all; see Sect. 47.6 for an example.

Within this last alternative, a compromise IIIC) can be reached: a small but strictly
nonzero coupling can be assumed. In this case, the subsystem under study only very
gently disturbs the physics of the clock. This compromise is ultimately inevitable
because nothing can shield gravity, which places a bound on attaining ‘clean clocks’
by isolation.

In the case of time being abstracted from any change, IA) applies to 1). This ap-
proach also carries connotations of IIA), which is far more common among current
theoretical physicists than IIB). On the other hand, the case of time being abstracted
from all change in the Universe rests on comparison IB) and IIB) enhanced by the
following.

IV) ‘The more change is included the better’.

Barbour then takes this to its logical extreme, along the following lines.

V) ‘Include all change’. Once again, this rests on Leibniz’s Perfect Clock Principle.
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Note that IV) and V) refer to recalibration, as opposed to stability or convenience of
reading hand.

Much can be learnt by contrasting the extreme cases. For instance, ‘any change’
implements a particular sense of ‘democracy’. This has been argued to be useful
in generic situations (taken to be crucial in GR) in which there is no privileged
timestandard. However, ‘all change’ implements a distinct sense of ‘democracy, and
STLRC does as well (here all have the opportunity to contribute.3 Thus ‘democracy’
is not per se a clear-cut advantage of ‘any change’. Moreover, IB)’s selectiveness is
in close accord with humanity’s history of accurate timekeeping, as per Sects. 1.12,
3.1, 5.4, 5.5 and 7.7. Both the ‘all change’ [104] and the STLRC [39] positions
invoke this as a useful feature. This is already in evidence in Chap. 1’s discussion of
how sidereal time out-performed apparent solar time as regards predicting eclipses.

Philosopher Adolf Grünbaum’s observation [397]—that dynamical facts discrim-
inate—is of particular relevance at this point. E.g. the earth’s motion slowing down
and the celestial bodies speeding up are kinematically equivalent. However, there
is a clear mechanism for the first: dynamical effects of nearby masses causing tidal
friction, whereas there is no known mechanism for the latter. Also for the second
multiple dynamical bodies correlatedly speed up, so multiple and correlated effects
would be required, whereas for the first the earth’s rotation slowing down does not
require such a coincidence. This provides an argument against ‘any change’ leading
to ‘any time’ approaches.4

The extreme position V) provides, within the context of IIB), an incontestable
time. This is in the sense that there is no more change elsewhere that can run in
concerted ways that cause of one to doubt the validity of some timestandards. How-
ever, whole-universe and perfect notions for clocks have the problems pointed out
in Chaps. 3.1, 5.4 and 9. Thus only the ‘any change’ and STLRC positions are op-
erationally realizable. In conclusion, the STLRC position wins out overall.

15.8 Discussion of Generalized Local Ephemeris Time (GLET)

The time abstracted from STLRC is a generalization [39] of the astronomers’
ephemeris time of Chap. 3. This GLET is in accord with the clock properties of
Sect. 1.12 and the choices IB), IIB), IIIC) and IV).

Taking the Earth not to read off a dynamical substitute for Newtonian time al-
lowed for a substantial advance in timekeeping in the passage from sidereal to

3Even in generic situations, one can locally consider a ranking procedure for one’s candidate times,
alongside a refining procedure until a physically attainable sought-for accuracy is met. This pro-
cedure may well often give a less accurate timestandard than the familiar and highly non-generic
Earth–Moon–Sun system example of ephemeris time for use on Earth. Nevertheless, it gives rise
to an extremum.
4A similar argument can also be made as regards the greater mechanistic plausibility of expanding
universes rather than of shrinking atoms.
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ephemeris time. In analyzing a wider range of such situations, it is helpful to de-
compose postulate IIB) into two parts. The first part involves the physics of the
clock itself. The second part concerns the reading of the clock not corresponding to
the parameter that most simplifies the equations of motion. The latter can be more
holistic—involving the system under study rather than just the convenient reading
hand part of the clock itself.

There might be an ‘unexpected bound’ on clock precision due to the holistic
effect occurring at some appreciable level. Have we seen any evidence for this to
date? For sure, the leap seconds that some years are adjusted by are not of this na-
ture. This is because these concern adjusting civil time to compensate for irregular-
ities in the rotation of the Earth. Further adjustments—3 and 5 orders of magnitude
smaller—between ‘barycentric dynamical time’ for Space Science and ‘terrestrial
time’ for Science on Earth [783] are currently fully accounted for by standard Grav-
itational and Relativistic Physics. Thus no holistic realizations of IIB) are currently
in evidence. This is pointed out lest the observation that the astronomers’ ephemeris
time notion is Machian be elsewise misunderstood to carry such holistic conno-
tations. Nevertheless, one might keep an open mind as to whether holistic effects
might show up at some level much finer than the gradual replacement of sidereal by
ephemeris time in the first half of the 20th century. This suggests developing Back-
ground Independent conceptual thinking as well as the far more specific minutiae
of yet further improving atomic clocks.

N.B. that the GLET finding procedure does not just use a change to abstract a
time. This additionally checks whether using this time in the equations of motion
for other changes suffices to predict these to one’s desired precision. If the answer
is yes, then we are done. If not, consider further locally-significant5 changes as well
or instead in one’s operational definition of time. If this scheme converges without
having to include the entirety of the Universe’s contents, one has found a GLET
that is locally more robust than just using any change in order to abstract a time.
Furthermore, it is particularly useful to consider equations of motion in this time
and propositions conditional on this time.

15.9 Emergent Jacobi Time

A particular implementation of GLET follows from how both the conjugate mo-
menta and the equations of motion simplify by use of6

d

dtem(J)
:= ∗ :=

√
W

T
◦ := 1

N
◦ := 1

İ
◦ = d

dI
. (15.21)

5This is to be judged by the criterion in Chap. 23.
6Here ◦ just denotes a more visible ˙. More generally, we could use a JS suffix or leave the notation
as tem.
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Here the first equality is the Manifestly Reparametrization Invariant computational
formula. The second relates this to finite-theory generalized lapse N (conceived of
generally enough to cover both Mechanics and Minisuperspace GR). The third re-
casts the preceding as the velocity of the instant notion İ [20]. The fourth further
recasts this as the differential of the instant notion dI . In this way, the instant I it-
self is identified with the emergent time tem(J) that labels that instant. Using (15.21)
amounts to finding an emergent Jacobi time tem(J) = F[Q,dQ]. This entails inter-
preting the quadratic constraint not as an energy constraint in the usual sense but as
an equation of time. Following Mach, this is ab initio a highly dependent variable
rather than the independent variable that time is usually taken to be. This is because
this ‘usual’ situation assumes that one knows beforehand what the notion of time
to use, whereas the current position involves operationally establishing that notion
(see Chap. 23 for examples and discussion).

Moreover, upon finding a satisfactory such for one’s error tolerance, one can
pass to the more usual conceptualization in which it is taken to be an independent
variable, i.e. Q = Q(tem(J)). Now the emergent Jacobi time [30, 37, 39, 98] formula
itself belongs to the former conceptualization, being given by the change scalar

t em(J) =
∫

‖dQ‖M

/√
2W(Q) . (15.22)

The Mechanics case is just the Q = q case of the above, and 1-d RPM is the Q = ρ

case (with M going to the identity array).
The Jacobi emergent time, and modifications thereof (see Chap. 16.2) was used

in this way in Barbour’s work (e.g. [98, 105]).
N.B. that this emergent time is provided by the system; in this way, it fits Mach’s

Time Principle. In contrast, the usually-assumed notion of time as an indepen-
dent variable is un-Leibnizian and un-Machian. However, once the above time has
been abstracted from change, it is a convenient choice for (emergent) independent
variable. At first sight, this is an ‘all change’ resolution, but careful examination
(Chap. 23) reveals that it is in practise indeed a ‘STLRC’ resolution.

In the case of Mechanics, tem(J) is a relational recovery [98] of the quantity that
is more usually taken to be absolute external Newtonian tNewton. Perhaps it is sig-
nificant that de Sitter and Clemence both had been terming what became ephemeris
time ‘uniform’ or ‘Newtonian’ time. Moreover, we further rephrase the latter as a
relational recovery of Newtonian time.
tem(J) does not itself unfreeze the quantum-level frozen formalism, nor does it in

any other way directly give quantum equations that are distinct from the usual ones.
One can view it, rather, as an object that already feature at the classical level that is
subsequently to be recovered by a more bottom-up approach at the quantum level.
This works because it matches up with the emergent semiclassical (WKB) time as
per Chap. 46.
tem(J) itself starts as the most dependent variable of all: tem(J)[Q,dQ]. Only when

it is found to sufficient accuracy is it cast as the most convenient independent vari-
able to use, i.e. tem(J) such that Q = Q(tem(J)) =: tem(J)

indep . If one is to identify these
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with the conventional formulation of Newtonian time, this identification involves
the final form.

There is some freedom as regards where to break the exact equality in the se-
quence ‘tem(J) = I = t for t the Newtonian time. However, tem(J)

indep = tNewton but

tem(J)[Q,dQ] �= tNewton until a sufficiently good approximation is found to be used
in that role once no longer regarded as a highly dependent variable. We next choose
to interpret I as the instant-labelling role that is conceptually distinct from—but
indeed ends up being ‘dual to’—the Newtonian time. The role this plays is sec-
ondary to the Q and dQ pertaining to the notion of space in question, so instant-
labelling also has prior and posterior forms. In summary, ‘tem(J) = I ’ a priori, but
‘tem(J) = I = t’ only holds as an a posteriori equality. The tem(J) = I identity’s—
and the a posteriori I = t identity’s—two sides reflect the time to instant-labelling
duality.

In terms of emergent Jacobi time, moreover, the momenta and equations of mo-
tion take the simpler forms7

PA = MAB ∗QB, (15.23)

Dabs
2QA = ∗∗QA + Γ A

BC ∗QB ∗QC = NAB∂W/∂QA. (15.24)

The latter is a parageodesic equation with respect to the kinetic metric (meaning
it has a forcing term arising from the conformal W -factor). It can also be cast as
a true geodesic equation with respect to the physical metric whose line element is
dJ . Here, in terms of the physicalMphys

AB = 2WMAB, with corresponding Christoffel
symbol Γ phys A

BC,

∗ ∗QA + Γ phys A
BC ∗QB ∗QC = 0, (15.25)

for a distinct but conformally-related ∗.
N.B. that there is one kinematical geometry to serve all problems but a distinct

dynamical geometry per problem. This supplies a universal reason for study of the
kinematical geometry.

A final move—useful in practical calculations—involves supplanting one of the
evolution equations by the emergent Lagrangian form of the quadratic constraint,

MAB ∗QA ∗QB/2 +W = 0. (15.26)

7‘abs’ here denotes the standard differential-geometric absolute derivative.



Chapter 16
Combining Temporal and Configurational
Relationalisms

We now reach our first systematic combination of Problem of Time facets. Two
preliminary considerations are as follows. Firstly, continuing from Sect. 9.8’s dis-
cussion about postulate CR-i), at the level of standard redundant presentations, the
mechanical MiIjJ = mIδij δIJ is unsatisfactory through involving the Euclidean
metric. However, we show below that the GR counterpart succeeds in meeting this
criterion. Secondly, we rephrase CR-ii) to reflect that g more strictly acts not on
q but on some fibre bundle structure thereover, such as T(q) in the case of Best
Matching. It additionally applies more generally to further structures based upon q
in the case of the wider range of examples covered by the g-act, g-all method. This
Chapter, moreover, mostly concerns various generalizations and reformulations of
the Best Matching implementation we already encountered in Chap. 9. We now ex-
tend this to general g and then render it TRi-compatible (this is a RTQ approach,
and thus in particular both a Tempus Ante Quantum approach and the initial portion
of a Reduced Quantization scheme).

16.1 Best Matching: General g

Let us first summarize Best Matching for general g by

CR(S) := Sg-free := Eg ∈g
(
SCR(Q,dQ,g)

)
. (16.1)

The first symbol means ‘the Configurationally Relational Principles of Dynamics
action’ (corresponding to the group action of g on T(q) being physically irrele-
vant), which is alternatively known by the second symbol: the g-free Principles of
Dynamics action. The third symbol has further computational content. Firstly, SCR

is a g-corrected form of the action S: a g-act move; hence its dependence on g
as well as T(q)’s Machian variables Q, dQ. Secondly, Eg ∈g denotes extremum
over g ∈ g. Lastly, g and q are to be a suitably compatible such pairing (or triple,
including S). This is clearly a subcase of CR(O) = Og-free. It furthermore encap-
sulates that Best Matching is a procedure for bringing pairs of configurations into
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‘minimum incongruence’ by holding one fixed and g-shuffling the other.1 It has
an intermediate output of note—the extremizing gBM(Q,dQ) themselves—as well
as the final extremized SBM(Q,dQ) = Sg-free = SCR(Q,dQ,gBM). Best Matching
moreover involves probing with candidate generators of irrelevant motions, with-
out yet addressing the relations between the generators, which would complete the
characterization of any given group. The group relations part of Group Theory en-
ters at a later stage, though consideration of the constraints that ensue and whether
Constraint Closure applies to these (Chap. 24).

‘Suitably compatible’ refers here to Sect. 14.2’s criteria A) to C). Within the Non
Tempus Sed Cambium Worldview, moreover, C) (‘counting’), is to furthermore take
into account the presence in general of constraints that use up c degrees of freedom.
The theory is then trivial if c > k, inconsistent if c = k, and relationally trivial if
c = k − 1. Since independent constraints use up at least 1 degree of freedom each,
c ≥ l + 1 is a guaranteed least stringent bound (the 1 arising from Chronos). I.e.
c = l + 1 ≥ k − 1 ⇒ k − l = dim(q) − dim(g) ≤ 2 already serves to invalidate
theories.

Chapter 24 shall moreover replace this rather crude bound with a tighter bound
based on phase space geometry rather than just counting. This arises from consider-
ing brackets relations in addition to the group actions of generators on (some fibre
bundle over) q; groups are, of course characterized by generators and relations.

We finally point to how a given q, g pair still constitutes a substantial ambiguity
as regards which action S to consider thereupon. N.B. that Relationalism does not
highly uniquely control of the form that Theoretical Physics is to take.

We next consider the detailed form taken by Best Matching.
Best Matching 0) In this case of Chap. 14.4’s construction, the object O is a

classical Principles of Dynamics action S built upon q. The incipient bare action
can be thought of as a map S : T(q) → R. For now, we interpret the tangent bun-
dle T(q) as a configuration–velocity space with a product-type Jacobi action (15.7)
thereupon. We next pass to the ‘arbitrary g frame corrected’ Principles of Dynam-
ics action by applying the basic infinitesimal group action to the incipient bare S,
obtaining

SCR = 2
∫

dλL = 2
∫

dλ
√
T W(Q), T := ∥∥Q̇− →

gg Q
∥∥2

M

/
2. (16.2)

Best Matching 1) We next extremize over g. This produces a constraint equation
Shuffle of the form Lin, which is linear in the momenta and also a change scalar.

Best Matching 2) The Lagrangian variables Q,Q̇ form of this constraint is to be
solved for the auxiliary variables g themselves.

1This is modulo the Calculus of Variations not guaranteeing that extremization yields either a
minimum or a unique answer. Also note that Part I’s illustrative Barbour–Bertotti action (9.7) is a
particular case of SCR.
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Best Matching 3) Substitute this solution back into the action; this is an example
of Appendix J.1’s multiplier elimination. This produces a final g-independent ex-
pression that could have been arrived at as a direct implementation of CR-ii).

Best Matching 4) We finally elevate this new action to serve as a new starting point.

Moreover, we shall see that in practice Best Matching 2) is often an impasse. Best
Matching 2), 3) and 5) can be viewed as searching for a ‘minimizer’, so as to estab-
lish the minimum ‘incongruence between’ adjacent physical configurations (subject
to footnote 1). These steps can also be viewed as a T(q)-level reduction procedure.2

We also note that we can interpret T(q) as configuration–change space in terms
of Jacobi–Mach variables Q, dQ. Then T is supplanted by the kinetic arc element
ds and L by the Jacobi arc element dJ , reconciling the above more detailed descrip-
tion with the opening summary.

Let us also now reconcile Part I’s Lie derivative formulation with Part II’s fi-
bre bundle one. Begin by interpreting the Lie derivative as a point identification
map [814] between two adjacent space slices, as opposed to a Lie dragging within
a single such slice. Next, the Lie derivative applies due to continuous transforma-
tions being implemented; moreover all of those under consideration happen to also
be differentiable, These transformations form some subgroup g ≤ Diff (a) corre-
sponding to g ≤ Diff (a) at the level of Lie algebras. There is consistency between
the two since one can continue to define Lie derivatives within a fibre bundle context
(see e.g. [560] for more). One advantage of the Lie derivative formulation is that it
provides a specific form for the infinitesimal group action. On the other hand, g-act
does always involve this particular group action (for all that Best Matching itself
does). A corresponding disadvantage is that it is a merely local treatment, whereas
fibre bundles can encode further global information. See Sect. 38.1 for a further
global-level advantage of the Lie derivative formulation.

Let us finally consider the smaller case of Constraint Closure that occurs inter-
nally within Configurational Relationalism: checking that the Shuffle constraints
arising from g do indeed close among themselves. E.g. the Poisson bracket (9.30)
affirms this for Metric Shape and Scale RPM, whereas (9.28), (9.29), (9.31) do so
for Electromagnetism, Yang–Mills Theory and for the Diff (�) of GR respectively.
Furthermore, all of these Poisson brackets form Lie algebras.

16.2 TRi-Best Matching

The above Section, however, fails to implement Temporal Relationalism, be-
cause the g-correcting Lagrange multiplier coordinates breaking the Manifest
Reparametrization Invariance of the action. None the less, concurrent implemen-
tation can be attained by using g-correcting cyclic velocities instead [15, 20, 37, 64,

2In this book, and quite commonly in the Quantum Gravity literature, reduction usually involves
just linear constraints rather than quadratic constraint as well.
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102]. Moreover, Manifest Parametrization Irrelevance and then its dual q-Geometry
formulation are successive conceptual advances within the implementation of Tem-
poral Relationalism itself. A second concurrent implementation which respects this
as well uses, rather, g-correcting cyclic differentials (see also footnote 1). In this
case, we form g-bundles in terms of Q, dQ and dg variables: p(T(q,g)) with the
T now interpreted as ‘change’. Furthermore, encoding one’s g auxiliary variables
in either of these ways entails a nontrivial change of formalism, since it requires sub-
sequent care with how one performs one’s Calculus of Variations (see Appendix L
for details). In the current Finite Theory setting, this entails so-called free end point
variation (Appendix L.3). We call this method TRi-Best Matching.

Tri Best Matching 1) now involves an action STR–CR of the form (15.7) with

ds = ‖dgQ‖M for dgQ := dQ −
∑

g∈g

→
gdg Q. (16.3)

In each case, we can redo the preceding Chapter’s treatment of conjugate momenta,
quadratic constraint, equations of motion and the beginning of the treatment of
emergent time ‘by placing g suffixes’ on d, I , tem and ∗. Note furthermore that
Temporal and Configurational Relationalism constitute two separate Constraint
Providing procedures. These are rendered compatible with each other as per this
and the next Sec. The first provides Chronos and the second provides Shuffle.

TRi Best Matching 2) now involves solving the Jacobi–Mach formulation of
Shuffle = 0 for the cyclic differential g auxiliaries, dg:

CR(S) := Sg-free := Eg ∈g
(
STR–CR(Q,dQ,dg)

)= {extremum of g ∈ g}

of {STR–CR built upon q,g} for a suitably compatible such pairing. (16.4)

Note that the extremization is over g, rather than dg, since g plays the role of a
cyclic differential.

On the other hand, Best Matching 2), 4) and 5) work out the same whether TRi or
not [Best Matching 1) and 3)’s mathematical procedures are also unaffected by this
change of formalism].

16.3 Emergent Jacobi–Barbour–Bertotti Time

TRi-Best Matching 3′) As a distinct application of TRi Best Matching 2)—the emer-
gent time expression is now

CR(t em
) := t em

g-free := E′
g ∈g
∫

‖dgQ‖M/
√

2W(Q). (16.5)

This is also known as Jacobi–Barbour–Bertotti emergent time, but our choice of
suffices is a rather clearer reminder of this being an emergent time that complies
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with Configurational Relationalism. Also note how the extremization now takes an
implicit form. I.e. in (16.5) a second functional—the emergent time—is subject to
performing the extremization of a first functional—the relational action STR–CR.
This means that

E′
g ∈g = |dg=dgBM(Q,dQ) ,

where BM denotes the Best-Matched value. See [53] for Algebra and Fibre Bundles
interpretations of this and the previous two Sections, including as cases of the g-
Act g-All Method. Moreover, if one succeeds in carrying out Best Matching as e.g.
per Sect. 16.7, dg is replaced by an extremal expression in terms of Q and dQ

alone. By this, both aspects of this complication are washed away and one has an
expression for t em

g-free paralleling that of the previous Chapter’s t em, albeit now in
terms of the reduced q’s geometry.

16.4 TRi Configurational Relationalism in General

Let us next present the TRi g-Act g-All Method: the General Strategy for Config-
urational Relationalism now modified to remain within that for Temporal Relation-
alism.

Here

CR(O) := Og-inv := Sg ∈g ◦ Maps ◦ →
gg O, (16.6)

now taking a specifically TRi-preserving form. I.e. all TRi objects O maintain TRi
status upon being rendered g-invariant as well by this manoeuvre. A common exam-
ple of this involves all three parts of the composition preserving change tensoriality,
with the group action sending each change tensor to an g-corrected change tensor
of the same rank.

We subsequently pass to giving some useful illustrative examples.

16.5 Example 1) Metric Shape and Scale RPM

In TRi form, the action for this is

S = √
2
∫ √

E − V (ρj · ρk alone) ds,

for ds = ‖dBρ‖, dBρ
A := dρA − dB ×ρA. (16.7)

The conjugate momenta are π = √
2W dBρ/‖dBρ‖.

These obey as a primary constraint the quadratic energy constraint

E := ‖π ‖2/2 + V (ρ) = E. (16.8)
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Also free end point variation with respect to B gives as a secondary constraint the
linear zero total angular momentum constraint

L :=
n∑
i=1

ρA ×πA = 0. (16.9)

The Jacobi–Mach equations are

√
2W dπ

‖dBρ‖ = −∂V
∂ρ
. (16.10)

Finally, the emergent time is now

CR(t em
) = E′

B ∈Rot(d)
∫

‖dBρ‖
/√

2W(ρ) . (16.11)

The momentum-change relation and equations of motion then take the simplified
forms

π = I∗ρ, ∗π = −∂V
∂ρ

for (16.12)

∗ := d

dCR(tem)
:= E′

B ∈Rot(d)
√

2W
d

‖dBρ‖ . (16.13)

Note how the 1- and 2-d cases are included within the 3-d form of the auxiliaries
There is no B for d = 1, and but a scalar B for d = 2. All these cases are encoded
by ρA −B ×ρA if one allows for B = (0,0,B) in 2-d and B = 0 in 1-d (Exercise!).
Correspondingly, in 1-d there is no L constraint at all, while in 2-d L has just one
component that is nontrivially zero: L =∑n

A=1 {ρA1πA2 − ρA2πA1 } = 0.

16.6 Example 2) Metric Shape RPM

Metric Shape RPM alias similarity RPM alias Barbour 2003 RPM [102] is a me-
chanics in which only relative times, and shape configurations—consisting of rela-
tive angles and ratios of relative separations—are meaningful. (On the other hand,
if the rotations are not removed, one has Kendall’s notion [539] of preshape, cf.
Appendix G.)

The action for this is

S = √
2
∫ √

E − V (ratios of ρA · ρB alone)ds

for ds2 = ‖dB,Cρ‖2/I and dB,Cρ
A := dρA − dB ×ρA + dCρA. (16.14)

ds2 is also a ratio since I = ‖ρ‖2.
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Fig. 16.1 Five notions of matching shapes (keep the red one fixed and perform transformations on
the yellow one so as to bring the two into minimum incongruence). a) Barbour’s wooden triangles,
subjected to translational and rotational matching. b) Dilational matching, as exhibited e.g. by
moving one of two parallel overhead projector slides away from the other c) Affine matching
adds to these shears and ‘Procrustean’ stretches (volume-preserving in 3-d or area preserving in
2-d). These can be approximately demonstrated with two pieces of uncooked jelly. d) Conformal
matching adds special conformal transformations instead. N.B. that the shapes depicted are in
each case the minimal relationally nontrivial units for the corresponding notions of Relationalism
(Fig. G.4)

The conjugate momenta are πA = {√
2W/I }δAB dB,CρB . The quadratic energy

constraint is

E := I ‖π ‖2/2 + V = E. (16.15)

(16.9)’s Li from variation with respect to B is now accompanied by the zero total
dilational momentum constraint

D :=
n∑
A=1

ρA · πA = 0 (16.16)

as a secondary constraint from variation with respect to C. N.B. that Li and D are
entirely independent by the 3-d case of (E.12): the former acts on shape and the
latter trivializes the role of scale.

Figure 16.1 extends Best Matching from Barbour’s pair of wooden triangles to
a range of further cases whose minimal relationally nontrivial units are tabulated in
Fig. G.4; the corresponding RPMs were introduced in Sect. 14.5 and their actions
are given in Chap. 18.

Let us end by noting that one can view ‘Newtonian Mechanics for island universe
subsystems within RPM’ as a relational route to Newtonian Mechanics.

16.7 RPM Examples of Best Matching Solved

Solving Configurational Relationalism for an RPM renders its action g-free and the
expression for its tem

g-free explicit. As outlined in Appendix G.1 and detailed in [37],
this can be done in 1- or 2-d for any N and for 3 particles in 3-d , in each case with
or without scale. These need particular names as whole-universe models so as to
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not confuse them with N -body problems in their usual subsystem context. We term
these, respectively, N-stop metroland, N-a-gonland and triangleland. Triangleland
also refers to 3 particles in 2-d , and we refer to 4 particles in 2-d as quadrilateral-
land. For Shape and Scale RPM,

Sred = √
2
∫ √

Wdsred for dsred := dsBM = ‖dQ‖M(Q), (16.17)

where the M(Q) are in-general-curved q metrics.
Moreover, the above also arises by a T(q)-level classical reduction [37], and is

furthermore the basis for Reduced Quantization as per Chaps. 42–43. Upon having
performed the above reduction, the RPM is in a form in which the following absolute
structures of the Newtonian and Galilean Paradigms (Sect. 2.5, 4.6) are absent: not
just t but also velocity v and δ. Indeed, the reduced configuration space metric is
here a function of the configurations themselves rather than involving any further
extraneous background entities.

Finally, note that RPMs with Newtonian Gravitation potentials have not freed
themselves from the non-dynamical connection absolute structure of Newtonian
Mechanics with Newtonian Gravitation potential [776].

16.8 Direct Implementation of Configurational Relationalism
for RPMs

The idea here is to construct a g-invariant formulation by working directly [37] on
the relationalspace.3 This eliminates the need for any arbitrary g-frame variables,
nor do any linear constraints arise, nor are such to be used as a basis for reduction
to pass to a new action. Instead, one’s action is now already directly g-invariant i.e.
on q̃ := q/g by construction. This is reflected by the more complicated form taken
by the kinetic term or arc element.

This is again possible for lower-d RPMs. It involves case starting directly with
the shape spaces that Kendall had determined [536, 539] in the pure-shape case, or
the cones thereover in the scaled case [37]. In each case, one is associating a me-
chanics to the geometry which then plays the role of that mechanics’ configuration
space, as per the methodology of Jacobi and Synge [598] (Chaps. 14 and 17). The
latter ‘relationalspace formulation’ indeed provides a second foundation for RPMs
[18, 37], distinct from that in [102, 105]. Because the same formulation of the same
mechanics is arrived at both ways—on relationalspace or by reduction—we subse-
quently refer to it as the r-formulation (denoted by an r subscript). This works out
because some 1-d models and 3-particle models for d > 1 have particularly simple
configuration spaces, as per Appendix G.1. In this way, t em

g-free is itself a t em for a
more directly formulated q geometry.

3We use relationalspace to mean relational space for Metric Shape and Scale RPM and shape space
for Metric Shape RPM, i.e. each case’s non-redundant configuration space.
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These identifications of RPM configuration spaces with well-known geometries
are useful by allowing for very close to standard mathematical treatment at the clas-
sical and quantum levels. Moreover, this mathematics is physically interpreted in a
very different manner from the standard one [37]. This can be tied to a wider range
of still fairly standard mathematical methods so as to do Classical and Quantum
Physics. Triangleland is the simplest model that can concurrently possess scale and
nontrivial linear constraints. On the other hand, quadrilateralland [28] is more ge-
ometrically typical for an N -a-gonland than triangleland (which benefits from the
CP

1 = S
2 coincidence). These models’ mathematical simpleness is a triumph, be-

cause one can then carry out and check many Problem of Time calculations. [These
would not make sense if done for atoms or molecules, say, due to the absolutist
underpinnings in these latter cases.] This is just what the study of the Problem of
Time needs (at least as regards the facets and strategies nontrivially manifested by
RPMs).

For further use below, scaled triangleland’s reduced configuration spaces pos-
sesses Cartesian coordinates that are non-obviously related to the merely-relative
Jacobi coordinates. These are the ‘Hopf–Dragt coordinates’ [37, 266, 624] of
Eqs. (G.13)–(G.15). These quantities emerge naturally from the reduction as ubiq-
uitous groupings [37]. I.e. once reduction has been performed, these start to appear
throughout the functional dependencies of all of the model’s significant quantities.
In this case, these groupings can be interpreted as a natural choices of coordinates
on the reduced configuration space.

3-d-ness is moreover a well-known major complication in standard Mechanics.
Nonzero total angular momentum vector L is also a substantial complication [624]
for a less well-known reason (Sect. 37.3) On the other hand, there is a simple pas-
sage from the L = 0 restriction of standard Mechanics to RPM. These substantial
complications have hitherto blocked making mathematical progress with the status
of the hypothetical extension to L �= 0 models. By this, it is not known if a more
general RPM that permits L �= 0 can be constructed, nor has this been proven to not
exist.

Whereas the indirect formulation involves g-bundles, the direct formulation’s
q/g is more generally a stratified manifold rather than a manifold. These have but
limited amenability to Fibre Bundle Methods; Sect. 37.6 outlines some more general
Sheaf Methods to this end.

Dynamical study of r-formulated RPMs proceeds as follows. Dilational momen-
tum pρ is the momentum conjugate to the scale variable ρ, whereas the momenta
conjugate to the shape variables Sa are, schematicly, the shape momenta pS

a . For
Metric Shape RPM in 1-d , q’s isometry group provides an SO(n) of conserved
quantities provided that the potential respects these. These are relative dilational mo-
mentum quantities. The 2-d triangleland case has, under the same circumstances, an
SU(2)’s worth of conserved quantities. These are a pure relative angular momentum
quantity (of the base relative to that of the median: Fig. G.8), and two mixtures of
relative angular momentum and relative dilational momentum [37]. [28] gives the
corresponding relational interpretation of quadrilateralland’s SU(3) octet of con-
served quantities.
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Fig. 16.2 This figure is to be interpreted using Appendix G’s back-cloths and notation for config-
urations. a) and b) are 3-stop metroland’s and triangleland’s free motion geodesics. c) and d) are
examples of potentials over shape space induced by harmonic oscillator potentials: the 3-stop
metroland ‘peanut’ and the triangleland ‘heart’ potentials. The thick lines denote some of the pos-
sible classical motions within the resulting potential wells. The effective potentials in each case
have an additional central skewer along the vertical axis, in the manner of a centrifugal barrier.
These are relevant when the total shape momentum is nonzero. See [37] for more details and many
more examples of potentials over—and dynamical trajectories along—shape spaces

Figure 16.2 subsequently presents some cases of potentials and dynamical tra-
jectories for RPM’s; these are useful as precursors and classical limits for quan-
tum solutions used in Part III. Free problem solutions are geodesics of the shape
spaces. The physical significance of S2’s geodesic great circles in the cases of a) 4-
stop metroland and b) triangleland. The S

N−2 geodesics—corresponding to N -stop
metroland free motions, and the CP

N−1 geodesics—corresponding to N -a-gonland
free motions [28]—are also well-known. The interpretation of the configurations
can then just be read off the ‘back-cloth’, such as in Figs. 16.2 or G.11.

16.9 Limitations of RPM Models

While RPMs have been very useful so far in the discussion, they do have some lim-
itations. RPMs are finite rather than field-theoretic, rendering them more tractable
but also not having counterparts of some more of GR’s difficulties. RPMs also do not
make contact with SR, with SR- or GR-like spacetime, the inherently nonlinear na-
ture of GR that corresponds to gravity itself gravitating, or Black Hole Physics. On
the other hand, RPMs are explicitly theories of Background Independence: a valu-
able isolation of the ‘other half’ of the Gestalt. They are closed systems, which is of
value to Quantum Cosmology. They lie within Sect. 9.2’s great tradition of Dynam-
ics, and parallel a number of further features of Geometrodynamics [37]. Because
of these features, RPMs continue to be useful as examples in a number of further
Chapters.
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However, due to the missing features, other theories and model arenas are clearly
also required (Chaps. 17, 18 and 30). On the long run, Diff (�) is vastly harder a
g than U(1) = SO(2), or, indeed, any other SO(n). Moreover, r-formulations are in
fact seldom possible; lower-d RPMs are thus rather special in admitting such; we
shall see in Chap. 18 that GR does not in general. On the other hand, as we show in
Chap. 30, the r-formulation remains available to lowest nontrivial order in SIC.



Chapter 17
Temporal Relationalism:
More General Geometries

17.1 Minisuperspace GR

This brief Chapter serves to introduce various further models of substantial use in
this book’s later discussions. We first consider ds = ‖dQ‖M for a semi-Riemannian
metric M andW(Q) = R− 2Λ (in the undensitized presentation). This is a Misner-
type action: the Minisuperspace restriction of the BSW action. This form covers
both the isotropic case with minimally-coupled scalar field [31, 149, 419] which
was already introduced in Chap. 9 and the vacuum anisotropic cases [657, 659, 760]
whose configuration space metric is given in Appendix I.1. These examples simpler
in the sense of involving trivial g, and so no linear constraints. On the other hand,
these examples involve dynamical spatial geometry. The restriction to Minisuper-
space of the GR Hamiltonian constraint H now arises as a primary constraint, in an
‘indefinite triangle’ version of Sect. 15.6’s Pythagorean working.1

In contrast, the more well-known ADM action (8.17) contains the lapse vari-
able α. Since this lapse is an extraneous time-like variable, the ADM formula-
tion fails to implement TR-i). It is however straightforward to show that the ADM
and BSW actions are equivalent, as follows. The lapse α plays the role of a La-
grange multiplier coordinate in the ADM action. Lagrange multiplier elimination
(Appendix J.1) can now be applied. In this particular case, the multiplier equation
is a very simple algebraic one. I.e. α2 = TADM−L/4{R − 2Λ}, so one can readily
eliminate α from the ADM action, to obtain the BSW action.2

The Minisuperspace cases of H and tem are (9.14), (9.15) for the isotropic scalar
field models, whereas

H = −p2
 + p2+ + p2− + exp(4Ω)

{
V (β±)− 1

}
, (17.1)

1Most readers will already be familiar with ‘indefinite triangles’ from studying SR or the hyper-
bolic functions.
2This parallels the Euler–Lagrange to Jacobi equivalence. The remaining difference—that this pro-
ceeds by Routhian reduction rather than multiplier elimination—is ironed out in Sect. 18.7.
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t em(J)
isotropic-MSS =

∫ √
−dΩ2 + dβ2− + dβ2+exp(Ω)

/√
1 − V (β±) (17.2)

for various vacuum diagonal anisotropic Bianchi class A models. In cases dominated
by scalefactor dynamics, these amount to a relational recovery of tcosmic to leading
order. N.B. that—in contradistinction to the Mechanics case of Sect. 15.2—in GR λ
and t do coincide: GR is an already-parametrized theory.

See e.g. [873] for an account of the dynamics of Minisuperspace, and e.g. [179]
for the LQC equivalent of diagonal anisotropy.

17.2 Jacobi–Synge Relational Actions

Awareness of this second generalization started with Barbour et al. [109] pointing
out two orderings in building actions: summing or integrating the squares and then
taking the square root versus taking individual square roots and then summing or
integrating. In Manifestly Reparametrization Invariant terms,

√
T1 + T2

√
W versus

{√
T1 +√T2

}√
W, (17.3)

which they term a ‘global square root’ (as used so far in this book) and the local
square root (this Section’s Example 1). This is however very far from a complete
characterization of the possible diversity of actions [14], as the examples below
demonstrate.

Example 2) Manifestly Reparametrization Invariant actions can feature the nth root
of the sum of nth power can feature instead. For instance, the configuration space
version of Riemann’s ‘next simplest’ quartic geometry (D.25) is a subcase of this:

S =
∫ {
F(Q)ds4

quartic

}1/4
. (17.4)

In this case, primary constraint is now purely quartic in the momenta. In fact, many
properties attributed to H for being purely quadratic transcend to this case as well,
and can be traced more generally to constraints which contain no accompanying
term that is linear in a further momentum variable.3

Example 3) Moreover, multiple roots and sums can also implement Temporal Re-
lationalism, and there are other ways of making homogeneous linear functions
besides, e.g. not only f dx but also e.g. dx2/

√
dx2 + dy2. Modulo degeneracy, at

the level of Geometry this is Finsler’s generalization (Appendix D.5), which was
first applied to q geometry by Synge [598]. These indeed still constitute a geodesic

3The use of ‘further’ here covers that pt = pip
i +p2

t is entirely different in character and quantum
interpretation from pt = pip

i .
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principle, just for more complicated notions of geometry. A general form for the
action in this case is

S :=
∫

dλFJS =
∫

dFJS, (17.5)

where JS stands for Jacobi and Synge and is homogeneous linear in the velocities
or changes.

Example 4) Aside from all the previous finite relational actions in this book, Exam-
ple 3) has another subcase of note:

S =
∫

dλ
{
2
√
W Tquad + Tlin

}=
∫ {√

2Wdsquad + dslin
}
, (17.6)

which is the q geometry counterpart of Randers’ subcase (D.26) of Finslerian Ge-
ometry. This allows for mechanics with linear ‘gyroscopic’ terms [598], moving
charges, and is furthermore a model arena for the inclusion of spin-1/2 fermions
alongside GR (see Sect. 18.11). The fermionic case additionally has disjoint
quadratic and linear arc element species (i.e. a partition of the changes involved
into distinct bosonic and fermionic species respectively).
Without specifying what kind of homogeneous linear function the action contains,
there is no information as regards how many primary constraints there are nor
about their form. For there to be an expression for emergent Jacobi–Synge time
tem(JS), there is to be one such relation, and such that tem(JS) can be made the sub-
ject of the equation. The necessity of these caveats is demonstrated by the finite-
theory local square root example having multiple quadratic constraints and by the
following further example.

Example 5) Consider the free theory with action

S = 1

2

∫
‖Q̇‖2

m(Q)dt.

The parametrized form of this does not permit Routhian reduction, since the cyclic
equation is homogeneous in ṫ and therefore cannot be used to eliminate ṫ . On the
other hand, the above action clearly encodes PA = MABQ̇

B and a single quadratic
constraint ‖P ‖2

N/2 = E. Specialize further to the case E = 0. Then using the
momentum-velocity relation within the quadratic constraint produces an expres-
sion which is homogeneous in the hypothetical d/dtem(JS), and therefore cannot be
rearranged to make tem(JS) the subject. Moreover, introducing E cures this second
ailment, whereas including a potential term V (Q) sorts out both.

Example 6) Next suppose that the species contained as velocities in each kinetic
term square root in Example 1) are disjoint. Then the separate primary constraint
arising from each square root gives its own expression for time (modulo the preced-
ing caveat not applying to it), each in terms of the disjoint set of changes contained
within the corresponding Ti . In this way, this example has multiple distinct emer-
gent times for each such disjoint set of species, each in terms of its own species’
changes alone. On some occasions, this does admit a STLRC interpretation, in
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which subsystem 2’s disjoint changes are not relevant to a totally decoupled sub-
system 1. However, it is not clear which if any of these emergent times to adopt
if the kinetic metrics or the potentials couple to that species. Fortunately, this sit-
uation is not known to occur in Nature (see moreover Sect. 18.10 for specifically
inhomogeneous GR, which does have a counterpart of this with a valid physical
interpretation).

Example 7) The subcase of Example 4) which models fermions alongside bosons
also involves a partition, albeit now into a square root of a square and a linear piece.
In this case, only the quadratic piece contributes a primary constraint. However the
corresponding emergent time is abstracted solely from the bosonic changes. This
invalidates ‘all change’ approaches and also the ‘all change is given the opportunity
to contribute’ aspect of STLRC. One way out of this is of course to doubt the
physicality of classical fermionic theories; we shall see in Sect. 18.11 that there
are also further reasons independent of Relationalism for doing so.

In summary, the Jacobi–Synge action principle implements Leibnizian Temporal
Relationalism. This does not, however, necessarily lead to a Machian resolution of
this with the same conceptual features we are accustomed to from the Jacobi action
itself.



Chapter 18
Configurational Relationalism:
Field Theory and GR’s Thin Sandwich

18.1 Fields and Finite-Field Portmanteaux

Joint treatment of finite and field-theoretic models begins in this Chapter. This
makes use of Appendix X’s finite–field-theoretic portmanteau notation.1 Q is the
portmanteau configuration of finite theories’ configuration Q and Field Theories’
Q = Q(x) configuration. Each of these carries the A multi-index, over one or both
of particle or continuous extended object species.

We take the field theoretic kinetic metric to be ultralocal—i.e. having no deriva-
tive dependence—a mathematical simplicity which happens to hold over the en-
tirety of the standardly accepted fundamental theories of Physics. The notation MAB

then covers both finite theories’ MAB(Q) and Field Theories’ MAB(Q(x)). Denote
the corresponding determinant, inverse, inner product and ‘norm’ (indefiniteness al-
lowed) by M, NAB, ( , )M and ‖ ‖M respectively. ◦ is now considered to take the
ordial derivative form d∂/d∂λ: the portmanteau of ordinary and partial derivatives.
Our first aim is to build relational actions, in particular in a manner rich enough
to include the case of full GR. L %Q̇,Q& is the portmanteau of finite theories’ La-
grangian L(t,Q,Q̇) and Field Theories’ Lagrangian density L(x, t, Q̇; Q].2 The
latter is taken to be ultralocal in the velocities for Field Theories. One then obtains
the relational action by integrating over the time portmanteau t and the notion of
space portmanteau. Compliance with Manifest Reparametrization Irrelevance does
make the Lagrangian portmanteau in question look somewhat unusual. I.e. it is not
of difference-type form L = T − V , but rather of product form L = 2

√
TW . For

now, we take on trust that the potential factor portmanteau W = E− V , for potential
energy V and T is the kinetic energy.

1This book makes further systematic use of a number of further fonts to encode the role of the
object in question (e.g. constraint or beable). If lost at any stage, consult the list of fonts in Ap-
pendix X.
2In fact, the first of these can be rewritten as L(t; Q], which is a univariate functional due to d/dt
acting on the Q to form the velocities. However, this does not affect the types of derivatives that
the theory has acting upon L, so it does not disrupt the portmanteau.
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To pass to a geometrical action presentation, we require rather 1) the kinetic
arc element portmanteau d∂s%Q,d∂Q&—of the kinetic arc element ds(Q,dQ) for
finite theories and the kinetic arc element density ∂s(x, ∂Q; Q] for Field The-
ories. 2) The physical Jacobi arc element portmanteau d∂J %Q,d∂Q&—of the Ja-
cobi arc element dJ (Q,dQ) for finite theories and the Jacobi arc element density
∂J (x, ∂Q(x); Q(x)] for Field Theories.

As regards the nature of the geometries, these are now in fact infinite-dimensional
generalizations of the previous Chapters’ Riemannian Geometry. Moreover, the lo-
cal square root does not coincide with the DeWitt-type geometry, adding extra de-
generacy and functional-based issues. For convenience, let us still refer to such by
the usual finite-dimensional geometries’ nomenclature. I.e. we elevate names like
‘Riemannian’ to be finite and field-theoretic portmanteaux of the usual finite ver-
sion of the notion.

In the case of Field Theories, Chap. 16.1’s definitions of inconsistent, trivial and
relationally trivial are recast in terms of degrees of freedom per space point. Care
has to be taken now as regards nontrivial global degrees of freedom surviving.

18.2 Configurational Relationalism Including Fields

Some cases here involve augmenting a to a × i for i an internal space. Configura-
tional Relationalism has hitherto in Part II rested on Mach’s Space Principle. To con-
tinue to have such a supporting element, we now need to paraphrase a ‘Mach-type
Internal Principle’ to accompany it. ‘No one is competent to predicate things about
gauge-dependent properties of internal space or motion thereover. These are pure
things of thought, pure mental constructs that cannot be produced in experience.
All our principles of Gauge Theory are, as we have shown in detail, experimental
knowledge concerning gauge-independent quantities’.

Next, we consider Aut
(
a × i

)= Aut
(
a
)× Aut

(
i
)
, or some subgroup

gext × gint (18.1)

of this, where ‘ext’ standing for external transformations and ‘int’ for internal ones
(in the same sense as in Particle Physics).

Use g-correcting cyclic ordial (ordinary or partial) differential portmanteau aux-
iliaries d∂g. Encoding one’s g auxiliary variables in either of the above ways contin-
ues to require subsequent care with how one performs one’s Calculus of Variations
(Appendix L). In the portmanteau case, this entails the free end notion of space
variational portmanteau.

The corresponding action is

s=
∫∫

NoS
d∂NoS d∂J =

∫∫

NoS
d∂NoS

√
2d∂s

√
W , (18.2)

d∂s := ‖d∂gQ‖M and d∂gQ := d∂Q −
∑
g∈g

→
gd∂g Q. (18.3)
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A field-theoretic update of Chap. 15’s table of formulations is as follows. N.B. that

Type of variables for which the key portmanteau gives the equations of motion

Lagrangian Q, d∂Q/d∂t Lagrangian L Euler–Lagrange

Machian Q, d∂Q Jacobi arc element d∂J ‘Jacobi–Mach’

Hamiltonian Q,P Hamiltonian H Hamilton’s

the Hamiltonian formulation is unadulterated both by passing from Lagrangian to
Machian variables and by bringing in portmanteau derivatives. Upon including theg
auxiliaries, however, there is a slight alteration to the Hamiltonian formulation. This
is from the usual total Hamiltonian (Appendix J.15) to the total d∂A-Hamiltonian
(Appendix L.6; throughout this book, A- stands for ‘almost’ in this same sense).
Moreover, this is just reformulating the unphysical sector of the theory. A second
table now also incorporating this expansion is as follows. The conjugate momenta

Type of variables for which the key portmanteau gives the equations of motion

Lagrangian Q,mF, d∂Q/d∂t Lagrangian L Euler–Lagrange

Machian Q, d∂Q, d∂cF Jacobi arc element d∂J ‘Jacobi–Mach’

Total Hamiltonian Q,mF,P Total Hamiltonian HTotal = H + mFCF Hamilton’s

d∂A-total
Hamiltonian

Q,P, d∂cF d∂A-total
Hamiltonian

d∂HTotal = d∂H + d∂cFCF d∂A-Hamilton’s

are then (using the partional derivative portmanteau of partial and functional deriva-
tives)

PA := δ∂
d∂J
δ∂ d∂QA

= MAB

√
W

T
d∂gQA. (18.4)

These obey one primary constraint per relevant notion of space point, interpreted as
an equation of time,

Chronos := NABPAPB/2 − W (Q) = 0. (18.5)

Thus it is purely quadratic in the momenta. The P also obey some secondary con-
straints per relevant notion of space point from variation with respect to g.

0 = δ∂
d∂J
δ∂ d∂cG

:= ShuffleG = δ{ →
gd∂c QA }
δd∂cG

PA ; (18.6)

these are linear in the momenta, and so are also denoted by Lin.
Next, denote the joint set of these constraints by CF, under the presumption that

they are confirmed as first-class in Chap. 24. The indexing set designation assumes
there is only one quadratic constraint, so all our examples’ F ranges over G and the
one quadratic value.
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The corresponding Jacobi–Mach equations of motion are

d∂
δ∂ d∂J
δ∂ d∂QA

= δ∂ d∂J
δ∂QA

⇒ (18.7)

√
2W

‖d∂Q‖M
d∂

{ √
2W

‖dQ‖M
d∂QA

}
+ ΓA

BC

√
2W

‖d∂Q‖M
d∂QB

√
2W

‖d∂Q‖M
d∂QC = NAB δ∂W

δ∂QB
. (18.8)

The previous Chapter’s Best Matching procedure admits the following generaliza-
tion.

Best Matching 0) Start with the ‘arbitrary g frame corrected’ action (18.2).
Best Matching 1) Extremize over g. This produces a constraint equation Shuffle

that is of the form Lin: linear in the momenta.
Best Matching 2) The Machian variables form of this equation, with Machian data

Q,d∂Q is to be solved for the d∂g themselves.
Best Matching 3) Substitute this solution back into the action: an example of d∂-

Routhian reduction (see Appendix L). Again this produces a final g-independent
expression that could have been directly arrived at as a direct implementation of
CR-ii).

Best Matching 4) Finally elevate this new action to be one’s new starting point.

Best Matching 3′) As a distinct application of Best Matching 2), emergent Machian
times are now of the general form

tem(Mach) = F %Q,d∂Q&, (18.9)

a particular realization of which is tem of e.g. the Jacobi–(Barbour–Bertotti) type,

CR(tem
) = E′

g ∈g
∫

‖d∂gQ‖M/
√

2W . (18.10)

If one succeeds in carrying out Best Matching, moreover, both the two-functional
and implicit-formulation complications are washed away. This leaves CR(tem

) ex-
pressed in terms of the reduced q’s geometry.

N.B. that the above expression does not contain a spatial integral: the field-
theoretic t em is local. Moreover, the essential line of thought of this Chapter is
the only known approach to Configurational Relationalism that is general enough to
cover the Einstein–Standard Model presentation of Physics.

The momenta in terms of the corresponding derivative ∗ are

PA = MAB ∗QB , (18.11)

while the equations of motion now take the ‘parageodesic’ form

∗ ∗QA + ΓA
BC ∗QB ∗QC = NABδ∂W /δ∂QB. (18.12)

It can also be cast as a true ‘geodesic’ equation with respect to the physical met-
ric whose line element is d∂J . Finally one of the evolution equations per relevant
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notion of space point can be supplanted by the emergent Lagrangian form of the
quadratic ‘energy-type’ constraint (15.26).

18.3 Example 1) Electromagnetism Alone

Consider the space of 1-forms on R
3. g = Diff (R3) is not applied to flat-space

Electromagnetism because δij breaks this in the active sense. However, g = Rot(3)
can be considered. Internal Relationalism involving U(1) clearly also applies.

The latter works out fine for this (including using a �̇ or ∂� auxiliary in place
of the electric potential � [20]). This gives in each case the expected Gauss con-
straint G. However Spatial and Temporal Relationalism is prohibitively restrictive
in the case of Electromagnetism. E.g. involving Diff (�) gives that the Poynting
vector E × B must vanish [19]. I.e. E = 0, B = 0, or E parallel to B (which kills sig-
nal propagation). In any case, Electromagnetism by itself has background structures
(typically the Minkowski metric η, or the Euclidean metric δ on flat spatial slices).

The resolution of these issues is that inclusion of GR to make the Einstein–
Maxwell system frees one from these background structures and the above zero
Poynting vector restriction (see Sect. 18.11). Yang–Mills Theory and the various
associated Gauge Theories follow suite in these regards. More generally still, Field
Theories of matter are found to not be properly supported in the absence of GR as
regards attaining Background Independence.

18.4 Example 2) GR

For this particularly substantial example, q = Riem(�)—the space of Riemannian
3-metrics on some fixed spatial topological manifold � that is taken to be compact
without boundary both for simplicity and for Machian reasons. Moreover, equipping
� with h has a more involved form than RPMs’ multiple copies of absolute space;
indeed GR gives further reason to adopt Sect. 14.2’s procedure b).

The group of physically irrelevant motions g is usually taken to be Diff (�): the
diffeomorphisms on �; see Sects. 21.4 and 33.7 for further alternatives.

In this case, q/g is Wheeler’s [237, 899] superspace(�) = Riem(�)/Diff (�).
The first action on this g, q pair that we consider is the BSW one (9.11). This
is formulated in terms of the shift βi auxiliary which maintains contact with the
earlier literature, but also fails to be Temporally Relational. We deal with this by
next passing to the TRi version in terms of the cyclic partial differential of the frame
auxiliary, ∂Fi .

A further example of structural compatibility between q and g that manifests it-
self in Geometrodynamics is Diff being based upon the same underlying topological
manifold � that Riem is.

One could also consider less minimal q than GR’s Riem(�), as occur in e.g.
Scalar–Tensor Theories, or in Scalar–Vector–Tensor Theories [468, 516]. Finally,
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a diversity of actions can be constructed on a given q, g pair. For instance, one
could consider an arbitrary rather than GR-specific supermetric (as per Chap. 33),
or more than just a second-order action principle. The latter could be precluded
with simplicity postulates such as that the action is not to contain higher than first
(or occasionally second) derivatives.

18.5 Baierlein–Sharp–Wheeler Action and the Thin Sandwich

We next consider the Baierlein–Sharp–Wheeler (BSW) action sBSW (9.11)—
named after Wheeler and physicists Ralph Baierlein and David Sharp [89]. Be-
cause λ and t coincide for GR due to its status as an already-parametrized theory,
the distinction between the BSW kinetic term and the ADM one is entirely con-
ceptual rather than mathematical. The equivalence of the ADM and BSW actions
for GR is then established by the multiplier elimination move done for Minisu-
perspace in Chap. 16 immediately carrying over to GR in general [89, 177]. Also
GR’s configuration space metric is indeed built out of the dynamical variables:
Mijkl = √

h{hikhj l − hijhkl}, in compliance with Postulate CR-i).
The Thin Sandwich formulation [89, 897] consists of the following.

Thin Sandwich 0) Consider the BSW action.
Thin Sandwich 1) Vary this to obtain the constraint equation Mi .
Thin Sandwich 2) Consider the ‘Thin Sandwich equation’, i.e. the Lagrangian-

variables form of Mi :

Dj
{√ R − 2Λ

{hachbd − habhcd}{∂hab − 2D(aβb)}{∂hcd − 2D(cβd)}

× {hjkδli − δ
j
i hkl
}{∂hkl − 2D(kβl)}

}
= 0, (18.13)

alongside ‘thin sandwich data’

(hij , ḣij ), (18.14)

as a PDE problem to be solved for the shift βi . This equation and data jointly
constitute the Thin Sandwich Problem, in the sense of ‘PDE problem’ explained
in Appendix O.

Thin Sandwich 3.a) Construct £βhij : GR’s �Diff βhij . Then δ�βhij = ḣij − £βhij .
Thin Sandwich 4.a) Next construct an emergent counterpart to α, N :=√

TBSW/4{R − 2Λ}.
Thin Sandwich 5) Thin Sandwich 3.a) and 4.a) permit one to construct the extrinsic

curvature Kij = Kij (x; h,β,N] using the computational formula

Kij =
δ�βhij

2 N
, (18.15)
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which is the last form in (8.14) except that BSW’s emergent N has taken the place
of ADM’s presupposed α. This Thin Sandwich output may be considered within
the Broad worldview, to a greater extent than Wheeler’s interpretation [660] of the
ADM split as a strutting of spacetime.

18.6 The Thin Sandwich Problem

Unfortunately the Thin Sandwich Problem, (18.13), (18.14) is hard to handle as a
PDE problem. See Appendix O.5 for an outline of existence and uniqueness re-
sults for this, the most up to date of which are due to mathematical physicists
Robert Bartnik and Gyula Fodor [308, 663]. Generic GR solution of this equation
is, moreover, out of the question. Since the Thin Sandwich equation has a square
root trapped inside the Di , a fairly complicated PDE ensues. Contrast how in RPM
(Sect. 16.7)—and even in the SIC case (Sect. 30.4) to leading order—Best Matching
gives a merely algebraic equation which is much easier to handle (at least locally).

Let us end by noting that g being (along the lines of) the diffeomorphism group
has the problem of blocking many an explicit construct from being more than for-
mal.

18.7 Reparametrization-Invariant Relational Action for GR

The BSW action does succeed in being formulated free from a extraneous back-
ground time-like notion such as the GR lapse. However, this does not comply
with Temporal Relationalism since the presence of the shift βi breaks Manifest
Reparametrization Invariance. None the less, Chap. 16 has laid out how to get round
this deficiency.

To link between the two formalisms, Ḟ
i

is the velocity of the frame. This is nu-
merically equal to the shift βi . Moreover,

srelational =
∫

dλ
∫

�

√
TrelationalR − 2Λ, Trelational := ‖ḣ − £Ḟh‖2

M. (18.16)

This implements both Temporal and Configurational Relationalisms.

18.8 Geometrical Action for GR

The final action for GR as Geometrodynamics in relational form is

srelational =
∫∫

�

d3x ∂J =
∫∫

�

d3x

√
R − 2Λ∂srelational (18.17)



254 18 Configurational Relationalism: Field Theory and GR’s Thin Sandwich

for ∂srelational := ‖∂Fh‖M and ∂Fhij := ∂hij − £∂Fhij . (18.18)

The conjugate momenta are

pij := δ ∂J
δ ∂hij

= 2
√
R − 2ΛMijkl ∂Fhkl

∂srelational
. (18.19)

The GR Hamiltonian constraint H now follows as a primary constraint that is purely
quadratic in the momenta. The GR momentum constraint Mi arises as a secondary
constraint from variation with respect to the auxiliary Diff (�)-variables Fi ; it is
linear in the momenta. The Jacobi–Mach equations of motion are (for Λ = 0 for
simplicity)

2
√
R

∂Fpij

dsrelational
=
{√

h
{
Rhij − Rij + DjDi

− hij�}− 2√
h

{
picpc

j − p pij /2
}} ∂s

2
√
R
. (18.20)

Via the Bianchi identity (D.17), these immediately propagate the above constraints
without producing further conditions.

18.9 TRi Form of the Thin Sandwich

We next reiterate the Thin Sandwich procedure in the TRi formulation’s manifestly
temporally Machian form.

Machian Thin Sandwich 0) Consider the relational GR action (15.7) [62, 109].
Machian Thin Sandwich 1) Vary it with respect to Fi to obtain the constraint equa-

tion Mi [64].
Machian Thin Sandwich 2) Consider the ‘Machian Thin Sandwich equation’. I.e.

the Machian-variables form of Mi

Dj
{√ R − 2Λ

{hachbd − habhcd}{∂hab − 2D(a∂Fb)}{∂hcd − 2D(c∂Fd)}

× {hjkδli − δ
j
i hkl
}{
∂hkl − 2D(k∂Fl)

}}= 0, (18.21)

with ‘Machian thin sandwich data’

(hij , ∂hij ), (18.22)

for the partial differential of the frame auxiliary ∂Fi . Moreover, altering (18.13),
(18.14) to (18.21), (18.22) makes no difference to the mathematical form of this
PDE problem.
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Machian Thin Sandwich 3.a) Construct £∂Fhij , and then the Best Matching cor-
rected derivative

∂Fhij = ∂hij − £∂Fhij . (18.23)

This is a distinct conceptualization of the same mathematical object as the hyper-
surface derivative.

Machian Thin Sandwich 4.a) Construct the emergent differential of the instant

∂I = ‖∂Fh‖M

/
2
√
R − 2Λ. (18.24)

Machian Thin Sandwich 4′) Emergent Jacobi–Barbour–Bertotti time readily fol-
lows simply from integrating up 4.a). Moreover, 6.b) goes beyond BSW’s own
construction. It is GR’s analogue of emergent Jacobi time as highlighted by Bar-
bour [98]. Furthermore, it is an ‘all change’, or, in practice ‘STLRC’ implementa-
tion of Mach’s Time Principle:

CR(tem)(x) = E′
F ∈ Diff (�)

∫
‖∂Fh‖M

/√
R − 2Λ. (18.25)

Another consequence of move 2) is that one can substitute the resultant extremizing
Fi back into the relational GR action.

Machian Thin Sandwich 4) Take this as an ab initio new action.

Note that moves 1) to 4) constitute a reduction; with these, the Machian Thin Sand-
wich can be interpreted as a subcase of Best Matching.

Machian Thin Sandwich 5) is that moves 3.a) and 4.a) also permit construction of
the extrinsic curvature through the computational formula

Kij = ∂Fhij
2 ∂I

(18.26)

for Kij = Kij (x; h, ∂F, ∂I]. This subsequently enters Spacetime Construction, as
further laid out in Chap. 33. See Fig. 18.1 for a summary so far, laying out the TRi
modifications to the previous Thin Sandwich work following from the BSW action.
Also, Chap. 31 proceeds to consider yet further completion of the thin-sandwich
prescription in terms of constructing the whole of the universal hypersurface kine-
matics [577–579].

18.10 Comments on GR’s Emergent Machian Time

Mathematical physicist Demetrios Christodoulou [208, 209] arrived at this two
decades prior to Barbour, as an extension of the Thin Sandwich which he termed
‘Chronos Principle’. Like Wheeler, he did not base the Thin Sandwich on rela-
tional first principles. None the less, he was certainly aware of the features that
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Fig. 18.1 Standard Thin Sandwich versus TRi Thin Sandwich. The current Figure can be regarded
as further detail of the second floor of Fig. L.2

Barbour and the Author have argued to be a Leibniz–Mach position on relational
time [39, 104]. “They contain the statement that time is not a separate physical
entity in which the changing of the physical system takes place. It is the measure
of the changing of the physical system itself that is time.” However, this work was
overlooked by his contemporaries.

Let us comment further on the form of expression (18.25). It says that one has
to extremize one functional in order to use the extremal value from that in a sec-
ond functional. This is more complicated than the usual variational problem that
involves extremizing a single functional. What happens if the time functional itself
is extremized? For finite models, this is actually equivalent to the given procedure.
However, for Field Theory the two become inequivalent due to factors of

√
W be-

coming entangled with the derivative operators that arise ‘by parts’ in the spatial
integration. The necessary property that the timestandard be independent of whether
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Fig. 18.2 Let us denote the map from an action to the corresponding emergent time candidate
by T , We denote the map consisting of substituting in the g-extremum of the action by E, and
the map consisting of substituting in the g-extremum of the timefunction itself by E′ E and T
naturally commute: T E = ET , but in general T E′ �= ET . This is why we use the g-extremum of
s in order to free t of g-dependence

the action has already been reduced then forces the extremization to take the above
form (Fig. 18.2).

N.B. the local character of GR’s emergent time notion. This arises from the field-
theoretic use of local square roots (i.e. take the square root prior to integrating).

The final form—in the sense of Sect. 15.9—can in this case be identified as the
GR proper time, now obtained as an emergent concept. In a suitable cosmological
setting, this is aligned with cosmic time. We are using a distinct name and symbol I
for ‘instant’ since this emergent entity is, most primarily, a labeller of instants. This
ends up, very satisfactorily, being dual to the GR proper time. GR proper time is
indeed a quantity which in general differs from point to point, and it is this desirable
feature which arises from the field-theoretic local square root ordering (Sect. 17.2).
It is in this manner that local square roots manage to be desirable in GR despite their
finite theory counterparts being questionably Machian and not physically realized.

Via

∂I := ∂s

2
√
R

= ∂
(
CR
(
tem))

,

the Λ = 0 tem–instant dual simplifies the momenta and relational equations of mo-
tion into the forms

pij = Mijkl ∂Fhkl
2 ∂I

, (18.27)

∂Fpij =
{√

h
{
Rhij − Rij + DjDi − hij�}− 2√

h

{
picpc

j − p pij /2
}}
∂I.

(18.28)

18.11 Example 3) GR with Fundamental Matter Fields

In general, the Thin Sandwich equation (18.13) is proportional to momentum
flux Pi . The Thin Sandwich Problem has mostly only been considered for phe-
nomenological matter [308, 663, 897]. Best Matching, however, concerns funda-
mental matter, a distinction of note since corrections to velocities do not occur in
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phenomenological matter terms. Giulini [360] did consider the Thin Sandwich Prob-
lem for Einstein–Maxwell Theory (including protective theorems). Christodoulou
[209] and the Relational Approach [14, 58, 109] each covered this with GR coupled
to a full complement of fundamental matter. [These works are at the level of the
form of the equations but not at the level of Thin Sandwich Theorems.]

The specific examples below lie within the scope of Appendix H.7’s configura-
tion spaces. !Z are then the momenta conjugate to the matter variables ψZ.

Example 1) The Einstein–scalar case is useful for Cosmology, including this book’s
main Minisuperspace model and perturbations thereabout. Here

srelational =
∫∫

�

d3x ∂s
√
R − 2Λ− |∂φ|2/2 − V(φ) ∂s = ∥∥∂F(h, φ)

∥∥
M(h),

(18.29)
for M as given in Appendix H.7. Moreover,

H := Nijklp
ijpkl + π2

φ/2 − R − 2Λ− |∂φ|2/2 − V(φ) = 0, (18.30)

Mi := −2Djpj i = −πφφ,i, (18.31)

CR(tem
)(x) = E′

F ∈ Diff (�)

∫ ∥∥∂F(h, φ)
∥∥
M(h)

/
R − 2Λ− |∂φ|2/2 − V(φ),

(18.32)

Dj
{√ R − 2Λ− |∂φ|2/2 − Vφ

{hachbd − habhcd}{∂hab − 2D(a∂Fb)}{∂hcd − 2D(c∂Fd)} + |∂Fφ|2/2

× {hjkδli − δ
j
i hkl}{∂hkl − 2D(k∂Fl)}

}

= −
√

R − 2Λ− |∂φ|2/2 − Vφ
{hachbd − habhcd}{∂hab − 2D(a∂Fb)}{∂hcd − 2D(c∂Fd)} + |∂Fφ|2/2

× ∂Fφ φ,i . (18.33)

Example 2) Einstein–Maxwell Theory has

srelational =
∫∫

�

d3x ∂s

√
R − 2Λ− B2/2, ∂s = ‖∂Fh, ∂F,�A)‖M(h) (18.34)

H := Nijklp
ijpkl + πiπi/2 − R − 2Λ− B2/2 = 0, (18.35)

G := ∂iπi = 0, (18.36)

Mi := −2Djpj i = − {π × B}i − AiG, (18.37)

CR(tem
)(x)=E′

F,�∈ Diff (�)×U(1)(�)
∫ √

‖∂Fh‖2
M + |∂F,�A|2/2

/√
R − 2Λ− B2/2.

(18.38)
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See [360] for consideration of its Thin Sandwich Problem, which now involves a
system of 4 equations for 4 unknowns.

Research Project 1) Since the Thin Sandwich Problem plays a substantial part in
the Relational Approach to the Problem of Time, investigate whether its known
protective theorems extend to a wider range of theories. E.g. follow up [360, 663]
by considering the Scalar–Tensor Theory, Einstein–Dirac and Einstein–Standard
Model counterparts.

As some background on the Einstein–Dirac case, this has an action of the schematic
form

s=
∫∫

�

d3x
{√

2
√
W∂squad + ∂slin

}
. (18.39)

I.e. a locally ordered Field Theoretic version of the ‘Randers type’ action (17.6)
[14, 39]. Moreover, the species whose changes enter the quadratic and linear arc
elements are disjoint: only bosonic changes enter the former, and only fermionic
ones confer the latter.

Local flat space(time) frame formulations—as necessitated by the inclusion of
fermionic variables—possess locally-Lorentz constraints JAB (and conjugate, with
the capital indices here being specifically 2-spinor indices, though we schematically
denote this just by J from now on). See e.g. [232] for its explicit form. J can fur-
thermore be considered to arise from local Lorentz frame Best Matching in the flat-
space frames attached to each point in this formulation, alongside the usual Diff (�)
Best Matching that produces Mi . In this way, (18.39) complies with Configurational
Relationalism.

Being the q-geometry dual of a Manifestly Parametrization Irrelevant action,
(18.39) furthermore complies with the incipient Leibnizian conception of Temporal
Relationalism. On the other hand, spin-1/2 fermionic change ∂strial

lin does not sub-
sequently enter into the Einstein–Dirac H or consequently into the Einstein–Dirac
tem
g-free. This has already been argued in Sect. 17.2 to be at odds with Machian resolu-

tions of Temporal Relationalism. The above relational characterizations additionally
carry over to further theories in which the spin-1/2 fermions are coupled to one or
both of spin-1 gauge fields and scalar fields. Thus so far only ‘time is to be ab-
stracted from bosonic change’ had been demonstrated [39]. One way out of this is
to insist on viewing fermions as inherently quantum entities. This is a widespread
view as regards placing limited weight on what preliminary classical actions can
be written down for fermions. The above argument provides one more reason not
to consider classical formulations of fermions within whole-universe models. We
postpone addressing whether quantum fermionic change contributes to the quantum
GLET to Sect. 47.5.

18.12 Example 4) Strong Gravity

For now, by Strong Gravity we mean the strong-coupled limit of GR [472]. Via the
conjecture of physicists Vladimir Belinskii, Isaak Khalatnikov and Evgeny Lifshitz
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[125], this is widely believed to be applicable to the primordial-cosmology universe
near a singularity. Strong Gravity exists in both geometrodynamical and metrody-
namical forms, with two and five degrees of freedom per space point respectively.
The geometrodynamical case follows from

s= √
2
∫∫

�

d3x
√

−2Λ∂s (18.40)

for ∂s the usual GR kinetic arc element (18.18), whereas the metrodynamical case
has the ‘bare’ kinetic arc element

∂s := ‖∂h‖M. (18.41)

This accounts for the latter’s three extra degrees of freedom, since the absence of Fi

or βi means that no momentum constraint Mi appears.

Hstrong := Nijklp
ijpkl + 2Λ = 0. (18.42)

The above notion of strong-coupled limit also readily extends to a wide range of
further Gravitational Theories. E.g. whereas (17.4) cannot be a model of higher-
curvature gravity due to that necessitating further pieces in order to be consistent,
there is a corresponding Strong Gravity type action of this form.



Chapter 19
Relationalism in Various Further Settings

19.1 Multiple Distinct Uses of the Word ‘Relational’

The word ‘relational’ has in fact been used in various ways by different authors.
Barbour-type Relationalism [17, 37, 38, 40, 65, 98, 103, 105, 109, 398] (Chaps. 14–
18) is the default in this book, by which it is often shortened to ‘Relationalism’.
Other meanings of ‘relational’ are due to e.g. Rovelli [743–745, 747, 749–752, 755]
and mathematician and physicist Louis Crane [224, 225].1 In this book, Rovelli and
Crane’s positions are termed ‘perspectival’. This is due to their considering sets of
subsystems rather than just the whole system. This carries connotations—especially
at the quantum level (Sect. 48.5)—of observed quantities depending on the partic-
ular specifics of the observer involved. Whereas Barbour-type approaches follow
from more long-standing themes in the Foundations and Philosophy of Physics, the
Rovelli or Crane type of approach has so far been more widely used in Quantum
Gravity programs.

Some parts of the above two families of approaches are mutually compatible [37],
whereas other parts require a choice to be made. The ‘any change’, ‘all change’ and
STLRC fork of Chap. 15 is an example of such a choice, and also of the Author’s
intermediate position. Another is Rovelli’s Partial Observables Approach—which
is clearly based on multiple subsystems—whereas Barbour’s relational position and
the Author’s principally concern Dirac observables or beables. Ashtekar Variables
approaches use ‘relational’ [154, 157, 336, 845] in Rovelli’s sense, though these
approaches also happen to fit Barbour’s and the Author’s relational criteria, though
this has hitherto been a not widely appreciated or used state of affairs. See [38, 39]
for more detailed comparison of Barbour, Rovelli, Crane and the Author’s positions
on Relationalism.

1Crane’s version can additionally be viewed as an early form of holography.
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19.2 Well-Known Theoretical Variants in Upper Layers
of Mathematical Structure

Some differential-geometric level variants to GR (largely not further pursued in this
book) are as follows. Not all symmetric 2-tensors are Riemannian metrics [477]. To
have this property, they would need to induce a non-degenerate inner product on
T(m). They also need to be physically ascribed (chrono)geometric significance;
one can a priori also consider symmetric 2-tensors that have some entirely different
significance. Some possibilities for alternative theories include one or more of the
following generalizations. Ceasing to require degeneracy or symmetry, one could
also have a 2-tensor or a Riemannian metric requirement (e.g. for a Finslerian gen-
eralization). One could also have more than one such entity, whether or not each is
ascribed (in some perhaps partial sense) (chrono)geometric significance, as in e.g.
bimetric theories.

19.3 Relationalism and Affine Geometry

On the other hand, the current book develops the affine, conformal and supersym-
metric variants. This development covers, firstly, the flat space cases of these and
the corresponding RPMs, secondly, the differential-geometric cases, and thirdly, the
corresponding variants of the Preface’s cube of physical theories.

We first turn to the case of Affine Geometry. In the flat-space case, the affine
group is well-known due to being isomorphic to GL(n,R) after taking out the centre
of mass; invariants here are ratios of d-volumes in dimension d (see Appendix B.1).
Using this models situations in which configurations have no overall meaning of
either relative angle (by equivalence under global shears), or of relative ratio (by
equivalence under global Procrustean stretches).

Affine Shape RPM [36] is based on GL(n,R) Best Matching. E.g. in 2-d ,

S = √
2
∫

ds
√
W, ds2 =

n∑
A,B=1

dGLρ
A × dGLρ

B

/ n∑
C,D=1

ρC ×ρD, (19.1)

where dGLρ
A := dρA − dgGρA the GL(2,R) Best Matching corrected derivative,

Best Matching corrected derivatives for dg := [df,de,db,dc] auxiliaries and

G :=
[(

1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 −1
1 0

)
,

(
1 0
0 1

)]T

. (19.2)

Also the V in this case’s W is V (− × − / − × − alone). Equation (19.1) encodes
P alongside Procrustean, shear, rotational and dilational constraints, which can be
packaged into

G :=
n∑
A=1

ρAGπA. (19.3)
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Affine transformations of Minkowski spacetime M
n have so far been studied

rather less, with ‘affine QFT’ receiving even less attention.
On the other hand, affine alternatives—and additions—to metric-level struc-

ture for GR are also well-known. These are based on Appendix D.3’s differential-
geometric considerations. E.g. one can consider metric and affine structure as in-
dependent fields to be varied. In the case of the Palatini action [75], this variation
returns the metric connection and GR. There are also more generally theories, how-
ever, with an additional non-metric connection and consequently a notion of torsion.
Moreover, these alternative theories have not yet been analyzed from a relational
point of view.

19.4 Relationalism and Conformal Geometry

Use of Conformal Geometry is one of the simplest and most often considered vari-
ants of the cube of physical theories. In flat space, the conformal group Conf (d)
takes the place of the Euclidean group; the corresponding invariant quantities are lo-
cal angles, which are observationally very natural. The SR counterpart involves the
conformal group Conf (d,1) in place of the Poincaré group Poin(d + 1) (Ex IV.10).
The conformal transformations in this case preserve the causal structure, whereby
they have been substantially studied. The Conformal Field Theory (CFT) counter-
part of ordinary QFT has also been very well studied [674, 719].

Conformal Shape RPM arises by appending the further special conformal Best
Matching to the qI version of Metric Shape RPM’s to give [36]

S = √
2
∫

ds
√
W, ds = ‖da,b,c,kq‖/√

I , (19.4)

da,b,c,kq
Ia := dqIa − daa − (db×qI

)a − dc qIa − {qI 2δab − 2qIaqIb
}
dkb

(19.5)

for V now of the form V (∠). Then variations with respect to a, b and c yield (9.9),
and the qI counterparts of (9.10) and (16.16) respectively, whereas variation with
respect to k zero total special conformal momentum constraint

Ka :=
N∑
I=1

{
qI 2δa

b − 2qIa q
Ib
}
pIb = 0. (19.6)

The quadratic constraint arising as a primary constraint is now

E := I‖π ‖2/2 + V (∠) = E. (19.7)

The linear constraints now close as per the conformal algebra, and Ka manages to
commute with E as well. This set-up works similarly for d > 3 [just requiring a
different presentation for the larger Rot(d)].
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Within GR, the spacetime conformal group continues to play an substantial role
as regards causal structure. This group’s status is additionally elevated to be on a
par with the spacetime diffeomorphisms in e.g. in the Weyl2 theory (11.14). On
the other hand, the spatial conformal group is also significant in addressing the GR
initial value problem (Sect. 21.4). Here GR is viewed as a Conformogeometrody-
namical formulation associated with CMC slices, with occasional further connota-
tions of York internal time (Chap. 21) or even of relational reformulations of GR or
alternatives thereto which are partly based on conformal mathematics.

19.5 Relationalism and the Point at Infinity

A further argument for Affine Geometry is that it is a conceptually simpler geom-
etry residing within Euclidean (and Similarity) Geometry (Appendix B.1) without
appending any further structure. However, one might well argue instead that Con-
formal Geometry’s local angles correspond naturally to directly observed quantities,
whereas Affine Geometry’s volume ratios do not. And yet to have a well-defined flat
space theory based on local angles requires inclusion of Riemann’s notion of ‘point
at infinity’, so as to be able to formulate the inversion in the sphere and the sub-
sequent special conformal transformation (Appendix B.1). This ‘point at infinity’
is open to interpretation as additional absolute structure: a(d) = R

d replaced by
R
d ∪ ∞.
In contrast, flat space Affine Geometry does not itself require such a point. The

affine or conformal fork indeed represents a choice at the level of Flat Geometry:
one cannot accommodate the generators of both together by (E.35).

The above motivation of Affine Geometry, moreover, often leads to its being
considered to be but a half-way house on the road to the even more simplifying Pro-
jective Geometry (Appendix B.1). Furthermore, the well-definedness of Projective
Geometry itself also requires introduction of a ‘point at infinity’. Projective Geom-
etry’s introduction of this structure is particularly motivated by seeking to simplify
geometrical proofs. On the other hand, its invariants—the cross-ratios—also do not
correspond to directly observed quantities.

Research Project 2) Does Projective Geometry admit a Relational Mechanics?
[Some versions of this would not be relational particle mechanics due to imple-
menting Projective Geometry ceasing to distinguish between points and lines.] As
a first step, Best Matching within C

N was laid out in [36], alongside an outline
of how cross-ratio invariance presents difficulties beyond this Chapter’s other ex-
amples as regards construction of indirectly formulated actions. More generally,
consider time in the projective version of the cube of theories.

19.6 The Fermionic Selection Criterion

In seeking extensions to standard physics, one useful criterion is the continued ex-
istence of spinors—and thus of capacity to model fermions. This is not compro-
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mised by incorporating whichever combination of conformal [706] or supersymmet-
ric transformations, or extra affine connections. Thus this criterion is unrestrictive
as regards the above-mentioned theoretical variants in the upper layers of mathe-
matical structure. On the other hand, it can affect other extensions. E.g. at the level
of the underlying topological manifold, it is well-known that some choices of � by
themselves preclude the existence of fermions (see e.g. [673]), and that orientability
of � is also often desired.

19.7 Relationalism in Ashtekar Variables Formulation of GR

Since Part II makes use of Fibre Bundles, it is useful to further phrase the Ashtekar
variables Ai as a connection in the fibre bundles sense (Appendix F.4). The cor-
responding action (8.34) can also be more geometrically cleanly interpreted in the
language of forms:

s∝
∫

d4x e eμA ∧ eνB ∧ FABμν . (19.8)

The loops themselves are moreover closely related to the connections in question.
If one furthermore removes the Diff (�) information from the loops, one arrives at
knots. See Appendices N.12-13 for an outline of loop and knot configurations, as
well as of their configuration spaces.

Knots have already been heralded as a spatially 3-d specific feature. Another
such is complexified GR’s self-duality along the lines of (F.1), as well as entering
Ashtekar variables formulations, was previously already well-known due to also
featuring in the Twistor Approach to (also complexified) GR (Sect. 36.2). On the
other hand, the spatially 2-d version of Ashtekar variables gets by through its rela-
tion with Chern–Simons Theory (Appendix F.5).

Also note the following parallels between loops and preshapes. Preshapes arise
by quotienting out the dilations Dil but not the more physically significant and math-
ematically harder to handle rotations Rot(d). On the other hand, Loop Quantum
Gravity’s loops are arrived at by quotienting out SU(2)(�) but not the more obvi-
ous and yet mathematically harder to handle spatial diffeomorphisms Diff (�). Thus,
while neither are the most redundant configurations featuring in the corresponding
theory, both are still partly redundant. Nor are they even ‘half-way houses’ in each’s
passage to non-redundant ‘physical’ kinematical variables. This is since both are
prior to the main part of that passage, both physically and in terms of the remain-
ing parts of each’s passage being far more mathematically complex than the parts
already undertaken. This has long been reflected in the former theories having been
named not after preshapes but after the shapes themselves. I.e. ‘Shape Geometry’,
‘Shape Statistics’, and ‘Shape Dynamics’ in the sense of ‘dynamics of pure shape’,
as per [37, 102, 536, 539] and Sect. 33.7. This suggests that it would be clearer to
name the latter theory after not loops but knots. Various possibilities are Knot Quan-
tum Gravity, Knot Quantum Gestalt and Nododynamics—from the Latin nodus for
‘knot’. Let us use the last of these for the rest of this book, since it additionally
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makes sense at both the classical and quantum levels, just as ‘Geometrodynamics’
does. Indeed, Geometrodynamics itself is indeed another naming based on identify-
ing less redundant ‘physical’ kinematical variables.

Relational and Background Independence criteria are held to be a substantial fea-
ture in approaches based on Ashtekar variables reformulations of GR such as Nodo-
dynamics. ‘Relational’ is usually meant here in Rovelli’s sense, though the Author
now argues that is can also be meant in the sense of Temporal and Configurational
Relationalism. This is modulo a small glitch: the pure gravity case cannot be cast in
Temporally Relational form at the level of the classical Lagrangian. From the point
of view presupposing spacetime [14], this occurs because the lapse-uneliminated ac-
tion is purely linear in the lapse. This is due to the well-known ‘pure-T’ character of
Ashtekar’s canonical action for pure GR, in contrast to the more usual T − V form
of the geometrodynamical action. This is sufficiently close to Sect. 17.2’s Exam-
ple 4) to preclude there being such an action. Another approach to this is that it is a
subcase of L = αkF + G having Lagrange multiplier equation γαk−1F = 0, which,
being homogeneous in α, cannot be used to eliminate α. However, it is clear that
addition of matter fields, or even just a cosmological constant—a −2ΛE ∧ E ∧ E
term in the Lagrangian—remedies this problem.

Configurational Relationalism for Ashtekar variables formulations involves g =
SU(2)(�)�Diff (�). The Ashtekar Variables form of the GR momentum constraint
(8.36) and Yang–Mills–Gauss constraint (8.35) follow from Appendix L.3’s varia-
tion with respect to, respectively, frame auxiliaries and SU(2)(�) auxiliaries whose
meaning generalizes the previous Chapter’s Electromagnetism’s ‘action per unit
charge’. The usual approaches incorporate Configurational Relationalism by con-
sidering knot configurations. On the other hand, the relational action for the canon-
ical formulation of GR in Ashtekar Variables lies within the Jacobi–Synge class.
The Ashtekar Variables form of the GR Hamiltonian constraint ensues as a unique
primary constraint (per space point), and is moreover such that a corresponding t em

can be isolated. So none of Sect. 17.2’s caveats apply to extracting a Machian emer-
gent time corresponding to an Ashtekar variables formulation of GR.

By now it is clear that the Barbour-type relational literature’s apparent fixation
upon GR in geometrodynamical form is merely at the level of choice of examples.
Temporal and Configurational Relationalism apply to Nododynamics as well. This
observation is of likely foundational importance for Nododynamics due to the addi-
tional conceptual and philosophical content of this further notion of Relationalism.
On the other hand, the Husain–Kuchař model arena implements a Configurational
Relationalism that is similar to Ashtekar variables GR (resulting in Mi and a GI )
without possessing a Temporal Relationalism (thus this has no H = Chronos and so
no emergent Machian time is based on rearranging this).

Research Project 3) Physicist Arthur Komar [563] showed that canonical transfor-
mations are capable of altering the form of the Thin Sandwich Problem. He demon-
strated this in the case of a distinct canonical transformation from that used by
Ashtekar. However, it does motivate investigating whether the Ashtekar canonical
transformation—

GAIa = �Ia − iKIa (19.9)
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for �Ia the spin connection and KIa := KabebI a close relation of the extrinsic
curvature—has the further good fortune of ameliorating the Thin Sandwich Prob-
lem. Since the Ashtekar version involves six equations in six unknowns due to
adjunction of SU(2) gauge freedom resulting in the corresponding Yang–Mills–
Gauss constraint, part of Research Project 1) is likely to be a useful precursor.

19.8 Relationalism and Supersymmetry

Supersymmetry is the third of the most immediate and often considered options to
the ‘standard cube’ of physical theories. This corresponds to generalizing symmetry
groups so as to no longer factor into spatial and internal parts. However, this split
lies within the auspices of the Coleman–Mandula Theorem (11.16), i.e. prior to the
construction of Supersymmetry so as to elude this No-Go. This version of Physics
involves the Poincaré supergroup, supersymmetric QFT and replacing GR and its
diffeomorphisms with Supergravity and corresponding super-diffeomorphisms.

Supersymmetric Nonrelativistic Particle Mechanics has been considered as a
model arena in e.g. [321, 678, 914]. [36] subsequently supplied a simple super-
symmetric RPM. The indirect formulation’s incipient notion of absolute space a
now a Grassmann space R

(d|n) (after polymath Hermann Grassmann) in place
of R

d . Supersymmetry can, moreover, be regarded as a further input choice for
g ≤ Aut(〈a, σ 〉). N.B. that physically irrelevant groups g in this case can, parallel-
ing the relativistic counterpart, cease to split into spatial and internal parts.

The supersymmetric version of Best Matching in the simple but typical case of
g = super-Tr(1) [36]

Ssusy = √
2
∫ {

‖da,αq‖ √
W + i

N∑
I=1

{
θ̄ Ida,αθ

I − da,αθ
I
θI
}
}
, (19.10)

for fermionic Best Matched derivatives

da,αθ
I := dθI − da + i dα, da,αθ

I := dθ̄ I − da − i dᾱ (19.11)

and bosonic Best Matched derivatives

da,αq
I := dqI − da − θ̄ Idα − dᾱ θI . (19.12)

The dα and dᾱ corrections to the fermionic species are ‘Grassmann translations’.
Furthermore, upon imposing Supersymmetry these also feature as corrections to
the bosonic changes. Note also that dθI and dθ̄ I are not acted at all upon by the
(standard bosonic) translations; at least no intuitive natural action ties these species
and transformation.
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Variation with respect to a now gives a new form of 1-d zero total momentum of
the Universe constraint

Psusy :=
N∑
I=1

{pI + pθI − pθ̄I } = 0. (19.13)

The new form just reflects that fermions also carry momentum. On the other hand,
variation with respect to α and ᾱ give the zero total supersymmetric exchange mo-
mentum constraints

S := −
N∑
I=1

{
pθI + i θ̄ I pI

}= 0, S† :=
N∑
I=1

{
pθ̄I + i θIpI

}= 0. (19.14)

These moreover gain one piece from the fermionic sector and one piece from the
bosonic sector. These constraints are accompanied by the standard quasi-bosonic E ,
except that now V contains fermionic species as well:

E := ‖p‖2/2 + V
(
qI , θI , θ̄ I

)= E. (19.15)

Taking for now the stance of not knowing the concrete form taken by supersymmet-
ric analogues of shape, the incipient form of V is

V
(
qI , θI , θ̄ I

)= VB
(
qK
)+

N∑
I=1

{
θI uI
(
qK
)− θ̄ I vI

(
qK
)+

N∑
J=1

θI θ̄JwIJ (qK)

}

(19.16)
by virtue of the automatic truncation in Grassmann polynomials afforded by the
underlying anticommutativity. Demanding algebraic closure leads to the following
conditions on V for this to be a function of the super-Tr(1) notion of shape:

N∑
I=1

θ̄ I

{
∂VB(q

K)

∂qI
+

N∑
J=1

θJ
∂uJ (q

K)

∂qI

}
= 0, (19.17)

N∑
I=1

θI

{
−∂VB(q

K)

∂qI
+

N∑
J=1

θ̄ J
∂v̄J (q

K)

∂qI

}
= 0. (19.18)

Research Project 4) Work out the supersymmetric counterpart of Appendix G: re-
duced configurations, reduced configuration spaces and their isometry groups.

Whether Relationalism and Supergravity are compatible is less clear-cut. For now,
let us comment that spin-3/2 fermionic change does enter H, so the Machian issue
with spin-1/2 does not carry over to spin-3/2; see Sect. 24.10 for more.
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19.9 Supersymmetric, Conformal and Affine Combinations

One can consider each of these as a successful addition of generators to the more
usual Euclidean, similarity or Poincaré groups. What happens upon attempting to
make more than one of these additions concurrently?

The conformal and supersymmetric generators successfully combine to form
the conformal supergroup [887]. The affine and supersymmetric generators do as
well, giving the affine supergroup. On the other hand, affine and conformal gener-
ators cannot be combined for flat geometries due to the obstruction term in (E.35).
Thus two distinct apex groups result from attempting to extend Sim(d) further.
Such obstructions preclude affine-conformal RPM, and similarly affine-conformal
QFT, whereas super-affine and super-conformal RPM’s [36] and QFT’s are group-
theoretically allowed. Indeed, Superconformal QFT has already received a certain
amount of attention [368, 386].

Moreover, at the differential-geometric level, affine and conformal structures can
co-exist (for all that Weyl’s unified theory [893]—which failed on other grounds—is
one of the best-known examples of a such). The study of Supergravity already in-
cludes consideration of affine structure due to the presence of torsion. Superconfor-
mal Supergravity—the result of gauging the superconformal group—has also been
studied to some extent [529, 530]. Torsion considerations here involve a triple com-
bination of affine, conformal and supersymmetric structure. A differential version
of Projective Geometry is also well-established [688].

Research Project 5) Consider time within the super-conformal cube of theories, in-
cluding setting up super-conformal RPM.

Research Project 6) Do likewise for the super-affine case.

The next most simple and most often considered option after the conformal, affine,
projective and supersymmetric versions is the topological manifold one. This in-
cludes consideration of Topological Field Theory (TFT) and considerations of topol-
ogy change in GR. This option and yet further descents in level of structure assumed
are deferred to Epilogue II.C.

19.10 String and M-Theory Versus Relationalism

As regards perturbative String Theory, firstly recollect that Axiom i) of Spacetime
Relationalism precludes this from being among the set of relational theories. Sec-
ondly, there are also some conceptual parallels between the passages from point
particles to each of strings and to relational quantities alone. The latter is moreover
more conservative—the relational quantities come from careful thought about the
original problem rather than replacing it with a distinct problem as in String Theory.
Strings, on the other hand, arose from assuming particles have material significance
and then reconceiving the manner in which this material significance was realized.
This is in contradistinction with the idea that only inter-particle relations have sig-
nificance. This material significance provides a reason to ‘string up’ spacetime or
space rather than auxiliary spaces from the Principles of Dynamics. Relationalism



270 19 Relationalism in Various Further Settings

gives less new structure—leading perhaps to less mathematical richness, yet also ap-
pearing to be a safer bet as regards the ‘hypotheses non fingo’ tradition of Physics.
This is because postulating strings builds in more assumptions whereas Relation-
alism removes assumptions. On the other hand, if Nature is made out of strings,
relations both between strings and within a single string—Diff (S1), Diff (S1 × R)—
would make sense. It would be interesting to know which aspects of Relationalism
extend to this more complicated setting.

Thirdly, exporting the Configurational Relationalism or more specific Best
Matching ideas to other parts of Physics would be interesting, even if not accom-
panied by the further demands of other kinds of Relationalism or Background In-
dependence. E.g. one could consider what form these ideas take for target space
theories of which strings on a given background.

Fourthly, note the analogy between the Nambu–Goto action (11.19) and the RPM
Jacobi action. It is of the ‘quadratic Jacobi’ form, but the string involves two pa-
rameters, so this indeed remains the correct form for Manifest Reparametrization
Invariance. The ensuing constraint is not to be interpreted as an equation of time,
since the parametrizations of time and space on the string worldsheet are on an equal
footing. In any case, the scheme is Background Dependent rather than in need of an
emergent Machian time.

On the other hand, M-Theory is expected to have all three of extended objects,
Supersymmetry and Background Independence.2 Since Background Independence
brings about a Problem of Time, it is exceedingly likely that M-Theory will have a
Problem of Time as well. In this way, study of Background Independence and the
Problem of Time is likely to also be a valuable investment from the perspective of
developing and understanding M-Theory.

Moreover, many features of the Problem of Time are universal, so these will oc-
cur here as well, unless features such as Supersymmetry or extended objects specif-
ically conspire to eliminate some facets. These features were not however designed
for this, by which this is a more stringent theoretical test for these features, from the
point of view that good physical theories work from multiple conceptual perspec-
tives (cf. Wheeler’s ‘many routes’ position in Sect. 9.1) rather than just from the
one in which they were first constructed. It would thus be a pleasant surprise if, in
addition to all the different usefulnesses of these structures, they also happened to
cure (part of) the Problem of Time.

Geometrodynamics (which straightforwardly generalizes to arbitrary-d [845])
could be seen as a first model arena for Background Independence aspects of spa-
tially 10-d M-Theory. A next step up might well involve using spatially 10-d Su-
pergravity, since this is a lower-energy or ‘semiclassical’ limit of M-Theory.

Research Project 7) Give a relational treatment of space and time, in the presence of
matter contents which span the full range of codimensions C (as opposed to being
just one of point particles or fields). For now, consider the purely bosonic case.

2To avoid confusion, let us note here that some other uses of the term ‘background (in)dependence’
in the String Theory literature have a different meaning. I.e. concerning the effect of choice of
vacuum on string perturbations.



Chapter 20
Other Tempus Ante Quantum Approaches

20.1 The Ante Postulate

This is that there is a fundamental time to be found at the classical level for the full
(i.e. untruncated) classical Gravitational Theory. Various candidate implementations
of this (T . . . Q approaches) include the following.

A) the classical Machian emergent time already considered in Chaps. 15 to 19. The
main problem with this is that it does not unfreeze the quantum GR Wheeler–
DeWitt equation.

B) Riem, scale, hidden and dilational times (York time is an example of both of
the previous), and matter time (including reference fluid). These are covered in
Chaps. 20 and 22; many of them do unfreeze quantum GR.

This book, however, argues in favour of A) followed by its semiclassical counterpart
so as to unfreeze quantum GR after Quantization (Chap. 46). The following turns
out to often be useful in discussing B).

Timelessness-indefiniteness cancellation hypothesis. Canonical GR has an indef-
inite kinetic term as well as time going missing. Perhaps these two perceived defi-
ciencies can cancel each other out.

More specifically, it is the overall scale part of the metric which causes indefinite-
ness in GR-like model arenas. So is overall scale, or some close relation of it (e.g.
dilational momentum), tied to the isolation of, or emergence of, time? This features
in a number of strategies; while this lies outside of what RPMs can model since
these have positive-definite kinetic terms, it can be considered for Minisuperspace
models.

20.2 Riem Time’s Hyperbolic Implementation

GR’s kinetic metric (inverse DeWitt supermetric) on Riem(�) has indefinite signa-
ture (− − + + + + + pointwise). Perhaps one could take the this indefinite direction
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to pick out a candidate timefunction tRiem. This would be in parallel to how the in-
definite direction in Minkowski spacetime Mn picks out a background timefunction
(Chap. 4). This is a direct attempt to implement timelessness-indefiniteness can-
cellation. tRiem would be hoped to produce a quantum Frozen Formalism Problem
resolution through this timefunction being a subcase of the more general candidate
form thyperb. This is because use of this and its subsequent conjugate momentum
pthyperb casts H into the hyperbolic form (9.20). This gives a Klein–Gordon type time-
dependent wave equation (12.9) depending on the double derivative with respect to
this timefunction.

The above presentation has been kept free of Configurational Relationalism by
being specifically for diagonal Minisuperspace. This possesses a 3 × 3 − − ++
Minisuperspace metric. On the other hand, the 2 × 2 positive-definite anisotropy-
space, ani block M+—a simple GR instance of shape space—has its inverse N +
subsequently feature in

HTrue = ‖P ‖2
N +(tRiem,Q) + V

(
tRiem,Q

)
. (20.1)

This approach is more often called ‘Superspace time’, though this only makes sense
when Riem(�) = superspace(�) by both being equal in the case of restriction to
Mini(�).

The full GR case also requires the functional- rather than partial-derivative
version of this working. E.g. the functional-time-dependent Schrödinger equation
which is based on the functional derivative with respect to the local t(x), in a func-
tional Laplacian—or Klein–Gordon operator—combination.

However, this approach fails for reasons which are already clear at the classical
level. The Klein–Gordon Approach is known to work in stationary spacetimes due
to the presence of a timelike Killing vector; in fact a timelike conformal Killing vec-
tor suffices as per Sect. 11.3. The GR case succeeds in paralleling the Klein–Gordon
Approach in this respect, for there is a ‘timelike’ conformal Killing vector E in GR’s
configuration space Riem(�) (see Ex VI.11.vi). For the Klein–Gordon Approach,
additionally, the potential is just the constantm2, which thus does not invalidate use-
ability of the timelike Killing vector. On the other hand, for GR the potential term
VGR = √

hR does not respect the conformal Killing vector [581, 584]. I.e. one has
{E,TGR} = − 3

2 TGR versus {E,VGR} = 1
2 VGR, so using H = TGR + VGR, {H,VGR}

does not work out right to close, answering the aforementioned Exercise. More-
over, the analogy between superspace(�) and relational space R(N,d) is further
strengthened by the latter also possessing a conformal Killing vector associated with
scale [37].

The indefinite part of the GR supermetric is intimately related to notions of scale.
This is tied to some kind of physical degrees of freedom which are closely related
to pure shape. Thus timelessness–indefiniteness cancellation for a GR-like theory
could also be expected to arise from using some kind of time that is closely related
to scale, to which we next turn.
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20.3 Scale Factor, Cosmic and Conformal Times

Following Sect. 9.11’s outline, we now consider the multiplicity of scale variables;
for GR these include the scalefactor a,

√
h that goes as a3, or the Misner variable

Ω = lna. RPMs also have a distinct meaningful set of (mass-weighted) scale vari-
ables, such as the moment of inertia I and the configuration space radius ρ := √

I .1

Make use of above GR examples as time candidates is an obvious attempt at imple-
menting the timelessness-indefiniteness cancellation hypothesis. One major prob-
lem with using these is non-monotonicity in recollapsing universes.

It is also useful at this point to supplement Chap. 7’s outline of isotropic cosmol-
ogy with the Friedmann equation

{
ȧ

a

}2

= 8π G

3
ρ + Λ

3
− k

a2
(20.2)

and the Raychaudhuri equation

ä

a
= − 4π G

3
{ρ + 3p} + Λ

3
(20.3)

that these obey. These follow from the Einstein Field Equations under the great sym-
metry reduction implied by isotropy. The dots here denote derivatives with respect
to cosmic time, whereas the k is the sign of the constant curvature (±1, or 0 in
the spatially flat case). ρ and p are the density and pressure of the matter contents
of the Universe, modelled phenomenologically, and we are using the customary
c = 1 units. From the number of time derivatives featuring in each, the Friedmann
equation is clearly a constraint equation (the Hamiltonian constraint), whereas the
Raychaudhuri equation is an evolution equation. For dust, ρ goes as a−3, and for
radiation, as a−4.

The cosmic time at an event E can, furthermore, be conceived of as [596]

supall proper durations(all future-directed timelike curves ending at E). (20.4)

This coincides with the proper time experienced by comoving observers. To first
approximation, observers on Earth are such comoving observers. Unlike scale factor
variables, it is by construction monotonic along each future-directed timelike curve.
Conformal time is moreover more closely linked to spacetime’s causal structure.
It different events for a shared value of conformal time, not cosmic time, which
are seen as simultaneous by comoving observers. If cosmic time is to be taken as
primary through its arising as a GLET, let us entertain the possibility of requiring a
secondary timefunction for use in synchronization procedures themselves.

Both cosmic and conformal time have the disadvantage of requiring construction
from multiple observational data and in a model-dependent manner. The properly

1This is the first of quite a few analogies between I and
√
h or its global analogue, the spatial

volume of the Universe, V.
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normalized scale factor is more directly realized: as τ = tUniverse/{1 + z}, where the
numerator is the age of the Universe today.2 However, this timefunction has the
disadvantage of not coinciding with the proper times of comoving observers.

N.B. that there are limitations in the precision to which cosmic time is known.
E.g. proper motions, and only approximately being able to factor velocities into
proper and cosmic parts, are sources of such. Averaging assumptions—a subtle and
unresolved matter in the context of GR, as outlined Sect. 30.6—are another source.

Finally note the RPM analogue of the Friedmann equation,

{
ρ∗

ρ

}2

= 2K

ρ3
+ 2R − S

ρ4
− 2A+ 2E

ρ2
, (20.5)

where ρ is now the RPM scale variable
√
I . Also, K is here an inverse square

law coefficient, so that Newtonian Gravitation contributes in parallel to dust. R is a
conformally invariant potential coefficient. Finally, S is the total shape momentum,
which both contribute in parallel to radiation.

20.4 Parabolic and Part-Linear Implementations

We next further consider approaches which start by solving Quad to obtain a
parabolic or part-linear form,

Ptparab + HTrue %tante,QO,PO & = 0. (20.6)

Here, Ptparab is the momentum conjugate to a candidate classical time variable,
tparab, and the index O runs over the other coordinates. This is to play a role
that closely parallels that of the external classical time of Newtonian Mechanics.
Moreover, given (20.6) such a parabolic form for H, it becomes possible to apply
a conceptually-standard Quantization which yields a time-dependent Schrödinger
equation (44.1). This form occurs in Parametrized Nonrelativistic Particle Mechan-
ics model arenas [586]. See the next two Chapters for GR examples of part-linear
forms.

Kuchař [573, 574, 581] developed these approaches using Parametrized Nonrel-
ativistic and Relativistic Particle Mechanics models and Parametrized Field Theory
models; see [552] for a brief introduction.

20.5 Hidden Time Approaches

A first suggested implementation of the parabolic form (9.17) of Tempus Ante Quan-
tum involves the possibility of there being a hidden or internal time [483, 581, 586,

2This is, moreover, only an observed cosmological quantity modulo an unknown proper compo-
nent.
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922] within one’s Gravitational Theory itself. The apparent frozenness would then
be a formalism-dependent statement that is to be removed by applying some canoni-
cal transformation. This sends GR’s spatial 3-geometry configurations to a) 1 hidden
time, so tparab = thidden. b) 2 ‘true gravitational degrees of freedom’ (which are the
form taken by the ‘other variables’, and are here ‘physical’ alias ‘non-gauge’). The
general canonical transformation—on GR’s phase space 〈T∗(Riem(�)), { , }〉—is
of the form

(h,p) −→ (thidden,pthidden ,True,PTrue). (20.7)

One would then seek to find a such so as to arrive at a hidden-time-dependent
Schrödinger equation of form (44.1) for thidden = tparab. One common place to seek
for an hidden or internal time is among the theories’ natural scalars. Let us next
classify these in more detail in the case of Geometrodynamics.

1) Intrinsic time candidates (in the sense of intrinsic geometrical objects) though
these have largely lacked in successful development [586]. One family of exam-
ples involve using some scale variable from Sect. 20.3 as a time. Note that these
are based on configuration rather than on change, so they are an example of the
third arrow from the bottom in Fig. 13.1.

2) Extrinsic time candidates (in the sense of intrinsic geometrical objects, in partic-
ular based on the extrinsic curvature). These include what is probably our best
candidate so far for an internal time in GR: York time [483, 581, 586, 922], see
Ex VI.11.iii) and the next Chapter for more detail. Elevating this to a candi-
date time furthermore involves exchanging the scale variable and the conjugate
dilational momentum under a canonical transformation, so that the latter gains
coordinate status. Dilational time candidates such as York time can be viewed
as further attempts at implementing the timelessness-indefiniteness cancellation
hypothesis. Unlike 1), these are clearly based on the momentum formulation of
change, and so are examples of Fig. 13.1’s top arrow. Finally note that internal
time is not universal over all theories, though scale and dilational notions of time
are universal within those theories that possess scale.

Example 2) Einstein–Rosen time [572, 573] is another extrinsic time candidate
within the cylindrical wave Midisuperspace model arena.

20.6 Implementation by Unhidden Time

We end by pointing out that physicists David Boulware and Gary Horowitz pointed
out that there is a Higher-Derivative Theory in which a natural variables set contains
an already-explicit internal time candidate [162, 456].



Chapter 21
Conformal Approach and Its York Time

The York time candidate version of hidden time has been developed in particular.
This approach originated with York’s choice to bypass Wheeler’s earlier Thin Sand-
wich approach on technical grounds. York’s approach brings in conformal mathe-
matics (Appendix D.7); the GR Hamiltonian and momentum constraints decouple
when formulated in this manner. Wheeler moreover championed both of these ap-
proaches as Machian at some point [897, 901]. Finally note that various programs
([65, 103, 108, 650] and Chap. 33) use a combination of thin-sandwich and con-
formal mathematics to provide distinct and in some cases Machian foundations for
GR.

21.1 Trace-Tracefree Irreducible Tensor Split

Begin by evoking the irreducible decomposition of symmetric second-rank tensors
"ab into their trace part " := "abhab and tracefree part "T

ab := "ab − "
3 hab , since

conformal weights are assigned to such irreducible pieces. In particular, if this split
is applied to Kab , the GR constraints (8.32) and (8.33) take the forms

KT
ijKTij − 2

3
K2 − R + 2{ε + Λ} = 0, (21.1)

DbKTb
a − 2

3
DaK + −Ja = 0. (21.2)

21.2 Maximal and CMC Slices, and Conformal Scaling

Next, let us distinguish between Lichnerowicz’s pioneering work [622] based on
maximal slices

p = 0, (21.3)
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and York’s generalization [922, 924] to CMC slices

K = spatial constant ⇒ p/
√

h = spatial constant. (21.4)

This generalization is significant as regards spatially-compact spacetimes, for which
maximal slicing cannot be propagated (i.e. it can not be maintained throughout an
extended foliation). CMC slices are moreover significant in Numerical Relativity.1

We subsequently consider the objects involved to be additionally conformal ten-
sors, with conformal transformation laws

hij → ϕ4hij , pTij → ϕ−4pTij , p/
√

h;
Ji , ε, and Λ are conformally invariant. (21.5)

See Appendix D.7 and Ex III.22) as regards the choice entailed in the first of these.
The first four of these ensure that Mi is conformally covariant; the third also en-
sures conformal invariance of the CMC slice condition itself. Additionally, H now
becomes the Lichnerowicz equation

8 �hϕ = Rϕ − pijp
ij /

√
hϕ7 − 2{ε +Λ}ϕ5 (21.6)

for the maximal case, or its generalization the Lichnerowicz–York equation

8 �hϕ = Rϕ − pT
ijpT ij /

√
hϕ7 + {p2/6

√
h − 2{ε + Λ}}ϕ5 (21.7)

for the CMC case (the original versions contained no Λ term). Because Mi is con-
formally covariant, one can solve it irrespective of the subsequent solution of the
conformally-transformed H for the physical scale ϕ. In this sense, the conformal
formulation decouples the GR constraints.

Whereas (21.6), (21.7) are complicated nonlinear equations, they do benefit from
quasilinearity (Appendix O.6). This allows for substantial existence and uniqueness
theorems [206, 465] and Numerical Relativity applications [123], but very largely
not for exact solutions. In this respect, York’s formulation [922] of the GR initial
value problem is in far better shape than Wheeler’s earlier Thin Sandwich concep-
tualization. Finally, this formulation straightforwardly extends to Standard Model
matter fields [64, 470].

21.3 Model Arenas

Example 1) Minisuperspace [483]. Here the Lichnerowicz–York equation becomes
a merely algebraic polynomial equation,

Rϕ − pT
ijp

T ij
/√
hϕ7 + {p2/6

√
h− 2{ε +Λ}}ϕ5 = 0. (21.8)

1Some of the supporting PDE Analysis works alluded to in Chap. 8.14 and Appendix O involve
such slices. These are used in [123, 382] for both the GR initial value problem for finding data
satisfying the GR constraints and as one type of gauge fixing for the evolution equations.
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This has various exactly-solvable subcases for low enough polynomial order in a
suitable ϕk variable.

Example 2) Strong Gravity. This is also merely polynomial: (21.8) without Rϕ.
Example 3) RPMs. Some of these have 0 = D = ∑n

A=1 ρ
AπA as Metric Shape

RPM’s analogue of maximal slices. Others are based on presenting Metric Shape
and Scale RPM in scale–shape split form (alias the metric-level cone). I.e. another
type of irreducible piece tensor split in place of Sect. 21.1’s trace–tracefree split,
now into scale ρ and dimensionless shape variables nA. This corresponds to the
quantity D :=∑n

A=1 ρ
AπA now not being zero by a constraint D but rather taking

a progression of values, in parallel to how the CMC slice condition generalizes the
maximal slice condition. In this formulation,

S = √
2
∫ √{

dρ2 + ρ2 ‖dn‖2
}{E − V } and

Quad = {π2
ρ + ‖π ‖2/ρ2}/2 + V = E.

(21.9)

This theory’s objects can additionally be allotted conformally weights. One way
to do this which tightly parallels GR involves viewing (G.2) as the analogue of
(H.3), whereby ρa scales by 1 power of RPM’s analogue ϕ.2 The na themselves
are invariant. Consequently, Li (and where relevant D = 0) are automatically con-
formally invariant, as analogues of the conformal covariance of Mi . This leaves E
scaling as

p2
ϕ + ‖π ‖2/ϕ2 − 2

{
V (ρa,ϕ)−E

}= 0, (21.10)

where a potential piece that is homogeneous of degree k in the ρa scales as ϕk .
This is clearly always an algebraic equation as well, with simple solvable cases
including k = 2,0,−2 and −4 alongside various linear combinations thereof. On
the other hand, the pure-shape case is analogous to the Lichnerowicz equation itself
in having no p2

ϕ term, and also has V restricted to k = 0 which is non-scaling.
This analogue—‖π ‖2/ϕ2 = 2{E − V }—is therefore always trivially algebraically
solvable for ϕ.

21.4 Underlying Conformal Configuration Spaces

Conf (�) are the conformal transformations on �. Conformal Riem

CRiem(�) := Riem(�)/Conf (�) : (21.11)

the space of conformal equivalence classes of Riemannian metrics [237]; see Ap-
pendices D.7 and H.6 for further mathematical detail of this and the spaces men-
tioned below.

2This is ρ = I 1/2, to the GR ϕ being
√
h

1/6
.
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Because H provides 1 restriction per space point upon the 3 degrees of free-
dom per space point of Superspace, Wheeler asked what is “2/3 of Superspace?”
In response, York evoked the following two geometrically natural possibilities
[921, 922, 924, 925].

1) Conformal Superspace Cs(�) is geometrically well-defined as the space of all
conformal 3-geometries (Appendix D.7) on a fixed �.

Cs(�) := superspace(�)/Conf (�) = Riem(�)/Conf (�)� Diff (�).
(21.12)

This corresponds to the maximal condition (21.3) being imposed.
2) {Cs + V}(�) [922] adjoins to this a solitary global degree of freedom—the

spatial volume of the Universe. This corresponds to the CMC condition (21.4)
being imposed.

Also bear in mind that the ‘2/3 of Superspace’ picked out by each of these conditions
might however not be directly related to the ‘2/3 of Superspace’ picked out by H
itself. Let us use Truespace(�) to denote the latter—the space of true dynamical
degrees of freedom of GR, True—while acknowledging that for now this is but a
formal naming rather than a space of known and understood geometry.

Conformal Riem has also been termed ‘pointwise conformal superspace’ [305]
This name is however confusing in various ways. Firstly, it can only be understood
if conformal superspace itself has already been introduced. Yet CRiem(�) is a sim-
pler space, and a strong case can be made for simpler entities to be introduced on
their own terms rather than by reference to more complicated ones. Secondly, Ap-
pendix H.5 makes a distinct use of ‘pointwise’, to mean ‘looking at a field at just
one point’, which is a very clear use. The current use, on the other hand, is along the
following lines. ‘Take a space that involves quotienting out Conf (�) and Diff (�)—
conformal superspace—but now do not quotient out Diff (�) after all: pointwise’.
This can however be contracted to just ‘take a space that involves quotienting out
Conf (�)’, i.e. making no mention, rather than two implicit mentions which cancel,
of the concept that is unnecessary for the definition [Diff (�)]. On these grounds,
let us use instead the name ‘conformal Riem’. We denote this by ‘CRiem’, mak-
ing use of ‘C’ for ‘conformal’ paralleling the habitual use in ‘Cs’ for ‘conformal
superspace’, noting that ‘C’ standing for ‘conformal’ can just as well be introduced
prior to any mention of superspace or the associated Diff (�).

On the other hand, whereas passing to equivalence classes is mathematically
convenient, the equivalence classes themselves can be considered to be more pri-
mary. If CRiem(�) were viewed in this manner, it would make more sense
for it and Riem(�) to be renamed so that now Riem(�)’s new name derives
from CRiem(�)’s by a ‘locally-scaled’ addendum. One might go as far as view-
ing Cs(�) as primary (for all that this is unlikely to be motivated by the final
form of the ‘true degrees of freedom’ of the gravitational field). Such primality
amounts to assuming not Geometrodynamics but Conformogeometrodynamics. In
this case, a good primary name would be shape space, shape(�), for the confor-
mal 3-geometry notion of shape. superspace(�) would then be known as ‘locally-
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scaled shape’, CRiem(�) as ‘diffeomorphism-redundant shape’, and Riem(�) as
‘locally-scaled diffeomorphism-redundant shape.

Moreover, the conventional approach to Conformogeometrodynamics involves
solving the Lichnerowicz–York equation so as to pass finally from {Cs + V}(�)
to Truespace(�) by the solution fixing a particular form of the local scalefactor
ϕ to be the physically realized one. Whereas traditionally Conformogeometrody-
namics is viewed as a convenient decoupling leading to substantial mathemati-
cal and numerical tractability, from the relational perspective, one can consider
g = Conf (�) � Diff (�) or VPConf (�) � Diff (�). This approach is further mo-
tivated in Chap. 33.

Finally note the RPM to GR configuration space analogies in Fig. G.2, with pre-
shape space and shape space analogous to CRiem(�) and Cs(�). Limitations of
this analogy are, firstly, that shape space plus scale is now a coincident analogue
of Riem(�) and {Cs + V}(�). Secondly, conformal shape RPM’s configuration
space bears a tighter analogy with GR’s Cs(�).

21.5 Canonical Twist and Definition of York and Euler Times

The York time candidate [483, 581, 586, 922, 923]

tYork := 2

3
hijp

ij /
√

h = c(λ alone), (21.13)

i.e. a spatial hypersurface constant for the CMC slice, is the canonical conjugate to
the spatial volume element

√
h. The Euler time candidate3

tEuler := D: D interpreted as a time variable rather than as a constraint (21.14)

is the canonical conjugate to the scale variable ln ρ. These are conceptually similar
in both being ‘dilational momenta’, i.e. canonical conjugates to scale variables. One
can think of passing from considering maximal to CMC slices in GR as ‘switching
on’ a York time variable, and similarly for the passage from pure Shape to Shape
and Scale RPM as ‘switching on’ an Euler time variable.

In the GR case, the general true degrees of freedom–embedding variables split-
ting canonical transformation is now

(h,p) −→ ( �X , �!,True,PTrue
)
. (21.15)

This amounts to inverting the position and momentum statuses of the scale and
conjugate dilational variables. Moreover, solving for the scale—as the conformal
method is set up to do—isolates one momentum variable. In this way, an equation

3This is named in honour of Euler, due to the homogeneous and advective character of D :=∑
I x
I · p

I
.
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of type (9.19) is formed, which generalizes the parabolic precursor to the standard-
type time-dependent Schrödinger equation.

Additionally in this approach, the Hamiltonian constraint is replaced by PYork =
H True = √

h = ϕ6. The conformal scale factor ϕ is now interpreted as the solution
of the conformally-transformed Hamiltonian constraint alias Lichnerowicz–York
equation (21.7).

Viewing York time formulations as Problem of Time resolutions is however in
practice hampered by, firstly, the Lichnerowicz–York equation not being explicitly
solvable. Because of this, York time is in practice almost never explicitly known.
Section 21.3’s model arenas can, moreover, be used to investigate further features
of this approach in special cases for which the time candidate is explicitly known.
Secondly, the canonical transformation involved is also hard to perform in practice,
and additionally suffers from the global problem outlined in Sect. 37.4.

Moreover, the York and Euler time candidates are not exact analogues of each
other. Further consideration of this reveals that the GR and RPM families of scale
variables amount to a nontrivial source of variety, since different choices lead to
different formulae for conjugate dilational momenta. In turn, this affects the Internal
Time Approach’s procedure for solving Chronos.

For instance, for the f (ρ) family of RPM scale variables, the definition of con-
jugacy identifies the corresponding dilational quantities to be

{f ,D/LDf } = 1, (21.16)

for LD the linear dilational operator ρ ∂ρ .

Example 1) It is then lnρ which is conjugate to the Euler time candidate itself. In
making the momentum conjugate to the dilational time the subject of Quad, the
Euler time candidate produces a logarithmic ‘true Hamiltonian’:

−ptEuler = ln
(
F
(
pS

a , S
a, tEuler)). (21.17)

For free scaled 3-stop metroland, recast E firstly in terms of lnρ and D and then in
terms of tEuler = D and its conjugate ptEuler = −lnρ to obtain

tEuler 2 + p2
ϕ = 2E exp(−2ptEuler). (21.18)

Solving this equation for ptEuler gives

ptEuler = − 1

2
ln

(
tEuler 2 + p2

ϕ

2E

)
. (21.19)

As we shall see in Part III, this ln is moreover quantum-mechanically inconvenient,
but we can exploit the above diversity of f to replace ln with a more benevolent
function.

Example 2) For instance, f = ρ—configuration space radius itself—has conjugate
D/ρ = pρ , i.e. just the radial momentum, thus furnishing the radial dilational time
candidate, tρ .
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Example 3) f = 1/ρ := υ—the reciprocal radius—turns out to be even more use-
ful (compare using u = 1/r in Mechanics). The conjugate is now −ρ D: the recip-
rocal radius dilational time candidate, tυ . Then the free scaled 3-stop metroland E
is

t2υp
4
tυ

+ p2
ϕp

2
tυ

− 2E = 0. (21.20)

Note that this is algebraic (as is any power function f ), and moreover very straight-
forwardly solvable, giving which is solved by

ptυ = ±

√√√√−p2
ϕ ±
√
p4
ϕ + 8E t2υ

2 t2υ
. (21.21)

This requires E > 0 and thus a same-sign monotonicity sector (see two Sections
down). Also the inner sign needs to be a ‘+’ for classical consistency, and Chap. 44
furthermore requires the outer sign to be ‘−’ as regards approximate recovery of a
close-to-conventional QM.

On the other hand, for the f (h) of GR scale variables,

{f (h),2G(h)p} = 1 (21.22)

for G(h) = 1/LDf (h) and linear dilational operator LD := a ∂a = 6 h ∂h. It is then
clear that the York and Euler time candidates are not directly analogous, but rather
just one representative each from two analogous families of dilational times.

On the other hand, almost all of the other candidate times produce algebraic
equations.

21.6 Dilational Time for Nontrivial g

Some facet interferences here are as follows.

1) The Internal Time Approach provides a conceptual form of evolutionary canon-
ical transformation [586], which is a potentially useful resource. However, its
generating function needs to be a function of the initial and final slices’ metrics
in the configuration representation, by which using this requires prior resolution
of the Thin Sandwich Problem for Mi [586]. This furthermore entails solving
the Lagrangian variables formulation of Mi for the shift βi (Chap. 16, or the
Machian variables counterpart for ∂Fi , as per Chap. 18).

2) One may however have separate reasons to treat a different type of formulation
of Mi . Indeed, in the Conformal Approach to the GR initial value problem, it is
technically preferred to solve Mi for the longitudinal potential ζi part of Kij (or
of the Hamiltonian variables formulation’s pij ). Here (e.g. in the Kij version),

KμνT = KijTT + {Lζ}ij , such that DμKijTT = 0 (transverse), and where Li is the
conformal Killing operator: the traceless version of the Killing operator (see
Appendix E.3).
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1) and 2) amount to distinct formal RTQ schemes. For 2), a single scalar tYork is
found by solving the Lichnerowicz–York equation with the value of ζi from priorly
solving Mi substituted into it. Formally, moreover,

PtYork = ϕ = ϕ
(
x̃; tYork,True,�True]= −H̃True. (21.23)

In this case, the True arise from the conformal 3-geometry C by the standard inter-
pretation that solving for ϕ breaks the conformal symmetry. This sends one from
the Cs(�) 2/3 of superspace(�) to the distinct 2/3, Truespace(�). x̃ expresses lo-
cal dependence in the g reduced configuration space itself. Standard Quantization
formally now yields the reduced York time-dependent Schrödinger equation (44.4).

3) Perhaps instead one is to use a particular case of the spacetime-vector parabolic
form

PXμ = −HTrue
μ

(
x̃; X ν,QO,PO

]
. (21.24)

This is a time-and-frame generalization of the single-time parabolic form (20.6).
Here, PX

μ are the momenta conjugate to 4 candidate embedding variables4 Xμ,
which form the 4-vector [tTrue,xi], where xi are 3 spatial frame variables.
HTrue
μ = [HTrue,MTrue

i ], for MTrue
i the true momentum flux constraint. Finally,

the O index runs over the ‘other variables’. Given such a parabolic form for H,
one can again quantize in a conceptually-standard manner. On this occasion, this
yields a time-and-frame dependent Schrödinger equation of the form (44.5).

In the specific case of York time, this involves

determining both ϕ and ζi at the classical level. (21.25)

The four equations are, however, kept [rather than substituting the vector solution
into the scalar solution as in 2)]. I.e. one has a system of the form

PtYork = ϕ = ϕ
(
x; tYork, �X,True,�True,ζ

]= −HTrue, (21.26)

PX
York

i = ζi = ζi
(
x; tYork, �X,True,�True]= −MTrue. (21.27)

This passes to the quantum equations (44.6), (44.7); it is at this level then that Con-
figurational Relationalism is confronted in this approach. In this scheme, (21.25)
is a determination of (four component) time (alias time-and-frame), rather than the
role of a reduction, by which one has a TQR scheme.

Example 1) The time-and-frame part-linear form occurs for ‘parametrized Field
Theory’ model arenas [586], which are the traditional model arenas for this ap-
proach.

4Chapter 31 provides further motivation for these from a spacetime primality perspective.
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Example 2) For the r-formulation of 2-d RPM, one can reduce out the correspond-
ing linear constraint L. [This is due to the absolute–relative split of RPM being
merely algebraic and thus simpler that the longitudinal–transverse split of GR.]
The Lichnerowicz–York analogue is then (21.10). In a fair number of cases, this
can be solved algebraically for ϕ(= ρ) to be interpreted as ptdil , which is the mo-
mentum conjugate to tdil(= −pρ).

21.7 Monotonicity of Dilational Times

For both RPM and GR, it is tempting to use the singled-out scale as a time variable,
however in each case one runs into monotonicity problems. These are often avoided
by using as times the quantities conjugate to (a function of) the scale, such as York
or Euler times, as follows.

For the Euler time candidate of RPM, D = tEuler [37] is tied to a number of
substantial cases of Dynamics (see below) from the Lagrange–Jacobi identity alias
virial equation

ṫEuler = Ï /2 = 2T − nV = 2E − {n + 2}V. (21.28)

Here ˙ is viewed as d/dtNewton in this context), for V homogeneous of degree n.
Sums of homogeneous potentials all of which obey a common index inequality also
satisfy monotonicity. Interpret n in this way from now on. This provides a fairly
strong guarantee that tEuler is monotonic: it is so in a number substantial sectors:
{E ≥ 0,V ≥ 0,n ≤ −2} and {E ≥ 0,V ≤ 0,n ≥ −2} give tEuler ∗ ≥ 0, and {E ≤ 0,
V ≤ 0,n ≤ −2} and {E ≤ 0,V ≥ 0,n ≥ −2} give, using −tEuler as timefunction
instead, −tEuler ∗ ≥ 0.

As regards whether other dilational time candidates also pass muster in this re-
spect, we generalize (21.28) to

ṫF = {̇Gİ } = ÏG(I) +G′ {İ }2 = 2
{
2E − {n + 2}V }G + 4D2G′, (21.29)

for G(I) = 1/2LDF . So if G and G′ are the same sign, there is monotonicity in the
first two sectors above, and if they are of opposite signs, there is monotonicity in the
other two.

In the case of e.g. Λ = 0 vacuum GR, maximal slicing is maintained if the lapse
solves the maximal lapse fixing equation (LFE)

�hα = αR (21.30)

albeit this is readily shown to be frozen for compact spatial topology. On the other
hand, CMC slicing is maintained if the lapse solves the CMC LFE

2{αR − �hα} + α p2/2 h = δβ {π/
√

h}. (21.31)
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In the case of GR, the simplest scale variable—in the sense of having the simplest
dilational conjugate π—is 2 lna =  : the Misner variable. Moreover, upon canoni-
cally transforming according to tss = p, ptss = −Ω , it has the simplest propagation
equation,

δ�βtss = 2
√

h
{
αR(x; h] − �α

}
. (21.32)

This is an equation in the double time derivative of the scale variable a to (21.28)
being that of I . (21.32) is the trace of the GR evolution equations, so the clean-
est identification of the analogy is between (20.3) and (21.28). These are the dila-
tional time candidate’s propagation equations that correspond to each theory’s sub-
sequently simplest scale. Each of these constitutes a guarantee of monotonicity for
certain cases. A simple such case for GR is closed Minisuperspace (for which scale
variables themselves fail to be monotonic):

ṫ ss = 2
√
hαR(h) > 0 (21.33)

(since α> 0 by the definition of the lapse,
√
h > 0 by nondegeneracy and R > 0 for

such closed models.
Furthermore, upon passing by canonical transformation to tdil = 2G(h)p, ptdil =

−f (h), one has the generalized dilational time candidate’s propagation equation

δ�βtdil = 2
√

h
{
R − {�α}/α}G − G′p2/

√
h; (21.34)

cf. (21.28) for a further analogy. This retains monotonicity in the above closed Min-
isuperspace context if G and G′ are of opposite signs (i.e. like in Sectors 3 and 4 of
the mechanical counterpart). For f (h) = hk , k > 0 guarantees this.
f (h) = h1/2 is a notable subcase, for which tdil = tYork, and the propagation equa-

tion is

δ�βtYork = 4

3

{
R − �α

α
+ p2

4
√

h

}
. (21.35)

tYork is, furthermore, known to have better monotonicity guarantees than in just the
above closed Minisuperspace example [922]. [This falls, rather, upon the conjugate
to the Misner variable.] Let us end by noting that this does not in general ‘march in
step with’ tem.



Chapter 22
Matter Times

22.1 Straightforward Matter Time

In Minisuperspace examples that include 1-component scalar matter, it is typical
to simply isolate the corresponding momentum to play the role of the time part of
the resulting time-dependent quantum wave equation. This is often taken to be ‘the’
alternative to scale time. However, the momenta conjugate to each of these represent
two further possibilities. Furthermore, if canonical transformations are allowed, a
whole further host of possibilities become apparent.

Using a matter scalar field as a time is often argued to be ‘relational’ [153].
However, this is clearly only the ‘any change’ sense of Machian recovery of time,
so more scrutiny is due. Problems with straightforward matter time are as follows.

Problem 1) Few such models have been checked as regards their matter time can-
didate indeed possessing the features expected of a time.

Problem 2) In the extension to multi-component matter, why should one matter
species be given the privilege of constituting the time? [I.e. is a nonuniqueness
and a lack of sufficient reason.]

Problem 3) Does the Multiple Choice Problem make an appearance?

22.2 Reference-Fluid Matter Time

Here the part-linear form (20.6) is attained by use of reference fluid matter: tante =
tmatter and QO = hij . This arises by extending the geometrodynamical set of variables
to include matter variables coupled to these, which go on to serve as labels for space-
time events [586]. While the reference fluid matter fields are occasionally taken to
be among the matter fields habitually used to model Nature, they are quite often
taken to be extra fields, including instances of undetectable such. In this approach,
one subsequently passes to the corresponding form of time-dependent Schrödinger
equation, (44.1) or (44.5).
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Examples 1) and 2) are Kuchař and Torre’s work on Gaussian reference fluid [586,
592] and on the reference fluid which corresponds to the harmonic gauge [593]
(see also [141, 457] for null dust).

Example 3) An undetermined cosmological constant Λ as a type of reference fluid
[384, 585, 862]: unimodular time.

Examples 4) to 6) A further type of Matter Time Approach by Kuchař and physi-
cists J. David Brown, Joseph Romano and Don Marolf involves additionally form-
ing a quadratic combination of constraints, e.g. for dust [175], more general perfect
fluids [176], and massless scalar fields [590]. The point of such quadratic combi-
nations is that they result in strongly vanishing Poisson brackets.

Example 7) Husain and Tomasz Pawlowski’s more recent work [462, 463] is an
example of newer such approaches using both further types or formulations of
matter (now a specifically irrotational dust modification of [175]) and GR in loop
form.

Problem 1) The idea of appending matter in order to have a time runs further con-
trary to Relationalism than hidden time due to its externalness which parallels ab-
solute time. This applies even more so in cases in which this matter is undetectable
or has no further physical function.

Problem 2) Internal and Matter Time Approaches are not aligned with Temporal
Relationalism, in the sense that the time in use is a priori taken to exist in gen-
eral at the classical level: Tempus Ante Quantum [483]). It is furthermore not in
line with the ‘All Change’ or STLRC positions on Mach’s Time Principle, since
it involves using one particular change as the time for all the other changes. I.e.
in this approach, the gravitational field and non-reference matter changes have no
opportunity to contribute to the timestandard. Moreover, Matter Time Approaches
themselves are typically additionally suspect due to issues of intangibility. Such
approaches usually evoke ‘reference fluids’, which often have unphysical proper-
ties. [The intangibility might be taken as cover for the unphysicality, but is itself
a conceptually suspect way of handling the Problem of Time along the lines sug-
gested in this book.]

Problem 3) At least with the earlier examples [24, 483, 586], Kuchař noted that
these involved having to choose between deficient notions of time and unphysical
matter. I.e. matter for which either or both of violation of physical energy condi-
tions [874] and intangibility apply. This was not however tied to any kind of No-Go
Theorem and indeed Husain and Pawlowski’s subsequent examples avoided this is-
sue [462, 463]. A further advantage of their approach is that its ‘true Hamiltonian’
is technically simple (free from the roots which plague many other ‘true Hamilto-
nians’).

Research Project 8) Further assess the Husain–Pawlowski matter time [462, 463]
from a technical point of view. Also gain a systematic understanding of which
families of matter time candidates are and are not physically satisfactory.



Chapter 23
Classical Machian Emergent Time

23.1 Critique of the Previous Three Chapters’ Notions of Time

These can be viewed as the most conservative family of strategies for the Frozen
Formalism Problem [483, 855]. This is in the sense of seeking as soon as possible—
at the classical level—among the apparent variables in one’s theory for a substitute
for absolute Newtonian time, or its also absolute SR replacement. This is subse-
quently to take over as many of absolute time’s roles as possible in absolute Classical
and Quantum Theory. This renders all of these roles straightforwardly conceptually
resolved. Classical Machian emergent time is also obtained at the outset. This ap-
proach, however, supplants absolute time by a relational concept which itself lives
on in an unadulterated form in more advanced Background Independent theories
such as GR.

The Tempus Ante Quantum Approaches form an interesting counterpoint, due to
being extraneous time formulations which are related by canonical transformation
to formulations with no apparent such extraneous time. So renaming an apparent
heterogeneous entity may not always be the ‘right’ answer, particularly if canonical
transformations are—as standardly—allowed.

However, in seeking among the apparent variables, these Tempus Ante Quantum
Approaches entail selecting particular variables to be those that provide ‘the’ time.
In contrast, in the Emergent Machian Time Approach, all changes have the oppor-
tunity to contribute to the most dynamically significant notion of time.

Monotonicity and non-frozenness considerations indicate that Machian emergent
time’s applicability is wider than that of hidden dilational Euler time. E.g. emergent
time also exists for scale-invariant models [102], characterized by D = 0, so the
Euler quantity is frozen and thus unavailable as a timefunction. Some portions of
Newtonian Mechanics have monotonicity for tEuler globally guaranteed. However
solutions outside this portion may still possess intervals on which tEuler is mono-
tonic.

In forming time-dependent Hamiltonians, a dissipation problem arises. Time-
dependent Hamiltonians are usually for subsystems that exchange energy with some
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other part of the Universe. On the other hand, such as (20.6) or (21.24) are whole-
universe equations, causing a suspicion that dissipational mathematics is being taken
outside of its physically meaningful context.

A final issue is operationality: it is highly questionable whether Tempus Ante
Approaches’ candidate timefunctions would actually be read off by clocks.

Classical Machian emergent time having won out, we give some comments on it
and prepare its heavy–light (h–l) split for use in cosmological modelling.

23.2 Time Transformations in the Relational Approach

This involves parageodesic principle split conformal transformations (PPSCTs).
This began with Misner’s parageodesic formulation of Minisuperspace. The Author
[22] subsequently pointed out that PPSCTs can be seen as freedom that arises in
formulating relational actions. PPSCTs—laid out in Appendix L.11—underlie both
the classical insights below and relational ‘zeroth principles’ for Misner’s choice of
conformal operator ordering at the quantum level (Chap. 40).

The homothetic subcase of PPSCT implements the freedom of choice of time-
scale tem −→ k2tem = tem

k , so tem
k − tem

k (0) =: tem
k = k2

∫
d∂s/

√
2W for tem

k (0) :=
k2tem(0).

Moreover, working through how the scaling of M, W and the timefunction t con-
spire to cancel out at the level of the classical equations of motion reveals some
interesting inter-connections. This is how one accounts for, within the Relational
Approach, the non-affine transformations exhibited by Newtonian time and by the
geodesic equation which enters GR’s Einsteinian Paradigm. Individually, both con-
formal transformation and non-affine parametrization [814, 874] complicate the
equations of motion (see Appendix D.2 and Ex III.11.a). Nevertheless, the equa-
tions of motion can be arranged to be preserved when both of these transformations
are applied together ([22] and Ex III.11.b). In this way, in the Relational Approach,
non-affine reparametrizability of time can be considered to be a consequence of a
very simple property of the form of the relational action.

Affine parametrization transformations which send told to tnew(told) have the fol-
lowing properties.

I) Nonfreezing and monotonicity, so d∂ tnew/d∂ told > 0 which can be encoded by hav-
ing it be a square of a quantity f with no zeros in the region of use.

II) This derivative, and so f, is a physically-reasonable function (to stop the change
of timefunction unduly affecting the study of the motion). However, this can
be recast as d∂/d∂ tnew = f−2d∂/d∂ told, by which (with other properties matching)1

one is free to identify this f with  , so any affine transformation is of a form

1However, conventional affine transformations are rather less smooth—c1—than is usually as-
sumed of conformal transformations: c∞ . In the current case, the physics involves affine transfor-
mations, which then turn out to be modelled here by conformal transformations. This motivates
considering versions of the conformal transformations which are rougher than usual.
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that extends to a PPSCT. If one chooses to ‘complete’ it to a ‘3-part conformal
transformation’ (Appendix L.11), the above calculation can be interpreted as the
extra non-affine term being traded for a T term. This is by having an accompa-
nying conformal transformation of the kinetic metric, which is then traded for
δ∂AW by energy conservation and the compensating transformation of W . So
the freedom to affinely transform the geodesic equation on q can be viewed
instead as the freedom to apply a PPSCT to the system’s equation of motion.
The Relational Approach’s simplicity notion for equations of motion thus has
the same mathematical content as prescribing an affine rather than non-affine
parameter for the geodesic equation on q. Thus the PPSCT-related �t—defined
in footnote 3—corresponds to ‘the set of (generally) nonaffine parameters for
the geodesic-like equation of motion on q’. (However, each is paired with a dif-
ferent, conformally-related M and W ). On, the other hand, the affine geodesic
choice of emergent time function indeed remains identified with the much more
restricted set of affine parameters for the geodesic equation on q.

Indeed, if tem is a Machian emergent time, so are all the times related to it by
PPSCTs. Moreover, the evolution equations that follow have a choice between two
generally distinct simplifying cases.

A) use of the mechanically-natural emergent time.
B) use of geodesic rather than parageodesic form, the former corresponding to ‘the

dynamical curve being an affinely-parametrized geodesic on q’. This case has
the affine geodesic choice of emergent time.

Here by ‘generally distinct’, we mean that the conformal factor interrelating the two
is a function of the potential. If a model has constant potential, then this distinction
is already included in the choice of time-scale freedom.

23.3 Examples of Mass Hierarchies and Heavy–Light (h–l)
Splits

This is a classical parallel of the Born–Oppenheimer split (12.1), which originates in
modelling electrons separately from the much heavier nuclei. Moreover, a form of
it is commonly used in both Classical and Quantum Cosmology [552] as a means of
modelling small inhomogeneities in a universe approximately modelled by a scale-
factor and homogeneous matter terms.

One consideration entering ‘heavy–light splits’ is a mass ratioml/mh = εhl � 1.
Moreover, this assumption is not made alone; e.g. ‘sharply-peaked hierarchy’
conditions—that all the h’s have similar masses ' all the similar masses of the
l’s—also enter at this stage:

max
i′,j ′ |Mi′ −Mj ′ |/Mi′ =: ε	M � 1, max

i′ ′,j ′ ′ |mi′ ′ −mj ′ ′ |/mi′ ′ = : ε	m � 1.

(23.1)
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mi′ ′

Mi′
=

mi′ ′ −m
m

m+m

Mi′ −M
M

M +M
∼ εhier

{
1 +O(ε	M, ε	m)

}
. (23.2)

This allows for only one h–l mass ratio to feature in subsequent approximations.

Example 1) To meet the cosmological application, this Sec’s particular h–l split is
aligned with the scale–shape split, whether of GR cosmology or of an RPM model
arena of it.

Example 2) mPl ' minflaton is a corresponding ‘gravitational mass hierarchy’
which is sometimes used to motivate such approximations.

Example 3) In GR Cosmology, the scalefactor of the Universe dominates over one
or both of the anisotropic or inhomogeneous modes. One could furthermore con-
sider a two-step hierarchy which models both of these at once.

The rest of this Chapter is further motivated through being a classical precursor to
the Semiclassical Approach to the Problem of Time. This sets the scene for present-
ing the latter as a Machian emergent time as well. It also begins to point to how
some of the modelling assumptions made in the quantum cosmological version are
in fact questionable. This is in the sense of being qualitatively regime-dependent and
therefore requiring justification rather than just being ushered in unchallenged. This
is a substantial awareness to have since many such approximations sound familiar
due to having uses in other physical situations. And yet the applicability of such
approximations is regime-dependent and by no means guaranteed to carry over to
the quantum cosmological regime for which they have now been proposed. Let us
next pass to considering examples of h–l splits.

Example 1) RPM. the action is now

S = √
2
∫ √

EUni − Vh − Vl − I

√
dh2 + h2 ‖dl‖2

M l
, (23.3)

(with B’s hung on the dl’s in the indirectly formulated case) for

Vh = Vh(h alone) = Vρ(ρ), Vl = Vl
(
la alone

)= VS
(
Sa alone

)
,

I = I
(
h, la alone

)= IρS
(
ρ,Sa alone

)
.

(23.4)

The conjugate momenta are now (with � = iI and a B hung on each ∗l in the
uneliminated case and � = a in the r-case)

Ph = ∗h, P l� = h2M�$∗l$. (23.5)

The classical energy constraint is now

E := P 2
h /2 + ‖P l‖2

N l
/2h2 + Vh + Vl + I = EUni. (23.6)

In the uneliminated case, this is accompanied by

Ll =
nd−1∑
a=1

la ×P la. (23.7)
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The evolution equations are [in the same notation as Eq. (23.5)]

∗Ph = h‖ ∗l‖2
M l

−∂{Vh +I }/∂h, ∗P l� = h2M$",�∗l$∗l" −∂{Vl +I }/∂l�.
(23.8)

Here M l is the kinetic metric on L: the configuration space of the light degrees of
freedom. We can treat (23.6) in Lagrangian form as an equation for tem

0 itself. In the
current classical setting, this is coupled to the l-equations of motion; moreover we
need the h-equation to judge which terms to keep. For more than one h degree of
freedom, these have separate physical content. The system is in general composed
of the E-equation, kh − 1 h-evolution equations and kl l-evolution equations.

The expression for the tem candidate is now (with the B’s and extremization
thereover absent in the eliminated case)

CR
(
t em)= E′

dB ∈ Rot(d)

∫ √{
dh2 + h2 ‖dB l‖2

M l

}
/2{EUni − Vh − Vl − I }. (23.9)

[This feature carries over to GR as well, through hab = : a2uab leading to {d −
£dF }{a2uab} = a2 { da

a
uab + duab − Du

(adFb) + 0} = a2 {d − £dF }uab , where the 0
arises from the constancy in space of the scalefactor-as-conformal-factor killing off
the extra conformal connection. Here Du

a is the covariant derivative associated with
the scale-free metric uab .] By this observation, scale–shape split approximate tem—
and its approximate semiclassical counterpart which coincides with it—avoids the
Best Matching Problem.

The h-approximation to the action (23.3) is2 S = √
2
∫ √{Eh − Vh}dh. The

conjugate momenta are then Ph = ∗hh, the quadratic energy constraint is Eh :=
Ph2/2 +Vh = Eh and the evolution equations are ∗hP h = −∂Vh/∂h. This assumes
that (using the subscript j to denote ‘judging’)

(ratio of force terms), Fj := ∂I

∂h

/
∂Vh

∂h
= ∂I

∂S

/
∂VS

∂S
,

is of magnitude εsds−1j � 1, (23.10)

(ratio of geometrical terms), Gj := h
‖dl‖2

M

d2h
= ρ

‖dS‖2
M

d2ρ
,

is of magnitude εsds−2j � 1. (23.11)

The Author originally considered a ‘scale dominates shape’ approximation [37] at
the level of the action, which is most clearly formulated as

F := I/Wh = I/Wρ, is of magnitude εsds−1 � 1, (23.12)

2Eh is only approximately equal to EUni since the h and l subsystems can exchange energy. ∗h :=
∂/∂tem(JBB)

h . Finally, 0 and 1 subscripts denote zeroth and first-order approximations.
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G := ‖dB l‖M

d lnh
= ‖dBS‖M

d lnρ
, is of magnitude εsds−2 � 1. (23.13)

Each pair—i.e. 1, 1j, and 2, 2j—are dimensionally the same but differ in further
detail. However, further consideration reveals that this assumption is better justified
if judged at the level of the equations of motion and thus of forces. An example of
this is how the effect of Andromeda on the Solar System is not negligible at the level
of the potential, but it is at the level of the tidal forces since these contain an extra
two powers of 1/(distance to Andromeda).

As usual, the quadratic constraint can be taken as an equation for tem via the
momentum–velocity relation. The approximate emergent time candidate is

t em
h =
∫

dh0
/√

2{Eh − Vh0 }, (23.14)

which is of the general form

t em
h = F [h,dh]. (23.15)

N.B. that for this split and to this level of approximation, there is no g-correction to
carry out. This is because the rotations act solely on the shapes and not on the scale.
In other words Configurational Relationalism is trivial here.

Finally, the first approximation to the l-equations is

P la = h2Mab ∗hlb ∗P la = h2Mab,c ∗lb ∗lc − ∂{Vl + I }/∂la. (23.16)

N.B. Whenever disagreement with experiment arises, going back to the previous
Machian emergent time formulation should be perceived as a possible option. Early
20th century ‘anomalous lunar motions’ are an archetype for this, as per de Sitter’s
comment given in Sect. 3.3; see also [168] in this regard.

Moreover, pure-h expressions of the general form (23.15) are unsatisfactory from
a Machian perspective since they do not give l-change an opportunity to contribute.
This deficiency is to be resolved by treating them as zeroth-order approximations
in an expansion involving the l-physics as well. Expanding (23.9), one obtains an
expression of the form (compare (23.15))

t em
g-free 1 = F[h, l,dh,dl]. (23.17)

More specifically,

t em
g-free 1 = t em

0 + 1

2
√

2

∫
dρ

W
1/2
ρ

{
IρS

Wρ
+
{

dS

2 d ln ρ

}2}

+O

({
IρS

Wρ

}2

+
{

dS

d ln ρ

}4)
, (23.18)

so one has an interaction term and an l-change term.
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For comparison with the Semiclassical Approach, take note of classical adiabatic
terms, which are related to the order of magnitude estimate

εAd := ωh/ωl = tl/th, (23.19)

for ωh and ωl ‘characteristic frequencies’ of the h and l subsystems respectively.
See [29] for a perturbative scheme for this model.

Example 2) Minisuperspace. We next consider a classical Cosmology analogue of
the astronomers’ ephemeris time procedure; in Part III we extend this to Semiclas-
sical Quantum Cosmology as well. Suppose that an accurate enough time has been
found for one’s purposes. One can then consider an analysis in terms of QI,PI as
regards which features within that Universe contribute relevant change to the time-
standard. This is very much expected to cover all uses of quantum perturbation
theory that apply to modelling laboratory experiments. Fairly large-scale features
of the Universe are expected to contribute a small amount here, in addition to the
zeroth-order expansion of the Universe and homogeneous matter mode contribu-
tions. There is a limit on such ephemeris time schemes, due to their iterations being
at the level of form-fitting rather than a perturbative expansion of the equations of
motion themselves.

Minisuperspace models of anisotropy are one case of particular interest. For in-
stance, diagonal Bianchi Class A models give rise to the following types of ‘scale
dominates anisotropic shape’ correction terms: Vβ/V = : εsds−1 � 1 (and a deriva-
tive version), and dsβ/d =: εsds−2 � 1. For Bianchi IX and VII0, these are
both O(anisotropy)2, whereas for Bianchi II, VI0 and VIII the latter retains a
O(anisotropy) piece. [For Bianchi I, there is no anisotropy potential, so the sec-
ond type of correction term drops out altogether.] These manifest themselves as
anisotropic ephemeris time corrections to cosmic time:

tem
1 = tcosmic +O

(
anisotropy1 or 2). (23.20)

23.4 Problems with Classical Precursors of Assumptions
Commonly Made in Semiclassical Quantum Cosmology

Classical Problem 1) Consider e.g. Newtonian Gravity or RPMs that model dust-
filled GR cosmology. The corresponding regions of double collision, D, the poten-
tial has infinite abysses and peaks (Fig. 23.1’s D lines are a simple example). ‘Scale
dominates shape’ approximations are thus certainly not valid near there, so some
assumptions behind the Semiclassical Approach fail in the region around these
lines. So for negative powers of relative separations, the heavy approximation only
makes sense in certain wedges of angle. There is also the possibility that Dynamics
set up to originally run in such regions falls out from them. These considerations
point to a stability analysis being required to determine whether semiclassicality is
representative. I.e. there is a tension between the procedure used in Semiclassical
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Fig. 23.1 Contours on configuration space for single and triple negative power potentials (the 1-d
3-particle case for simplicity). These have abysses along the corresponding double collision lines
D and high ground in between these. (For negative-power coefficients such as for the attractive
Newtonian Gravity potential.) M are merger configurations (with the third particle at the centre of
mass of the other two)

Quantum Cosmology and the futility of trying to approximate a 3-body problem
by a 2-body one [37].

Classical Problem 2) Conventional treatments so far of Semiclassical Quantum
Cosmology decouples the h and l subsystems, which eases analytic solvability.
As we shall see in Chap. 46, this is partly attained through neglect of the Tl term.
However, the Classical Dynamics version of this (scale–shape split 1- or 2-d RPM
version) involves throwing away the central term. I.e. the mathematical equivalent
of neglecting the centrifugal barrier in the study of planetary motion. This causes
unacceptable quantitative and qualitative errors (linear motion versus periodic mo-
tion along an ellipse). Furthermore, this qualitative difference indeed carries over
to the RPM counterpart [37].

Research Project 9) Extend this book’s local resolution of the Problem of Time to
a wider range of anisotropic examples: with matter, and, especially, to cases with
nondiagonal minisupermetrics.



Chapter 24
Brackets, Constraints and Closure

We now arrive at the third aspect of Background Independence: Constraint Closure
(12.15). Complications and impasses with this are the corresponding third facet of
the Problem of Time: the Constraint Closure Problem. The name Functional Evo-
lution Problem was used by Kuchař and Isham [483, 586] in the quantum-level
field-theoretic setting. Some parts of this problem, however, already occur in finite
examples, for which partial rather than functional derivatives are involved. Thus the
portmanteau term Partional Evolution Problem is more theory-independent. The
further name Constraint Closure Problem additionally covers the classical version
of the problem to some extent. At the classical level, the General Strategy for this is
the Dirac Algorithm.

There are two different directions in which Constraint Closure can be taken fur-
ther. On the one hand, classical-level closure can involve specifier equations as well
as constraints; this reflects the full scope of possibilities in the Dirac Algorithm.
Let us coin Entity Closure to cover this classical-level generalization of the Con-
straint Closure aspect; failure to attain this entails an Entity Closure Problem facet.
On the other hand, one can pass to considering Generator Closure in situations in
which group generators remain relevant but constraints do not. Closure is not a pri-
ori guaranteed because groups are determined by relations as well as generators.
This provides a clearer archetype for Constraint Closure than the Dirac Algorithm,
though at the classical level there are occasions in which one requires additional fea-
tures of the latter. Generator Closure also covers the Timeless Approaches outlined
in Chap. 14 and Chap. 27’s Spacetime Relationalism. Moreover, both of these fall
under the umbrella of Equipping Objects O with a Brackets Structure. We outline
this in the next Section and then apply it to Constraint Closure.

Both the constraint and the spacetime generator version of this can be immedi-
ately followed up by finding a further set of objects forming zero brackets with the
original set’s objects: notions of observables or beables (Chaps. 25 and 27). This
leads to the fourth aspect, Assignment of Beables, complications and impasses with
which constitute the fourth facet: the Problem of Beables. Finally, the quantum level
also involves multiple steps involving Equipping with Brackets: Kinematical Quan-
tization (Chap. 39), quantum constraints (Chap. 49), and quantum observables or
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beables (Chap. 50). We consider these multiple significant uses to invite a system-
atic treatment of Equipping with Brackets in the Canonical Approach; Chap. 27
provides the spacetime counterpart.

24.1 General Consideration of Equipping with Brackets

Suppose that one wishes to equip a space o of objects O (indexed by v) with a
bracket |[ , ]|. A rather general possibility for the outcome of these brackets is1

|[Ov,Ov′ ]| = Cv′ ′
vv′ [bu, c]Ov′ ′ + �vv′ [bu, c]. (24.1)

Some significant cases are as follows.

A) 
 = 0 and C = const are Lie algebras (Appendix E).
B) 
 = 0 and C general functions are Lie algebroids (Appendix V.6, and includ-

ing the case in which the C are operator-valued).
C) 
 �= 0 and C = const admits the following further subcases.
C.1) Perhaps constants c can be fixed such that 
 disappears. This is termed being

strongly zero. A) occasionally reduces to B) in this manner; see Sect. 33.3 for
examples.

C.2) Perhaps 
 is an integrability that can be incorporated, by regarding �vv′ as
Cu

vv′(bu, c)Onew
u for further objects Onew such that these—and any further such

found recursively—can be supported by the theory in question.
C.3) Perhaps 
 exceeds what can be supported by the theory, in which case it is

a more serious obstruction: this kills off candidate theories, rather than just
modifying them.

C.4) Central charges can already appear at the level of Classical Field Theory, for
all that they are better-known at the quantum level in the Particle Physics lit-
erature; see Appendix V.3 for an example. 
 here takes the form of a constant
phase space functional.

C.5) 
 can also eliminate candidates by topological means rather than by running
out of degrees of freedom.

24.2 Poisson Brackets and Phase Space

As a first instance of Equipping with Brackets, consider the joint space of the Q and
P alongside the classical Poisson brackets

{F,G} :=
∫

NoS
dNoS

{
δ∂F

δ∂QA

δ∂G

δ∂PA
− δ∂F

δ∂PA

δ∂G

δ∂QA

}
, (24.2)

1While this remains a linear ansatz in O, this book does not exceed this mandate. Also the b are
‘base objects’, which in this book are usually the Q, whether or not accompanied by P, and the c
are constants.
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i.e. the portmanteau of (J.24) for finite theories and (K.17) for Field Theories. This
is useful because, firstly, it turns out to afford a systematic treatment of constraints,
and secondly it is a preliminary step toward Quantization.

The fundamental Poisson bracket is

{QA,PA′ } = δA
A′ (24.3)

for δ the portmanteau of the finite Kronecker δ and the product of a species-wise
such with a field-theoretic Dirac δ(d)(x − x′). This bracket being established for all
the Q and P means that brackets of all once-differentiable quantities F %Q, P& are
established as well.2

Equipped in this manner, this joint space is known as phase space, Phase. The
corresponding Poisson brackets preserving morphisms are the canonical transfor-
mations, Can (Appendix J.9).3

24.3 Lessons from the Dirac Algorithm

As a second instance of Equipping with Brackets, let the O be constraints CC; these
are already nontrivial to handle at the classical level. The C := F %Q,P&: a portman-
teau of F(Q,P ) for Finite Theories and F(x; Q,P] for Field Theories. The combi-
nation of working in Hamiltonian variables Q and P and making use of the classical
Poisson brackets turns out to allow for a systematic treatment of constraints: the
Dirac Algorithm [250]. This is the General Strategy for addressing Constraint Clo-
sure at the classical level. Consult Appendix J.15 if you are not yet familiar with this;
Appendix J.17 and Fig. 24.1 provide some additional geometrical interpretation.

2Whereas this statement may look innocuous, in Part III we shall see that its quantum counterpart
is not. Moreover, classical-level considerations themselves need to justify why Poisson brackets are
in use rather than e.g. i) Lagrange, ii) Peierls, iii) Schouten–Nijenhuis, iv) Nambu and associator
brackets. Brief answers are as follows [32]. Poisson brackets are more convenient than i) and ii).
We do not consider iii) since this corresponds to multisymplectic formulations, in which time and
space are treated on an even more common footing than spacetime co-geometrization. I.e. here the
usual time derivative based momenta are accompanied by spatial derivative based analogues. This
is motivated by the introduction of the notion of spacetime being taken to imply necessity of joint
treatment of further spatial and temporal notions. However, this motivation runs contrary to Broad’s
point that a formulation breaking isolation between space and time does not imply an end to the
distinction between these notions. Once this is understood, the advent of spacetime clearly does not
imply any necessity to replace the standard temporally-distinguished symplectic formulation with
a time-and-space covariant multisymplectic one. Finally, not using iv) follows from second-order
theory alongside noncommutative but associative Quantum Theory sufficing for most purposes.
3Rigged phase space Rig-Phase is a more minimalistic alternative at this stage [37]. This corre-
sponds to specifying that the physical Q are distinguishable from the corresponding P. Moreover,
the nontrivial (P and Q mixing) canonical transformations do not preserve this additional structure.
The corresponding morphisms are now the group Point of q-morphisms, which is much smaller
than Can. This does not affect the type of brackets in use.
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Fig. 24.1 Geometrical sketch of the outcome of Dirac-type procedures for classical Constraint
Closure. We omit a loop back to readjusting some of the phase space structures—Q, P and clas-
sical bracket—in the event of second-class constraints arising. While the Dirac Algorithm’s La-
grange multipliers $M can be incorporated by extending the Q, the TRi-Dirac-type Algorithm’s
cyclic differentials d∂CX are more heterogeneous. In any case, envisaging the auxiliary variables
used in Constraint Appending as fibres keeps them separated out from the phase space which con-
tains actual physical information. [This Figure is also eventually to be compared with the simpler
assessment of Constraint Closure at the quantum level in Fig. 49.1]

We phrase this approach as starting with a trial actionstrial producing trial con-
straints. In cases in which Constraint Closure is completed, ‘trial’ names and labels
are promoted to ‘CC’ ones, standing for ‘Closure completed’ as well as for the Con-
straint Closure aspect and facet name.

Note in particular that, while still in the process of investigating a physical the-
ory’s constraints, one does not yet know which are first-class. This is because a
given constraint may close with all the constraints found so far but not close with
some constraint still awaiting discovery. Thus one’s characterization of constraints
needs to be updated step by step until either of the following apply.

a) The constraint-finding procedure is complete.
b) The system under study has been demonstrated to be trivial or inconsistent. In-

deed, Dirac’s Algorithm is capable of rendering a candidate theory trivial by the
equations it produces using up all of its degrees of freedom. Inconsistency itself
arises when either even more degrees of freedom are used up, or when inconsis-
tent equations are produced (see Counter-example 1 of Appendix J.15).

Teitelboim and physicist Marc Henneaux emphasize and largely illustrate [446] how
all combinations of first and second class constraints and primary and secondary
constraints are possible in whichever steps of the Dirac Algorithm.

Whereas b) is the most extreme form of Constraint Closure Problem, note that
Sect. 24.4 considers milder versions involving one’s candidate theory not in fact
implementing an intended symmetry.

The possibility of specifier equations stems from the Dirac Algorithm involving
an appending procedure. Let us illustrate this by the well-known case of the to-
tal Hamiltonian, which is formed from an incipient ‘bare’ Hamiltonian by adding
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on constraints, each multiplied by an auxiliary Lagrange multiplier coordinate. For

instance, in GR, HTotal = αH + βi Mi (more strictly +μpα + λiπβ
i for further La-

grange multipliers μ and λi , and πα, pβ
i the momenta conjugate to the lapse and

shift). Specifier equations can consequently appear as relations imposed upon the
auxiliaries used in the appending procedure; cf. the lapse fixing equation in GR
(21.30), (21.31). However, if brackets structures are imposed in ways which have
no appending procedure have nothing to specify and thus no specifier equations;
this is relevant to Group Theory and to imposing quantum-level brackets.

Also note the distinction between auxiliaries used for appending and smearing
variables. The latter are more widely applicable since their job—‘multiplication by
a test function’—is to render rigorous a wider range of ‘distributional’ manipula-
tions provided that these occur within an integral (Appendix P.5). In particular, this
applies to classical Field Theories’ Assignment of Beables (for which there is no
appending procedure).

On the other hand, what we have learnt above about second-classness straight-
forwardly generalizes to whichever other use of bracket structures. Firstly, given a
set of generators, there is no a priori guarantee that the set closes under the bracket:

|[Ov,Ov′ ]| �≈ 0. (24.4)

Secondly, rewrite

�vv′ = Cv′ ′
vv′ [bD, c]Onew

v′ ′ + hovv′ [bD, c], (24.5)

where the ‘residue’ hovv′ consists of second-class objects alongside topological
pieces (and specifier equations in the case of classical constraints; nor are these
three cases necessarily distinct). Second-classness can moreover be taken to add
further meaning to 3.ii)’s words: ‘supported’ is now meant in one of the following
two senses.

α) The space of base objects Bo can get extended as per the effective formulation
[121].

β) Alternatively, the bracket in question can get modified—in a geometrically-
significant manner—to the Dirac bracket [250, 446].

In general, α) and β) are both permissible since their structures can be freed from
any connotations of classical constraints, a point which enters subsequent discussion
of Quantization procedures in Chap. 49.

Finally, for later convenience, we express the Flin in manifestly homogeneous
linear form:

FlinN = F[Q]A
NPA. (24.6)

This includes the possibility of F being differential operator-valued so as to accom-
modate Electromagnetism, Yang–Mills Theory and GR.
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24.4 Some Temporal, Configurational and Closure Facet
Interferences

Temporal Relationalism provides a constraint Chronos of the form Quad and Config-
urational Relationalism implemented as Best Matching provides candidate Shuffle
constraints of the form Lin. One is then to use the Dirac Algorithm to see whether
Constraint Closure is met or the Constraint Closure Problem arises. There are subse-
quent meaningful corresponding notions of whether each of Chronos and the Shuffle
are self first-class, and whether they are mutually first-class. Moreover, the be-
haviour of Shuffle by itself, and its interplay with Chronos, also require scrutiny
as regards whether Configurational Relationalism has succeeded. Addressing this
requires a detour to g-specific versions of Equipping with Brackets. This composi-
tion of three facets involves dealing with multiple kinds of facet interferences, which
we give individually below. We point to the useful end summary Fig. 24.2 as regards
keeping track of how these various facet interferences fit together.

1) Let us first consider a joint treatment of Constraint Closure and Configura-
tional Relationalism without any further source of constraints.

1.i) The action is now of the conceptual formstrial
CR .

1.ii) The Shuffle constraints arise as per usual and are now put through the Dirac
Algorithm. If these do not immediately close, our 〈q,g,strial

CR 〉 triple will not
do. If these do close, Shuffle is promoted to Gauge status.

1.iii) Finally Lagrange multiplier mediated Best Matching is accorded further def-
initeness:

CR(s) := Eg ∈g{sTR–CR built upon q,g}, (24.7)

where Eg ∈g = {extremum of g ∈ g},sTR–CR involves a suitable group ac-
tion of g, and the whole construct gets past the Dirac Algorithm. With refer-
ence to Sect. 16.1’s criteria A) to C), the last clause is an additional structural
criterion D) (for ‘Dirac’) on top of the group action criterion A). Moreover,
there is also a more stringent bound than Chap. 16.1’s counting criterion C),
thus supplanting it. [It manages to be a better bound through carrying out a
Dirac-type algorithm determining the specific geometry of the theory’s con-
straint surface.] Indeed, criterion D) includes C)’s worst-case scenarios: re-
lational triviality, triviality or inconsistency as bounding cases. Furthermore,
q—the entity taken to have some tangible physical content—has the a poste-
riori right to reject [17, 19, 109] a proposed g by triviality or inconsistency.
Unlike A) and C), D) depends on the choice of actions as well as of q and
g, through depending on all the constraints that this encodes. These com-
ments apply in greater generality to schemes 3) and 5) below.

2) We next consider what it takes to have a joint treatment of Temporal Relation-
alism and Constraint Closure in the absence of a further source of constraints.

2.i) We now start with an action of the conceptual formstrial
TR .

2.ii) As usual, this provides a trial Chronos as a primary constraint. However, one
cannot just put this through the Dirac Algorithm since this is not itself TRi. So
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a TRi Dirac-type Algorithm is first required, so as to monitor Constraint Clo-
sure without spoiling the Temporal Relationalism. In this vein, we broaden
our view of the General Strategy for addressing Constraint Closure from the
Dirac Algorithm to Dirac-type Algorithms, thus including in particular the
TRi Dirac-type Algorithm. Four of the main features of the TRi Dirac-type
Algorithm are as follows; see Appendix L for a more thorough parallel with
the Dirac Algorithm itself.

2.iii) Instead of involving a total Hamiltonian, TRi requires (see Appendix L) a to-
tal d∂A-Hamiltonian built by appending constraints with cyclic differentials.
[The intermediate Manifestly Reparametrization Invariant notion of total A-
Hamiltonian is built by Constraint Appending with cyclic velocities.]

2.iv) For Field Theories, we also now require TRi-smearing for our constraints:

(
Cw

∣∣ ∂Ww
) :=
∫
d3z Cw

(
z; h,ψ,p,πψ]∂Ww(z). (24.8)

Such expressions are then inserted inside the classical brackets.
2.v) We also now require a mixed Poisson–Peierls bracket, as per Appendix L.6.

Note however that the physical part of this formulation is, as usual, purely in
terms of Poisson brackets.

2.vi) TRi also requires working on d∂A-Phase rather than Phase.
2.vii) Put Chronos through the TRi Dirac-type Algorithm. For finite theories, this

trivially closes as a 1-generator Abelian algebra. S trial
TR ’s status is thus up-

graded to SCC
TR , Chronos is an accepted constraint, and can be rearranged to

form a Machian emergent time of the conceptual form tem
CC.

24.5 Partitioned Constraint Algebraic Structures

We next attempt to maintain one set of objects O (indexed by u)’s Brackets Clo-
sure in the presence of a further disjoint set of them N (indexed by u). We address
this by taking (24.1) with its objects partitioned into O and N. 
 is consequently
split into three by the extension of (E.4)–(E.6) to include both new discoveries and
obstructions, according to the schematic form

{O,O} = aO + bN + cOnew + d Nnew + e, (24.9)

{O,N} = f O + gN + hOnew + i Nnew + j, (24.10)

{N,N} = kO + lN + mOnew + nNnew + o. (24.11)

[In all cases below, we take it without saying that further nonzero entities can be
strongly removed as another path to each case for which these were zero in the
first place.] Within this quite general ansatz, the case with no discoveries is c =
d = h = i = m = n = e = j = o = 0, the direct product case is b = f = g = k = 0,
with the orientation of semidirect product which respects the O’s self-closure further
allowing for g �= 0.
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24.6 The Remaining Temporal, Configurational and Closure
Facet Interferences

3) Let us next think of the above partition as adjoining further constraints N to
O = Shuffle.

3.i) This could be considered ab initio, or resting on a Lagrangian of the form
LCR + muCu for Lagrange multipliers mu.

3.ii) The Shuffle are a candidate representation for g. This could succeed (Shuffle
self-closure), give rise to the Cv′ ′

vv′ of an algebraic structure distinct from g,
or one of C.1)–3) could occur. Moreover, now C.2) amounts to the group in
question being extended away from g. Shuffle, Cu mutual closure then fur-
thermore amounts to the Cu being good g objects: tensors or tensor densities
for the g that Shuffle represents. Finally, to attain Constraint Closure, the Cu

need to close among themselves (possibly modulo Shuffle terms). All candi-
date closures are monitored here using the Dirac Algorithm itself.

One simple way for such a candidate partition to succeed with its Brackets Closure
is in the direct product form I) of Appendix E’s split Lie relations. In this case, we
have o × N for o representing g and N a space of g-invariant quantities. A more
general success takes the semidirect product form II) of Appendix E: N � o, for
o representing g and o some g-tensor. In the context of 3), we also formalize and
extend the previous Sec’s collection of subcases as follows.

Case I ) b or d �= 0 means the class of O-objects does not close as a subalgebraic
structure.

Case II) c �= 0 signifies that g was chosen too small for o to represent it.
Case III) e �= 0 means that 〈o,g, |[ , ]|〉 can be manipulated. This requires either

extending o or modifying |[ , ]| such that some of the hypothesized generators of
g are now absent. This case has an issue with what form its reduction of Phase
takes, and also whether to modify o or the space of base objects, Bo. One can
also choose to abandon ship if this occurs. . . .
Moreover, if we use the algorithm of ensuring the O represent the purported g
prior to bringing in the N, all of the above are moot.

Case IV) If j �= 0, this may indicate that the N are incompatible with the O’s g-
invariance, to be resolved by the same methods as in III) but now treating the O
and N together.

Case V ) h or m �= 0 indicate that adjoining the N to the O forces g to be extended.

4) We can also consider the partition to model adjoining some constraints Nv =
Cv to the Chronos = O supplied by Temporal Relationalism. This case consists
of testing the three types of brackets formed from Chronos and Cv using the
TRi Dirac-type Algorithm.

5) Of course, our main interest for now is in concurrently taking O = Shuffle
and N = Chronos so as to handle the first three facets at once.

5.i) We now start with an action of the conceptual form Strial
TR–CR.
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5.ii) Temporal and Configurational Relationalism produce candidate Chronos and
Shuffle respectively. This gives three types of brackets entries for the Tri
Dirac-type Algorithm to check.

For instance, Sect. 9.14’s (Metric Shape and Scale) RPM Constraint Clo-
sure is of Appendix E’s type II). As a more major example, the GR case has
one further interrelation, which amounts to the O providing integrabilites for
the N; this case is denoted by Appendix E’s type III) ‘Thomas’ integrability al-
gebraic form, N →© o. GR furthermore has l = 0, but also k �= 0 taking a func-
tional form. In conventional working theories, the outcome of this is that the
g-constraints Shuffle self-close, whereas Chronos is a good g object (tensor
and/or density), all of which is but a kinematical and representation-theoretic
matter. The further requirement that Chronos close with itself is moreover
capable of rendering candidate theories trivial or inconsistent. However, this
does not occur in RPM or GR (whereas Electromagnetism and Yang–Mills
Theory trivially get by due to not even having a Chronos in the first place).

It is n straightforward to illustrate 2.iii) by examples. Firstly, for Met-
ric Scale-and-Shape RPM, dATotal := dI E + dBiLi (strictly +dλiPBi ), and

ATotal := İ E + ḂiLi (strictly +λ̇iP Bi ). Secondly, for GR, ATotal = İH + Ḟ
i
Mi

(strictly +λ̇ipβ
i ), and ∂ATotal = ∂IH +∂FiMi (strictly +∂λipβ

i ). Section 24.10
populates the rest of the current’s section’s considerations with specific exam-
ples.

5.iii) If Constraint Closure succeeds, Strial
TR–CR is promoted to SCC

TR–CR status, Shuffle
to Gauge with the corresponding Best Matching now having the status

CR
(sCC

TR–CR

) := Eg ∈g
(sCC

TR–CR built upon q,g
)

(24.12)

Here, Eg ∈g = {extremum of g ∈ g},sCC
TR–CR involves a suitable group ac-

tion of g, and the whole construct gets past the TRi-Dirac Algorithm.

Finally, the successful Chronos is rearranged to form a Machian emergent time
of the conceptual form

CR
(
tem
CC

) := E′
g ∈gtem

trial–g (24.13)

for

tem
trial–g :=

∫
‖dgQ‖M/

√
2W(Q),

and where E′ is now likewise protected by Gauge closure.

24.7 Seven Strategies for Dealing
with Constraint Closure Problems

If the severe form of the problem strikes, one may have to entirely abandon the
candidate theory’s triple 〈T(q),g,s〉. I.e. the Machian variables, a group acting
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Fig. 24.3 Seven strategies with some capacity for generating new theories from what is allowed
by Constraint Closure. In each case, the structures which remain fixed act as a guiding principle.
[Keeping a given g, what physics ensues? What about with a given q? A given s?] The unfixed
complement structures correspond to types of probing for new theories. Note how this reasoning
pitches the Relational Approach as a complementary method to Gauge Theory. Also, paralleling
how Gauge Theory can be attempted with extra terms in the action which are then ruled out by lack
of g compatibility, the Relational Approach comes in a larger version in which whole families of
candidate theories are treated at once (Chap. 33)

thereupon and the Jacobi–Synge geometrical action.4 In some cases, however, mod-
ifying one or more of these may suffice to attain consistency; an interesting array of
strategies for this is presented in Fig. 24.3, and supported by the comments below.

Remark 1) Fig. 24.3’s strategic diversity continues to apply if Phase and an inte-
grated (d∂A-)Hamiltonian—or its constituent set of constraints in whole-universe
theories—are considered in place of q and s. Similar considerations apply in
spacetime formulations of s with gS acting thereupon, and at the quantum level
(further extending the Hamiltonian presentation).

Remark 2) Preserving a particular g in Particle Physics includes insisting on a par-
ticular internal gauge group, or on the Poincaré group of SR spacetime.

Remark 3) Strong vanishing involves fixing hitherto free constants in s so as to
avoid the problem.

Remark 4) One consequence of adopting strategies permitting extension or reduc-
tion of q or Phase is that formulations with second-class constraints are ultimately
seen as half-way houses to further formulations which are free thereof. This is

4One might augment this to a quadruple by considering varying the type of group action of g on
T(q).



308 24 Brackets, Constraints and Closure

Fig. 24.4 Comparison of a) the ADM canonical procedure and b) the BSW one. The relational
case is like b) but with Fi in place of βi . One can consider also the ADM formulation of Ge-
ometrodynamics to involve 4 configuration space degrees of freedom due to not yet eliminating
pα; this 4 consists of G(3) alongside α. This corresponds to first reducing out Diff (�) and only
then engaging with α and H

largely the context in which both the effective formulation and the Dirac bracket
formulation were developed, with Phase getting extended in the former and re-
duced in the latter.

One can also consider the above strategies for the triple 〈Phase,g,aTot 〉, where g
now acts on Phase andaTot is the integrated total d∂-almost Hamiltonian.

We next turn to justifying this book’s presentation and development of theo-
retical concepts concerning types of constraint, constraint algebraic structure and
Constraint Closure Problem with a series of illustrative concrete examples.

24.8 Examples of Distinctions Between Types of Constraint

We first justify the finer distinctions between types of constraint made in Sect. 9.14.

Example 1) The equivalence of canonical workings based on the ADM, BSW, rela-
tional and TRi split formulations of GR is presented in Fig. 24.4. This also serves as
an example of the primary–secondary distinction of constraints being formulation-
dependent. This is since H is secondary in the first and fourth of these formulations
and primary in the second and third.

Example 2) The constraints considered so far in this book—in particular L, P , E , G,
GI , Mi , H—are all first-class, so it is useful to now provide examples of second-
class constraints. Firstly, in the Q = Ai ,� formulation [715] of the massive ana-
logue of Electromagnetism (alias Proca Theory after physicist Alexandru Proca),

C := ∂iE
i + m2� = 0. (24.14)

This indeed uses up only one degree of freedom, so this theory has one more phys-
ical mode than Electromagnetism itself. Gravitational Theories with second-class
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constraints include Einstein–Dirac Theory (i.e. GR with spin-1/2 fermion matter)
[232] and Supergravity [232, 314, 715, 834].

Example 3) [of relational recovery of Gauge Theory]. With g being a candidate
group of physically irrelevant motions, in general it remains to be ascertained
whether the Shuffle provided by Best Matching is a gauge constraint Gauge which
corresponds to g. Moreover, ‘gauge’ is here meant in Dirac’s sense, which is rel-
evant since ‘gauge’ can differ in interpretation with the choice of base objects of
one’s theory. E.g. Q alone, Q and dQ, Q and P, whole paths, or histories, are some
such choices leading to distinct notions of ‘gauge’. N.B. the distinction between
different notions of Gauge Theory, as opposed to the more familiar issue of making
particular choices of gauge within the one notion of gauge. E.g. using the Lorenz
gauge for Electromagnetism (6.19) is an example of the latter, whereas two exam-
ples of the former are as follows. Dirac considered [247, 250] a notion of Gauge
Theory which concerns data at a given time: data-gauge. On the other hand, physi-
cist Peter Bergmann considered [133] a notion of Gauge Theory concerning whole
paths (dynamical trajectories): path-gauge, as features further in Chaps. 27 and 32.
For now, we note that it is fitting for Configurational Relationalism to be associated
with a data-gauge notion.
Whether there is g compatibility can at least in part be investigated prior to con-
sideration of constraints. This is since the {V ,Pg} in {Chronos,Pg} can already
be examined prior to constraints: adopting a g comes with Equipping with Brack-
ets. On the other hand, one does not assess T(q, q̇) itself, which is tied to con-
straints being more simply and systematically handled in Hamiltonian-type for-
mulations. The ensuing action can be viewed as a map from a structure that is a
fibre bundles twice over: both a tangent bundles and g-fibre bundles. Specifically,
it is p(T(q),g), rather than T(p(q,g)) due to the nontrivial part of the g ac-
tion being on the tangent bundles’ fibres. Moreover, this being a g-fibre bundle
mathematically may require excision of certain of the degenerate configurations
(Appendix G), which in turn is not relationally bona fide.

Counter-example 4) Despite Dirac’s conjecture, Flin �⇒ Gauge by the following
technically constructed but not physically motivated counter-example given by
Henneaux and Teitelboim [446]. The Lagrangian L = exp(y)ẋ2/2 gives a con-
straint px = 0 which is first-class but not associated with any gauge symmetry.

Example 5) Whereas Li , G, Mi are uncontroversially gauge constraints, the gauge
status of H and E remains disputed. Some arguments of note in this regard have
been given by Kuchař, Barbour and Foster [106, 587, 589]; see also Sects. 32.5–
32.6 for further arguments. This point is, moreover, directly at odds with [446],
which transform to and from constraints of the form Quad. The Author pointed
out [32] that this discrepancy is due to, on the one hand, [446] allowing for t-
dependent canonical transformations, Cant (see Appendix J.9). On the other hand,
the relational whole-universe context has no primary-level t , by which it is not
licit to adopt Cant in this worldview. Consequently Chronos and Gauge are quali-
tatively distinct in the relational context. The relational context furthermore makes
distinction between Constraint Providers for, firstly, Shuffle candidates for Gauge,
and, secondly, Chronos.

Counter-example 6) Sect. 30.5 presents a case of Gauge �⇒ Flin.
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24.9 Examples of Constraint Algebraic Structures

Example 0) Cases with reduction at any classical level explicitly attained are aided
in the matter of closure by one of the following means.

a) Having less constraints to form brackets from.
b) Making use of single finite-theory classical constraints always closing with

themselves by symmetric entries into an antisymmetric bracket.

In particular, for diagonal Minisuperspace, the schematic form

{H,H} = (structure function)i × Mi (24.15)

of (9.33) means that no Mi implies closure and as a mere Abelian algebra rather
than an algebroid:

{H,H} = 0. (24.16)

This simplification rests on homogeneity.
Moreover, b) also renders reduced RPM trivial in this regard.

Example 1) See Sect. 9.14 for Electromagnetism and Yang–Mills Theory.
Example 2) That Sec also covered Metric Shape and Scale RPM, although in Part II

the version with translations already quotiented out is preferable. Section 21.3 sub-
sequently introduced Metric Shape RPM’s extra constraint. Note furthermore that
shape and scale transforming independently can be expressed as {Li,D} = 0; cf.
(E.13). These RPM models can be summarized by

RPMs realize the E × Gauge subcase of Chronos × Gauge. (24.17)

Example 3) Spatial diffeomorphisms form among themselves an infinite-d Lie al-
gebra, the TRi-smeared form of which is

{(Mi | ∂Li ), (Mj | ∂Mj )} = (Mi | |[∂L,∂M]|i ). (24.18)

Example 4) In the case of full GR, the constraints’ Poisson brackets form the Dirac
algebroid (9.31), (9.32), (9.33) [250]. In the Theoretical Physics literature, this was
long termed ‘Dirac algebra’, but Bojowald has more recently brought to attention
that it is mathematically an algebroid, and spelled out some consequences of this
in his book [154].

Moreover, we now need the TRi-smeared version of the Dirac algebroid: (24.18)

{(H | ∂K), (Mi | ∂Li )} = (£∂LH | ∂K), (24.19)

{(H | ∂J), (H | ∂K)} = (Mi | ∂J
←→
∂ i∂K) = (Mih

ij | ∂J
←→
∂ j ∂K). (24.20)
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Fig. 24.5 Geometrical significance of the form of the Dirac algebroid formed by the constraints
of GR. a) Mi generates stretches within �: is just the usual Lie algebra relation in the case of
g = Diff (�). b) H as a good Diff (�) object—a scalar density. c) H acts on spatial hypersurface
� by deforming it into another hypersurface (red line) [454, 576–579, 832]. This is Teitelboim’s
Refoliation Invariance construct that holds at the classical level thanks to the form of the Dirac
algebroid. Consider going between 〈�,h(1)〉 and 〈�,h(2)〉 through 2 different orderings of defor-
mations: the first via the red hypersurface and the second via the purple one. We only then need the
stretch associated with the commutator of ∂J and ∂K to compensate for the non-commutativity of
the two deformations involved

Additionally, (24.18)–(24.20) already apply in the case of Minkowski spacetime Mn

so as to model fleets of accelerated observers therein. This is in fact the context in
which Dirac first found this algebroid [248] though he subsequently considered the
GR case in [249].

Note in particular that the Poisson bracket of Chronos = H with itself (24.20)
gives rise to Shuffle constraints Mi . This indicates a greater amount of ‘together-
ness’ between Temporal and Configurational Relationalism than the RPM model
arena exhibits. Consequently, in the GR setting, Temporal Relationalism cannot
be entertained without Configurational Relationalism. This is in contrast with how
the two can be treated piecemeal in RPM. As an integrability, this is analogous to
Thomas precession (Appendix E):

GR manifests the H →© Mi subcase of Chronos →© Gauge. (24.21)

Moreover, this is now in the form of an algebroid, as required to encode the multi-
plicity of foliations. In more detail, there is a parallel between composing two boosts
producing a rotation: Thomas precession, and composing two time evolutions pro-
ducing a spatial diffeomorphism: Moncrief–Teitelboim on-slice Lie dragging [662].
Finally, Fig. 24.5 elevates Fig. 9.6’s pictorial explanation of the Dirac algebroid to
TRi form.
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Upon including minimally-coupled matter (including no curvature couplings),
the Teitelboim split [835] for minimally-coupled matter is

H = Hg + H�, Mi = M
g
i + M�

i . (24.22)

Moreover, the gravitational and minimally-coupled matter parts now obey the
Dirac algebroid separately. This follows from (H.6) and the general form taken
by minimally-coupled matter potentials.

Example 4) Strong Gravity metrodynamics’ sole constraint bracket is

{(H | ∂J), (H | ∂K)} = 0. (24.23)

Its geometrodynamical counterpart is further supplemented by (24.18), (24.19).
Example 5) The Ashtekar variables constraint algebraic structure [75] is much

like that of Geometrodynamics, but with an extra Gauss-type constraint included.
Schematically, the new Yang–Mills–Gauss constraint GI self-close as per usual,
commute with H indicating that to be an SU(2)(�) scalar and form a relation
{Mi, GI } ∼ GI . This is commensurate with Sect. 19.7’s semidirect product struc-
ture. On the other hand, the 3 geometrodynamical constraints brackets carry over
with (9.33) picking up a GI term without becoming free from spatial geometry-
dependent structure functions. Thereby, the main interesting features and compli-
cations of the geometrodynamical case carry over. See e.g. [75] for the detailed
form of this Ashtekar–Dirac algebroid of constraints.
Moreover, the above original and a priori simplest Ashtekar variables formulation
being of complex GR, reality conditions need to be imposed in order to extract
physical answers. These can be positioned at the end of one’s calculations, so they
are not an immediate procedural obstruction, but are none the less very hard to
handle once one finally gets to them [552, 587]. One way around this is to consider
instead the a priori more complicated Ashtekar variables formulation [94]. Here
the integrand of the action (19.8) picks up a topological term,

1

2β
e εIJ KLeμI ∧ eνJ ∧ Fμν

KL, (24.24)

to form the Holst action [455]. The relative proportionality factor thus introduced is
the Barbero–Immirzi parameter, β . This also arises as a replacement for the −i fac-
tor in (19.9), and subsequently features in an extra additive term in the Ashtekar H
(8.37):
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}{
GAJb − �Jb

}
, (24.25)

Moreover, β can be chosen so that this is a real-variables formulation in the first
place, thus not necessitating any reality conditions imposition; [94] gives the cor-
responding constraint algebroid. This loses some of the initial advantage in maxi-
mally simplifying the form of H. Another issue with this is whether Nature, rather
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than the theoretician, fixes the value of β . This is relevant in particular due to β
featuring in Nododynamics’ formula for the black hole entropy [cf. Eq. (11.22)].
On the other hand, the Loop Approach’s [330] results hold for whichever β and can
thus be carried over from the original complex formulation to the real formulation
as well. Loop formulations are largely disregarded in Particle Physics due to not
working well for Yang–Mills Theory in that context. However, the claim is that
the Loop Approach works better in the spatial diffeomorphism-invariant case of
relevance to GR.
Given that we shall be giving some further conceptual arguments for complex for-
mulations in Chaps. 27 and 31, it is worth bearing in mind the following. i) There
are other ways in which real variables are more technically convenient to work
with (Sect. 43.5). ii) The complex formulations do not only include the original
formulation of Ashtekar, but also various more modern and advanced treatments
of the complex case as exposited by physicist Thomas Thiemann [845].
Finally, in contrast, the Husain–Kuchař model arena has GI and Mi alone, which
indeed close as a Lie algebra.

Example 6) In the bein formulation of Canonical GR, the configuration space is
now Bein(�) in place of Riem(�). This has local Lorentz frame rotations being
physically irrelevant, leading to a local Lorentz constraint J (with indices sup-
pressed).
The framed formulation of Geometrodynamics now extends to Diff (�)→©
SO(3)(�). Correspondingly,

Mi →© J . (24.26)

Additionally demanding Temporal Relationalism provides H, in which case we
find Constraint Closure in the form

H →© Mi →© J . (24.27)

Framed metrodynamics proceeds without the above extension. In this case, de-
manding Temporal Relationalism provides H, from which the Dirac Algorithm
produces Mi from H, by which one also arrives at the same final form of Con-
straint Closure.
Einstein–Dirac Theory follows suite in each of the above approaches, which are
furthermore useful preparation for the subsequent major example of Supergravity.

Example 7) In 1 + 1 dimensions on S
1 spatial topological manifold manages to be

a well-known Lie algebra (albeit infinite-d), as per Appendix V. Moreover, GR in
dimension 2 + 1 and higher is not simple in this manner.

24.10 Examples of Constraint Closure Problems

Example 1) [of case II] Best Matching with respect to translations and special con-
formal transformations, but not with respect to rotations or dilations, fails because
the first two do not form a group without the last two: Eq. (E.31).
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Example 2) [of case III] This is a valid problem in the absence of H, so attempting
to impose U(1) symmetry on Proca Theory suffices. A constraint (24.14) arises,
but this is second-class so it only uses up 1 degree of freedom. One way out in-
volves considering that Proca Theory rejects quotienting by U(1) (Strategy 3).
Another way out, if one insists on retaining U(1) is to consider m = 0 to arise as
a strong condition (Strategy 1). This gives a longer route to the exclusion of mass
terms from U(1) symmetric 1-form actions. Proca Theory can indeed be handled
with Dirac brackets or the effective method (Exercise!). N.B. how both of these
methods and the preceding strong condition all offer distinct minimalistic ways of
dealing with a mismatch in an original candidate triple 〈g,q,s〉.

Example 3) [of case IV ] Consider Best Matching with respect to the affine trans-
formations Aff (d)within a Euclidean-norm kinetic arc element [36]. This produces
a constraint E which is incompatible with Aff (d), which defect can be traced from
E possessing a Euclidean norm back to the kinetic arc element assumed. In this
case, however, the answer is not to use extension or Dirac bracket, but rather to ac-
knowledge that one needs to build an arc element free from any residual Euclidean
prejudices. Here one ‘abandons ship’, in the sense of forfeiting a type of s for
all that one can pass to a different type of s which works [36]. The 2-d working
theory is given, rather, by (19.1). This example’s required alteration so as to attain
consistency is however unrelated to changing any of g, q or { , }.

Example 4) Suppose we try to impose a g including both the GL(d,R) transfor-
mations and the special conformal transformations acting on flat space. Then both
(19.3) and (19.6) arise, but these cannot be group theoretically combined due to
(E.35). This example illustrates Best Matching being sunk by a Constraint Closure
Problem, due to the former being a piecemeal consideration of generators whereas
the latter involves relations as well as generators.

Example 5) [of mutual second-classness across the partition of the constraint al-
gebraic structure]. The linear constraint p = 0 or p/

√
h = const of Conformoge-

ometrodynamics is second-class with respect to H as per Chap. 33. A extension
strategy for this is outlined in e.g. [650]; on the other hand, the Dirac brackets
approach remains untried in this case.

Example 6) Chap. 33 is not only based on Strategy 5) but is also a rich source of
further examples. In attempting to set up an elsewise GR-like metrodynamics, the
Poisson bracket of two H’s continues to read (9.33). So ab initio (24.21) continues
to arise [662], and so case V ) with m �= 0 ensues. This is also an example of
Sect. 16.1’s point that a natural action of g on q existing does not guarantee that g
represents the totality of physically irrelevant transformations. The above model’s
enlargement amounts to being forced to pass from g = id to the Diff (�) that
corresponds to Mi . All in all, Quad can have its own say as to what form (part of)
the Flin have to take.
On the other hand, such a g-Closure Problem does not occur in attempting metro-
dynamical Strong Gravity; this remains consistent with just the one constraint
(18.42). Finally, Chap. 33 also contains many examples of strong vanishing.

Example 7) Next consider recombining N and O objects to reveal a simpler split
form, such as in realizing the so(3,1) ∼= so(3) × so(3) accidental relation (Ap-
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pendix E and Ex IV.7). However, this amounts to abandoning one’s originally de-
clared partition. [Even if it is the right g, the partitioned method of obtaining the
O ends up not being how the g acts. The partition of methods of provision conse-
quently remains a false premise.]

24.11 The Further Example of Supergravity

First of all, one here needs to generalize the Poisson brackets to accommodate
mixtures of bosonic and fermionic species. Appendix J.20 outlines the subsequent
Casalbuoni brackets for finite theories; the further generalization to Field Theories
is straightforward.

Canonical Supergravity has additionally the expected Mi and J constraints
alongside a specifically supersymmetric SA.5 All we need to know for this book
about J and S are that each of these constraints is linear in the momenta, and the
schematic form of the subsequent constraint brackets. See e.g. [232, 868] for fur-
ther details of what is known of the constraint algebraic structures for Einstein–
Dirac Theory and Supergravity. In particular, in Supergravity a subset of the linear
constraints—the S—have the Supergravity counterpart of the quadratic H as their
integrability [232, 834]:

{S, S}C ∼ H + M. (24.28)

Indeed, Teitelboim [834, 835] presented S as the square root of H

‘Supersymmetry = √
Chronos ’. (24.29)

This is analogous to the Dirac operator being the square-root of the Klein–Gordon
one.

By this integrability and Mi still being an integrability of H, Supergravity’s Flin
to H split is of the more general two-way integrability type (Appendix E). I.e.

Supergravity’s constraint algebroid is of the form Chronos ↔© Flin; (24.30)

contrast with (24.21) for GR. An underlying reason for this difference is that as
well as space–time split GR having a Thomas-type algebraic structure H →© Mi , Su-
persymmetry by itself does as well. This takes the form SA →© Pi in Nonrelativistic
Mechanics, or SA →© Pμ in Relativistic Mechanics or Field Theory: the Poincaré
superalgebra. However, in considering a supersymmetric version of q = Bein(�),
both of these integrabilities feature at once.

In this manner, Supergravity may merit shifting Wheeler’s question (9.1) from
concerning H to concerning S. I.e. why this takes the form it does, and thus what is

5Again, we drop the spinorial index in this book’s schematic presentation. This constraint is also
accompanied by a conjugate constraint.
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its underlying ‘zeroth principles’ or Constraint Provider. It should however be cau-
tioned that, whereas the fermions corresponding to Dirac’s square root were subse-
quently observationally vindicated, this is not the case to date as regards superpart-
ner particles. This can be taken as a limitation on arguing against the fundamentality
of quadratic constraints like H on the grounds of their being supplanted in supersym-
metric theories.

Lemma If the Flin constraints do not form a subalgebraic structure, the following
consequences ensue.

i) Flin cannot be quotiented out as a block.
ii) Due of Chronos’s ties to Temporal Relationalism, and Flin’s to Configurational

Relationalism, change of status as regards which of these constraints can be
treated separately from which others also affects how Relationalism can be
viewed. In particular, Flin non-closure heralds a breakdown in Best Matching
being a separate provider of linear constraints.

By i), Supergravity does not have a counterpart of Wheeler’s Superspace. By ii)
and Supergravity being of the form (24.30), neither Temporal nor Configurational
Relationalism can be considered alone therein. Thus approaches in which constraint
provision is meaningfully subdivided along such lines are thwarted by Supergravity.

One way to deal with this is to accept that Best Matching’s extremization need not
be over a closed group. This is still consistent without the H integrability adjoined
to the system of equations. This is because H has been substituted into the system
and the system’s solution is subsequently used to solve H. In this way, the further
equation implied is being considered within a Best Matching formulation.

Let us next comment on some other constraint subalgebraic structures which are
realized in Supergravity.

Firstly, (24.26) recurs here, now as Supergravity’s non-supersymmetric first-class
linear constraint algebra NSFlin = {J , Mi}. Best Matching with respect to these
is a success. At least formal quotienting out by the group in question is permitted,
giving ‘non-supersymmetric superspace’ [42]. However placing too much stock in
this procedure and quotient space may run against the grain of Supersymmetry, in
the sense of applying a non-supersymmetric reduction to a supersymmetric theory.

Secondly, (24.27) also recurs here, now as Supergravity’s non-supersymmetric
total constraint algebroid, NSC = {J ,Mi ,H}.

Further interpretations of Constraint Closure for Supergravity along the lines of
‘Constraint Providers’ are as follows.

Approach 1) consists of the following.

a) Extend local SO(3,1) to (24.26).
b) Include further generators associated with Supersymmetry without demanding

group closure.
c) Demand Temporal Relationalism as well. Then H is provided and Constraint

Closure is attained.
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Approach 2) Consider just a) and b). Then S →© H is in any case discovered, so
that Constraint Closure is once again attained. Since H can still be rearranged to
give tem, it follows that in this approach tem arises from assuming Supersymmetry
in a context in which q includes Riem(�). This context is specified since the
Nonrelativistic Mechanics case does not have S →© E leading to tem.

Approach 3) Consider just b). Then SA (and conjugate) are provided, and the Dirac
Algorithm gives H and Mi according to SA →© H→© Mi . In this way, assuming just
the obligatory locally Lorentz frame part of Best Matching and the supersymme-
try generators in a context in which q includes Bein(�) leads to both tem and to
Diff (�) being obligatory. This has not invoked either Temporal Relationalism or
Best Matching with respect to Diff (�); these have been supplanted in this case as
Constraint Providers by involvement of the supersymmetry generator. Note how-
ever that Diff (�) being obligatory here arises in the same way in the metrodynam-
ics assumed route to GR: H →© Mi . Consequently Supersymmetry is not in this
case a separate source of enforcing Diff (�) Best Matching, and Approach 3) has
little more content than Approach 2).

All in all, we have established that Supergravity is far more classically distinct from
Geometrodynamics than Nododynamics is. The current Relationalism or more ex-
tended Background Independence program can readily be extended to the latter but
not to the former! Consequently, the Problem of Time is substantially different for
Supergravity, rendering it an arena of considerable interest for future investigations
into the nature of time and the foundations of QG.

Research Project 10) Does this distinct form of Background Independence taken
by Supergravity impinge upon the ‘space and configuration’ versus spacetime pri-
mality debate?

See Chaps. 30 and 33 for yet further examples of Constraint Closure subtleties.

Research Project 11) How do Dirac-type Algorithms generalize if the Principles of
Dynamics is reworked with further types of classical brackets? Work on this at
least on an example by example basis; the last four examples in footnote 2 may be
suitable.

24.12 Lattice of Constraint Subalgebraic Structures

Each individual constraint algebraic structure is a Poisson algebra in the obvious
sense; see e.g. [610] for an introduction to these.

Figure 24.6 provides conceptual names for each of the constraint subalgebraic
structures covered in this Chapter.

Additionally, Fig. 24.7.c) illustrates that a theory’s constraint algebraic structures
form a generally bounded lattice Lc rather than just bounded total orders (Ap-
pendix A.1) such as in Fig. a), b) or d). See Appendix S.4 for a technical outline of
lattices. Each subfigure can readily be converted [51] to a so-called Hasse diagram,
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Fig. 24.6 For constraint subalgebraic structures, this gives the notation for the constraints and
the algebras themselves. We next provide the corresponding associated notions of beables and of
the beables subalgebraic structures themselves. One suggestion behind this presentation is that the
variety of notions of constraint subalgebraic structures deserve comparable attention to the hitherto
more widely considered notions of beables

Fig. 24.7 a) Gives the incipient position on constraint algebraic structures. b) With Dirac’s con-
jecture proving to be false, more thought in general needs to be put in as regards whether the
intermediate algebraic structure is first-class linear or gauge. c) In RPMs Chronos also closes sep-
arately, whereas d) in GR it does not. e) Supergravity illustrates that intermediate subalgebraic
structures can be distinct from F lin, Gauge or Chronos. The Supergravity case has, correspond-
ingly, intermediate beables subalgebraic structures distinct from K , G or C. f) to j) display the
corresponding notions of beables. Figure E.3 can also be interpreted in terms of constraints corre-
sponding to the generators in question, and Fig. G.3 as beables corresponding to the invariants. In
this way, one can envisage Lc and Lb for a wider range of RPMs; see [51] for this explicitly
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which are a standard presentation for lattices (and for posets more generally). In the
first row of subfigures, the arrows indicate inclusion of further generators, in ways
allowed by the integrability relations between these.

Supergravity provides one substantial motivation for Fig. 24.7’s introduction of
lattices; a second comes from the following implications for the theory of beables.
The association map Assoc, corresponding to the ‘forms zero brackets with’ opera-
tion, leads to a further lattice Lb of notions of beables for each theory, as displayed
in the second row f) to j) of Fig. 24.7. Assoc is an order-reversing lattice morphism
Lc −→ Lb; in fact, some coarsening of the ordering is allowed [51].

With many constraint subalgebraic structures under consideration, let us also

generalize Dirac’s weak vanishing notion and notation to that of
CW≈ , meaning van-

ishing weakly up to the constraints in the indicated constraint subalgebraic struc-
ture Cw.



Chapter 25
Taking Function Spaces Thereover:
Beables and Observables

25.1 In the Absence of Facet Interference

Section 9.15 listed various notions of observables or beables—Dirac D, Kuchař K ,
and unrestricted U—that are common in the literature, complemented these by in-
troducing Chronos C, and discerned between K and gauge G. The current Chapter’s
account, however, makes more subtle conceptual distinctions.

Let us first continue here by appreciating the U as not only the simplest case but
also the only case that is free from facet interference. The fourth aspect of Back-
ground Independence is, in its purest form, to pass from considering Q and P to
Taking Function Spaces Thereover, consisting of functions or functionals of the Q
and P, such as F(Q,P ) or F(x; Q,P] (B := F %Q,P& in portmanteau form). This
is classically straightforward, since Poisson brackets can be allotted consistently to
such functions. Using this criterion implies that ‘thereover’ means over phase space
Phase, i.e. the space of the Q and P as equipped by the Poisson bracket { , }. It also
implies a minimum standard of differentiability for the function space u of the U ,
and that this function space is, a fortiori, a Poisson algebra [610].

25.2 The First Great Decoupling of Problem of Time Facets

While the preceding Sec is classically straightforward, understanding this point
bears three fruit. Firstly, it supplies the considerably less straightforward Kinemati-
cal Quantization with a clear-cut underlying classical counterpart. This permits en-
visaging Kinematical Quantization as starting one’s quantum scheme by taking on
the fourth aspect of the Problem of Time. Secondly, for constrained systems, further
classical notions of beables and observables such as D, K , G and C

A) remain instances of Taking Function Spaces Thereover.
B) They are also subjected to a number of Constraint Closure restrictions and Tem-

poral and Configurational Relationalism stipulations.

© Springer International Publishing AG 2017
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A) justifies our claim of what the pure form of the fourth aspect is, while B) is the
manifestation of a number of facet interferences between the corresponding fourth
facet and the previous three.

C) This is moreover a useful classical precursor to understanding how one’s initial
resolution of the fourth aspect at the quantum level is then disrupted by tackling
Facets 1 to 3. This leaves us in subsequent need to face the beables facet once
again. The passage from the kinematical Hilbert space Kin-Hilb to the physical
Hilbert space Dyn-Hilb requires us to find afresh what is a suitable algebraic
structure of quantum operators thereover.

The notion of ‘Taking Function Spaces Thereover’ additionally encapsulates a type
of decoupling between the Problem of Time facets. Firstly note how Constraint
Closure is capable of disrupting Temporal and Configurational Relationalism as per
Fig. 24.2. Resolving this triplet of facets gives a consistent phase space Phase.
Taking Function Spaces Thereover entails addressing a subsequent mathematical
problem on Phase rather than imposing some further conditions on whether Phase
is adequate. Within ‘space, configuration or Dynamics is primary’ approaches, this
imposes a strong ordering as regards proceeding through the first four gates of the
enchanted castle. Classically,

1) one keeps on going through the Configurational, Temporal and Closure gates
until one has consistently got past all three.

2) Only then does one turn to the fourth gate whose true name is Taking Function
Spaces Thereover.

25.3 Sources of Variety Among Classical Notions of Beables

It remains to give a detailed treatment of constrained theories’ beables. We begin
by considering the sources of diversity among notions of beables, alongside how
some of these can be traced back to facet interferences. In constrained theories,
classical observables or beables [32, 133, 134, 247, 250–252, 255, 353, 446, 483,
586, 587, 724, 752, 802, 845] are further objects whose ‘classical brackets’ with
‘the constraints’ are ‘equal to’ zero:

|[CC, BB]| ‘=’ 0, (25.1)

These are motivated by being more physically useful than just any Q’s and P (or
functionals thereof) due to containing a higher proportion of physical information.

A consequence of (25.1) is that there are a number of different possibilities as
regards which constraints, types of brackets, and notions of equality, are involved.
The previous Chapter covered the first two. The bracket selected for this purpose
needs to match that carried by the underlying phase space. The set of constraints
selected for this purpose furthermore need to close algebraically by Appendix J.18’s
Lemma 1, and is among those described by Fig. 24.6. This further supports that the
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Problem of Beables can only be addressed once the Constraint Closure Problem has
been resolved. This is another example of ordering passage through the Problem of
Time facet ‘gates’. Finally, Part I already depicted in Fig. 9.7 the usual assumption
of weak equality, alongside the possibility of strong equality. Algebraically, these
are respectively,

|[CC, BB]| ≈ 0 i.e. |[CC, BB]| = CC′
CB CC′ , (25.2)

|[CC, BB]| = 0. (25.3)

In this way, one has weak or strong versions of each of the D, K. . . .
See Chaps. 27 and 32 for yet further notions of observables in the spacetime

setting, whether based on Diff (m) or on more subtle considerations initiated by
Bergmann [133, 134], and Chap. 28 for yet more in the histories-theoretic setting.

25.4 Posing Concrete Mathematical Problems for Beables

Comparing (9.24) and (25.1) implies that the CF are themselves in some sense be-
ables. However, since we already knew that CF ≈ 0, in studying beables we are re-
ally looking for further quantities outside of this trivial case. Let us call these other
quantities proper beables; the rest of the book will always take ‘beables’ to mean
this.

The first major mathematical observation is that (25.1) are δ∂DEs, i.e. a portman-
teau of PDEs

∑
A

{
∂CC

∂QA

∂BB

∂PA
− ∂CC

∂PA

∂BB

∂QA

}
‘=’ 0 (25.4)

in the finite case, and FDEs (functional differential equations: Appendix O.8)

∫
dnz
∑

A

{
δ(CC |∂ξC)

δQA(z)

δ(BB |∂χB)

δPA(z)
− δ(CC |∂ξC)

δPA(z)

δ(BB |∂χB)

δQA(z)

}
‘=’ 0 (25.5)

in the field-theoretic case.1

The second major observation is that, by Appendix J.18’s Lemma 2, the B them-
selves form a closed algebraic structure: (J.43). Thus one is not looking for indi-
vidual solutions of the beables δ∂DEs, but a fortiori for whole algebras of solutions:
closed among themselves and large enough to span all of a physical theory’s math-
ematical content. This gives the concept of ‘finding basis beables’. A useful result
at this point (Lemma 3 of Appendix J.18) is that if B are beables, then so are F %B&,
by which the number of individual combinations of Q and P that one needs to find
may not be very large.

1Here ∂μB is a smearing function. This is given in TRi form since first-class constraints are both
trivially weak beables and TRi-smeared, pointing to all beables requiring TRi-smearing.
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If strong beables are considered, then (25.3) and the strong case of (J.43) form a
direct product c×b, where b denotes the algebraic structure of proper beables. On
the other hand, if weak beables considered, then (25.2) and the weak case of (J.43)
form a semidirect product c�b.

25.5 Notions of Beables: Examples and Lattice Structure

Example 1) If we just take the trivial subalgebraic structure of constraints, id, we
recover the unrestricted beables U .

Example 0) The opposite extreme involves taking the full final set of first-class con-
straints CF. This now corresponds to the classical Dirac beables (Chap. 25.8). I.e.
functionals D = F %Q,P& that ‘final classical brackets commute’ with the CF: the
|[CF, D]| ≈ 0 version of (9.35). In this case, Sect. 25.3’s motivational adage takes
its strongest form: Dirac beables, solely contain physical information, a property
that, at the very least, is required in phrasing final answers to physical questions
about a theory.

Let us now add to Sect. 9.15’s list of (possibly interpretation-dependent) aliases
or closely related notions True [743–745] alias complete observables [750, 751,
845]. These involve operations on a system, each of which produces a number that
can be predicted if the state of the system is known.

We next turn to the general case. Take any constraints Cw which form some con-
straint subalgebraic structure cw. The corresponding notion of A-beables Ax obey

|[Cw,Ax]| ‘=’ 0. (25.6)

The ‘A’ here stands for ‘algebraic substructure’, since each such notion of A-beables
indeed forms its own algebraic substructure ax. The totality of these algebraic sub-
structures furthermore forms the bounded lattice of notions of beables, Lb. So the
above use of ‘the opposite extreme’ is indeed in the sense of the unrestricted and
Dirac beables corresponding, respectively, to the unit and zero of Lb. Let us also
introduce the notion of non-extremal A-beables, meaning all those notions which
are not D or U . The other examples of beables given in Sect. 9.15 are then just some
of the subcases of this which are realized in some theories but not others, to which
we now return.

Example 2) The classical Kuchař beables [106, 272, 566, 587, 589, 920] are func-
tionals K = K %Q,P& that ‘final classical brackets commute’ with all first-class lin-
ear constraints, i.e. the |[ , ]| ‘=’ version of (9.36). It is also possible for the Flin
not to close for some theories, such as for Supergravity (cf. Sect. 24.10). A fur-
ther Consequence 3) of this is that K are not well-defined for Supergravity, by the
Casalbuoni brackets extension of working (J.42). Thereby, much of the focus on K

in earlier literature is now to be tied instead to the fully generally applicable notion
of the Ax.
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Example 3) The falseness of Dirac’s conjecture—by which the Flin would always
coincide with the Gauge for some g—means that the Gauge have a separate possi-
bility to form a closed subalgebraic structure and thus to support a corresponding
notion of beables. I.e. the notion of g-beables G which commute with Gauge: the
final classical brackets ‘=’ version of (9.37).

Example 4) Chronos closes by itself as a subalgebraic structure for some theories,
e.g. for RPMs, theories of Strong Gravity, and Minisuperspace, but not for full
GR itself. In cases for which this closure does occur, the corresponding notion of
Chronos beables, denoted by C, is mathematically well-defined; this obeys the final
classical brackets ‘=’ version of (9.38).

25.6 Strategies for the Problem of Beables

The Problem of Beables (or Observables) [26, 37, 250, 483, 586, 752] is that it is
hard to construct a sufficiently large set of these to describe all physical quantities.
This applies in particular to Gravitational Theory. Strategies for dealing with the
Problem of Beables include the following.

Strategy 1) Use Unconstrained Beables, U [251, 252, 752], entailing no commuta-
tion condition at all.

Strategy 0) Insist on Constructing Dirac Beables, D.

Insist on Constructing Dirac Beables has the conceptual and physical advantage of
employing all the information in the final set of constraints of the theory, which
are all first-class. It has the mathematical disadvantage that finding Dirac beables—
much less a basis set for each theory in question—is a very hard venture, especially
in the case of Gravitational Theories. Use Unconstrained Beables is diametrically
opposite in each of the above regards. On some occasions the latter is moreover used
as a stepping stone toward the former.

Using classical partial observables is a distinct point of view about the U . This
began with Rovelli’s works [191, 192, 743–745]; one might consider [235, 694]
as forerunners in some respects; see also [251, 252, 750–755] and the reviews
[752, 845]. Following on from Sect. 9.15’s outline, partial observables involve clas-
sical or quantum operations on the system that produces a number that can be mea-
sured but possibly totally unpredictable, even if the state is perfectly known; contrast
with the definition of total or Dirac observables. The physical content lies, rather, in
considering pairs of these objects, with correlations between them encoding purely
physical information which can be extracted. I.e. correlations of two partial observ-
ables are predictable. In particular the value of a partial observable O1 subject to
another partial observable O2 taking a particular value is predictable; one can then
consider partial observable O2 as playing a ‘clock’ role. In this sense, the name
‘partial’ is apt: one needs to consider multiple parts before this approach starts to
work. It is not however clear which partial observables in particular correspond to
realistic and accurate clocks. Nor is it clear how a number of other facets of the
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Problem of Time can be addressed in this approach [26, 37, 483, 586, 587]. The
Partial Observables Approach’s correlations, moreover, are themselves functions on
the constraint surface and commute with the constraints. As such they furnish com-
plete or Dirac observables or beables, according to one’s interpretation.2 In such a
way, partial observables can also be viewed as a stepping stone toward the construc-
tion of Dirac beables, e.g. via methods developed by physicist Bianca Dittrich and
Thiemann [251, 252, 845].

Moreover, Insist on Constructing Dirac Beables amounts to concurrently ad-
dressing the unsplit totality of constraints (Constraint Closure facet) and Taking
Function Spaces Thereover. As a two-facet venture (Fig. 25.1), it is unsurprisingly
harder than Use Unconstrained Beables, which only contemplates the latter.

Strategy 2) Consider Kuchař Beables, K , to Suffice. Entertaining K can entail treat-
ing Quad distinctly from the Flin. Three possible underlying reasons for making
such a distinction [106, 272, 566, 586, 587, 589, 920] are Relationalism, primary-
level timelessness, and the hidden nature of the associated Refoliation Invariance
symmetry. A fourth, now pragmatic, reason is that K are simpler to find than D.
Moreover, if one looks more closely, some of these motivations are actually tied
to the G in cases in which these and the K are distinct. We take this on board by
providing a further distinct strategy.

Strategy 3) Consider the g-beables, G, to suffice. It is more generally these—rather
than the K—which arise from the g-act, g-all construction in cases in which the
candidate Shuffle is confirmed as a Gauge. Also, theories having either trivial
Configurational Relationalism—or Best Matching resolved—have as a ready con-
sequence a known full set of classical G. The G furthermore happen to coincide
with the K in many of the book’s concrete examples; in these cases, the above
gives a known full set of classical K . This takes into account the triple combination
of Configurational Relationalism, Constraint Closure and Taking Function Spaces
Thereover aspects (Fig. 25.1). Complementarily, finding the K is uncontroversially
a timeless pursuit due to the absence of Chronos (or underlying Temporal Relation-
alism) from the workings in question.

Strategy 4) Consider Chronos Beables, C. This takes into account the triple com-
bination of the Temporal Relationalism, Constraint Closure and Taking Function
Spaces Thereover aspects. In theories with nontrivial g or some further first-class
constraints, this is probably best viewed as a halfway house that is available if
Chronos indeed constitutes a constraint subalgebraic structure, Ch.

Strategy 5) Consider split Dirac Beables. Finally, considering Dirac beables once
again, but now within the context that the underlying first-class constraints are
meaningfully split according to whether they are provided by Temporal or Con-

2The Author does not choose to base this book on partial observables due to these carrying ‘any
change’ connotations. Elsewhere, the Partial Observables Approach has also be considered in
combination with Internal Time Approaches. Here, internal time can provide the timestandard
in schemes requiring a such if one is able or willing to pay the price for the usual inconveniences
of a such; see e.g. [251, 252].
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figurational Relationalism. In this second-deepest level of Fig. 25.1, all four of the
aspects considered so far enter.

(Non)universality arguments are pertinent at this point. Using U or D is always
in principle possible. The first of these follows from no restrictions being imposed.
The second follows from how any theory’s full set of constraints can in principle
be cast as a closed algebraic structure of first-class constraints, by use of the Dirac
bracket, or the effective method, so as to remove any second-class constraints.

Strategy A) We finally introduce an additional universal strategy based on Using
Whichever A-Beables, Ax, that a theory happens to possess, in correspondence to
the closed subalgebraic structures of constraints which are realized by that theory.
This strategy admits the following variants.

1) Making any such choice.
2) The possibility of having further selection principles among the various candi-

date theories whose constraint algebraic structures admit a variety of nontrivial
proper subalgebraic structures.

3) Using one or more notions of Ax as stepping stones in computing more restric-
tive types of beables.

Strategy A) always includes Strategies 0) and 1) as its extreme subcases, unless
the strategy is confined to non-extremal Ax. Strategies 0) and 1) require no further
choice or selection principle. The timeless pursuit point attributed above to the K

is more generally true for any subalgebraic structures that can be made without
involving Chronos. Finally, the universality point attributed above to the D is to be
contrasted with how the K—or any other type of non-extremal Ax—only exist for
certain subsets of physical theories!

25.7 Classical Kuchař Beables: d∂DEs and Solutions

We next consider some simple examples of theories which do possess a notion of
Kuchař beables in theories as examples of concrete beables δ∂DEs and their solu-
tions. These δ∂DE’s benefit firstly from being linear in the unknowns K , and sec-
ondly from coming from Poisson brackets in which one entry is a constraint which
depends at most linearly on the momenta. Also note for subsequent use that (24.6)
and restriction to purely configurational Kuchař beables Kc gives the particularly
simple δ∂DE

FA
N

δ∂K

δ∂QA
‘=’ 0. (25.7)

Example 1) RPMs. {P, K} ‘=’ 0 ⇒ the PDE

N∑
I=1

∂K

∂qI
‘=’ 0. (25.8)



25.7 Classical Kuchař Beables: d∂DEs and Solutions 329

This is solved by the relative interparticle separation vectors and linear combinations
thereof, mot conveniently the relative Jacobi coordinates ρA.

{L, K} ‘=’ 0 ⇒ the PDE

N∑
I=1

{
∂K

∂pI
×p

I
+ qI ×

∂K

∂qI

}
‘=’ 0. (25.9)

This is solved by various dot products. In particular the Kc obey

N∑
I=1

qI ×
∂Kc

∂qI
‘=’ 0, (25.10)

which is solved by qI · qJ . Also, the pure-momentum case (Kp) equation is in this

case just the qI ↔ pI of the previous equation, and so is solved by pI ·pJ . The full

equation is not solved by qI ·pJ but is solved by qI ·pJ +pI · qJ : the outcome of

applying the product rule to qI ·qJ . Moreover, norms and angles are particular cases
of functionals of the above, which are an allowed extension by Appendix J.18’s
Lemma 3.

For RPMs in which both (25.8) and (25.9) apply, by Appendix J.18’s Compo-
sition Principle the solutions are dots of differences of position vectors, or, often
more usefully, dots of relative Jacobi vectors. These are the K [32] for Metric Shape
and Scale RPM. The Hopf–Dragt coordinates (G.13)–(G.15) furthermore form a
geometrically simple basis of Kuchař beables.

The classical Kuchař beables condition {D, K} ‘=’ 0 ⇒ the PDE

N∑
I=1

{
∂K

∂pI
· p
I

+ qI · ∂K

∂qI

}
‘=’ 0. (25.11)

This is an Euler homogeneity equation of degree zero. Therefore its solutions are
ratios. The Kc subcase obeys

N∑
I=1

qI · ∂Kc

∂qI
‘=’ 0, (25.12)

and the Kp case is once again the qI ↔ pI of the preceding. Finally, by the Com-
position Principle, if (25.8) and (25.11) both hold, the K are ratios of differences, if
(25.9) and (25.11) both hold, ratios of dots, and if all three apply, ratios of dots of
differences. The last of these are the K [32] for Metric Shape RPM.

For Affine Shape RPM, {S, K} ‘=’ 0 ⇒ the PDE

N∑
I=1

{
∂K

∂pI
S p

I
− qI S

∂K

∂qI

}
‘=’ 0. (25.13)
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This is solved in 2-d by areas between pairs of vectors, in 3-d by volumes of paral-
lelepipeds formed by triples of vectors, and in arbitrary d by the top form supported
by the dimension in question, which are formed by d-tuplets of vectors (cf. Ap-
pendix B). The Kc case is

N∑
I=1

qI S
∂K

∂qI
‘=’ 0, (25.14)

and the Kp case is the qI ↔ pI of this. The Composition Principle continues to
apply here, so top forms of differences, ratios of top forms and ratios of top forms of
differences are the forms taken by various theories’ K . The last of these corresponds
to Affine Geometry and the first of these to ‘equi-top-form-al’ geometry (equiareal
[222] in 2-d).

For Conformal Shape RPM’s {Ka, K} ‘=’ 0 ⇒ the PDE

N∑
I=1

{
2{2pI [iqj ]I − (q · p)δij } ∂K

∂pIj
− {q2

I δ
ij − 2qiI qIj

} ∂K

∂qIj

}
‘=’ 0. (25.15)

The Kc case is

N∑
I=1

{
q2
I δ
ij − 2qiI qIj

} ∂K

∂qIj
‘=’ 0, (25.16)

whereas the Kp case is now

N∑
I=1

2
{
2pI [iqj ]I − (qI · p

I
)δij
} ∂K

∂pIj
‘=’ 0. (25.17)

This provides a first example lacking symmetry under p
I

↔ qI .

Example 2) Electromagnetism. {(G|∂ξ), (KK |∂χK)} ‘=’ 0 ⇒ the FDE

∂ · δK

δA
‘=’ 0. (25.18)

This is solved by E and B = ∂ × A, and thus by a functional F[B, E] by Ap-
pendix J.18’s Lemma 3. These are not however a conjugate pair. Since this looks to
be a common occurrence in further examples, let us introduce the term ‘associated
momenta’ to describe it.

F[B, E] can also be written in the integrated version in terms of fluxes:

F
[∫∫

S
B · dS,

∫∫

S
E · dS

]
= F[Wγ ,�E

S] (25.19)
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for electric flux �E
S and loop variable (N.1). This is by use of Stokes’ Theorem with

γ := ∂S and subsequent insertion of the exponentiation function subcase of Ap-
pendix J.18’s Lemma 3; this ties the construct to the geometrical notion of holon-
omy. Moreover, these are well-known to form an over-complete set: there are so-
called Mandelstam identities between them [330].

All of the above furthermore carries over to Yang–Mills Theory [47].
Here {(GI |ξI ), (K |χK)} ≈ 0 ⇒ the FDE

DaJ · δK

δAaJ
≈ 0. (25.20)

This is solved by EI and BI , so F[EI , BI ] is also a solution. Once again, this can
be rewritten as F[Wγ ,�E

S ], now for loop variable (N.2).

Example 3) GR as Geometrodynamics. {(Mi | ∂Li ), (K | ∂χK)} ⇒
({

£∂Lhij
δ

δhij
+ £∂Lpij

δ
δpij

}
KK

∣∣∣∣ ∂χK

)
‘=’ 0. (25.21)

This corresponds to the unsmeared FDE

2 hjkDi
δK

δhij
+ {Diplj − 2 δj i

{
Deple + pleDe

}} δK

δplj
‘=’ 0. (25.22)

In the weak case, we can furthermore discard the penultimate term. The Kc subcase
solve

2 hjkDi
δK

δhij
‘=’ 0. (25.23)

These are, formally, 3-geometry quantities ‘G(3)’ by (25.23) emulating (and more-
over logically preceding) the quantum GR momentum constraint (11.7). Finally
note that, explicit ‘basis beables’ are not known in this case.

On the other hand, the FDE for the Kp (formally ‘!G(3)
’) is

{
Diplj − 2δj i

{
Deple + pleDe

}} δK

δplj
‘=’ 0. (25.24)

Example 4) GR in Ashtekar variables.

{(Mi | ∂Li ), (KK |χK)} ‘=’ 0, {(GI | ∂ξI ), (KK |χK)} ‘=’ 0. (25.25)

The classical Kuchař beables are, formally functionals of the knots and associated
momenta alone: F[Knot,!Knot ]. I.e. to commute with Mi in addition to with GI ,
one need to consider diffeomorphism-invariant classes of loops, which are knot
classes (Appendix N.13). Moreover, it is loops with no intersections which sat-
isfy the ‘observables’ condition, and these are very limited in non-Abelian models
[330].
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25.8 Examples of Classical Dirac Beables

Example 1) In Temporally-Absolute Configurationally-Relational Mechanics, Elec-
tromagnetism, Yang–Mills Theory, and the Husain–Kuchař model the absence of
any non-linear constraints means that D = K , so that Sect. 25.7 suffices as a treat-
ment of Dirac beables.
On the other hand, for each of the below, one further δ∂DE restriction now applies
in addition to each of the preceding Section’s systems of equations.

Example 2) For Spatially-Absolute Mechanics, for the theories involving whichever
subgroup-forming combination of P , L, D and K, the following extra PDE applies.

{E, D} ‘=’ 0 ⇒
N∑
I=1

{
∂V

∂qI

∂DD

∂p
I

− p
I

∂D

∂qI
‘=’ 0

}
. (25.26)

A distinct equation is required in the other cases. E.g. the equiareal and 2-d affine
cases each require distinct E’s built from cross products rather than from Euclidean
norms.

Example 3) For Minisuperspace, {H, DD} ‘=’ 0 applies. See e.g. [79] for direct con-
struction of classical Dirac beables for Minisuperspace, or Chap. 29 for another
method that uses histories-theoretic intermediates.

Example 4) Geometrodynamics’ D require an extra FDE [47] {(H | ∂J), (DD | ∂χD)}
‘=’ 0 ⇒ ({

δDD

δp
{G − M D2 } − δDD

δh
N p

}
∂J

∣∣∣∣∂χD

)
‘=’ 0. (25.27)

This features the DeWitt vector quantities

G := 2√
h

{
piapa

j − p

2
pij
}− 1

2
√

h

{
pabpab− p2

2

}
hij −

√
h

2

{
hijR− 2Rij

}+ √
hΛhij

(25.28)
which are already familiar from the ADM equations of motion (8.29), and also
D2 := DiDj . In unsmeared form, (25.27) is the FDE

{
G − M D2}δDD

δp
‘=’ 2 p N

δDD

δh
. (25.29)

Some examples of D in GR for more specialized highly symmetric cases can be
found in e.g. [640, 641, 856].

Toward some further resolutions for GR beyond Minisuperspace,

i) see Chap. 30 for examples of Dirac beables D in SIC.
ii) Some D are also explicitly known [856] for some of the Gowdy Midisuperspace

models.
iii) Appendix O.8 outlines two early No-Go Theorems by Kuchař and by Torre

about the D.
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iv) Chap. 29 considers a further method which could extend beyond Minisuper-
space.

v) Dittrich’s general formal power series expansion objects for GR are of the form

D� =
∞∑
n=1

1

n! {V}n{�, C}(n). (25.30)

Here � denotes the dynamical fields (ψ and h) and Vμ := Xμ − Yμ(Xμ) is a
gauge-fixing equation for Yμ spacetime scalar functions. Also Cμ are particu-
lar linear combinations of the GR constraints [446]. Furthermore { , }(n) is an
n-fold iterated Poisson bracket, i.e. n Poisson brackets nested inside each other.
Each Cμ is contracted with that on one power of Vμ. This approach has al-
ready been covered contemporarily in [251, 252, 724, 845], so we detail it here
no further. See [251, 252] for the conceptually relevant points of how this con-
struct proceeds via a partial observables stepping stone, and of how some partial
observables act as clock in support of the system’s other dynamical variables.

Dittrich and Thiemann’s approach [251, 845] gets round Torre’s No-Go Theorem
by [722, 724] involving series of Cauchy data derivatives that are in principle up to
infinite order.

25.9 Examples of Further Notions of Beables

Explicit δ∂DEs for A-beables can also be formulated, and the equations for those
A-beables corresponding to subalgebraic structures of the Flin have similar mathe-
matical properties to those in Sect. 25.7.

Example 1) Bein-Geometrodynamics and Supergravity both have a simple notion
of locally Lorentz beables, corresponding to

{(JAB | ∂FAB), (BB | ∂GB)} ‘=’ 0, (25.31)

which is widely guaranteed even in circumstances in which other notions of be-
ables break down. This applies e.g. to the bein formulation of GR, to Einstein–
Dirac Theory and to Supergravity.

Example 2) In Supergravity, there is a notion of GR-like beables corresponding
to the GR-like constraint subalgebraic structure. There also is a notion of non-
supersymmetric Kuchař beables NSK in Supergravity, corresponding to (25.31)
alongside

{(Mi | ∂Li ), (BB | ∂GB)} ‘=’ 0. (25.32)

This is based on the subalgebraic structure (24.26) of the NSFlin closing.
Example 3) There is also a notion of non-supersymmetric Dirac beables NSD cor-

responding to (25.31), (25.32) and

{(H | ∂J), (BB | ∂GB)} ‘=’ 0. (25.33)

This is based on the subalgebraic structure (24.27) of the NSC closing.
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Fig. 25.2 Expansion on the 12 Background Independence aspects laid out in Fig. 10.7, indicating
which are realized in Minisuperspace, RPM, full GR and full Supergravity. The last three reflect
the progression in algebraic complexity ×, →© , ↔© (explained in Appendix E)

Example 4) Finally, Chap. 30’s SIC is another model for which further notions of
beables are required. This also provides a concrete example of g-beables which
do not coincide with Kuchař beables.

We are now in a position to summarize in Fig. 25.2 which of the Temporal and
Configurational Relationalism, Constraint Closure and Beables aspects of Back-
ground Independence are realized in the four main theories or model arenas that
have been considered in this book so far.

Research Project 12)† Work out what the concrete spaces of beables found in this
Chapter are topologically, geometrically and algebraically. Also write out concrete
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δ∂DE’s for other types of A-beables. Solve these and elucidate the topological, ge-
ometrical and algebraic nature of the space of these.

Research Project 13) [Long-standing.] Resolve the Problem of Beables (or Observ-
ables) for Classical GR. E.g. mastery of the cleanly geometrically motivated FDE
for ‘3-geometry momenta’ sitting within (25.22) should be attainable, since this
equation is concise, linear in its unknown and just second order in its derivatives.

Research Project 14) Consider further the status of beables or observables concepts
in classical Supergravity, illustrated with concrete examples.



Chapter 26
Fully Timeless Approaches

This Chapter returns to rung I) of Part II’s opening ladder of ontological structure:
the most minimalistic approaches. At the primary level, these involve just configu-
rations rather than any further velocities, changes, momenta, dynamical evolution,
paths or histories. Minimalism is itself one motivation for these fully Timeless Ap-
proaches: some aspects of Nature can be explained without evoking further struc-
ture. Another motivation follows from these being approaches which, out of not
presupposing an Arrow of Time, might be able to derive a such. Among these ap-
proaches, let us further distinguish between the following.

a) Approaches which consider the entirety of a single configuration for the Universe
[99, 101].

b) The more often considered version instead involves localized subconfigurations
within a single instant [21, 33, 692–694].

26.1 Propositions in the Classical Context

On major way of thinking about Timeless Approaches is to focus on timeless propo-
sitions or atemporal questions, and seek means of supplanting what are usually re-
garded as temporal questions. Types of atemporal questions include questions of
simple being of the generic form ‘what is the probability that an (approximate)
(sub)configuration has some particular property P1?’.

Part I already illustrated atemporal questions at the quantum level within the
Naïve Schrödinger Interpretationin the cosmological setting. Let us also now point
to geometrically interesting RPM model universe counterparts: finding the proba-
bility that the triangle is approximately equilateral? Isosceles? Regular?1 Atempo-

1See Appendix G for the nomenclature of RPM configurations, and for what regions of configura-
tion space they correspond to, by which valuations of propositions are realized as well-defined re-
gions of geometrically well-understood configuration spaces. The above examples could be based,

in reverse order on |ellip| < ε, |aniso| < ε and
√

ellip2 + aniso2 < ε for ε some small tolerance
parameter.

© Springer International Publishing AG 2017
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ral propositions also already make sense for Minisuperspace model universes. For
instance, one can consider Prob(anisotropy is small) with |β| < ε quantification.
Other questions involve inhomogeneity, for which Chap. 30’s SIC provides a con-
crete model arena. Moreover, RPMs already model some aspects of inhomogeneity.
Tall triangles have a tight binary relative to the distance to the third particle: a type
of ‘universe contents inhomogeneity’ of the subclusters involved. One can similarly
consider the ratios of relative separations of multiple pairs of particles within an N -
body configuration [59]. Finally, notions of uniformity are of considerable interest
in Cosmology; e.g. the area variable for a triangle is a such, which is maximized
by equilaterality.

The above allusion to approximation reflects the practicalities of imperfect
knowledge of the world. Appendix Q.6 presents both grainings and subconfigu-
rations to this end. Note that Classical Probability Theory (Appendix P.1) suffices
at the classical level; this reflects imperfect knowledge of the system. Finally, see
Chap. 51 for discussion of the even more interesting quantum counterparts of these
structures.

Contrast also with questions of conditioned being, which concern two (or more)
properties within a single instant. ‘What is the probability that, given that an (ap-
proximate) (sub)configuration Q1 has property P1, it (or some other Q2 within the
same instant) has property P2? Recollect here Part I’s Minisuperspace example of
‘what is the probability that the Universe is flat given that it is isotropic’? A RPM
model universe example is ‘what is the probability that the triangle is approximately
regular given that it is approximately isosceles’? N.B. that such questions can have
significant scientific content through forming a means of predicting and testing un-
knowns given knowns.

The totality of atemporal questions form an ‘atemporal logic’.2

Moreover, in the presence of a meaningful notion of time, one can consider the
following additional types of temporal questions to be meaningful at the primary
level. [These make for useful contrast, and are also the propositions that the current
Chapter considers strategies for supplanting of these.]

1) Questions of being at a particular time involve Prob(Q1 has property P1 as
timefunction t takes a fixed value t1).

2) Questions of becoming, moreover, have the further features of Prob(state S1

dynamically evolves to form state S2).

Some lucid examples of questions of becoming are whether highly homogeneous
universes become more inhomogeneous, or whether highly homogeneous universes
become populated by supermassive black holes. The following specific example of
a temporal question is, moreover, integral to the scientific enterprise itself.

2‘Atemporal’ does not refer here to a mathematical type of logic, but rather to a philosophical
or interpretational type. In particular, temporal logic presents more complications than atemporal
logic at the philosophical and interpretational levels due to the extra temporal constructs present.
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If an experiment is set up with particular initial conditions,
what final state does its initial state become? (26.1)

Note that without the qualification of ‘at a time’, questions of ‘being’ can appear to
be vague. Compare e.g. ‘is the Universe homogeneous?’ to the same but qualified
with ‘today’ or ‘at the time of last scattering’.

Strategy A) Rearrange Temporal Questions in purely timeless terms, at least in
principle. This usually proceeds in two steps.

1) Suppress ‘being at a time’.
2) Suppress ‘becoming itself’.

If these rearrangements are used in one’s conception of the world and of Science
e.g. (26.1), one would expect [21] the resultant formulation to strongly reflect the
structure of atemporal logic.

Strategy B) Accept Temporal Questions. The totality of these furthermore forms a
temporal logic.2

26.2 Fully Timeless Approaches

The current Chapter addresses the Rearrange Temporal Questions Strategy at the
classical level. Adopting a Fully Timeless Worldview avoids the difficult issue of
trying to define time as outlined in Sects. 1.8 and 1.12. However, this is replaced
by three other problems, which we refer to as ‘brier patches’ so as to keep them
grouped despite presenting the classical one here and the other two purely quantum
ones in Chap. 51.

Brier patch 1) is a case of choosing to face either Saint Augustin’s ‘what is time’ or
the more recent alternative of ‘how to cope in Physics without there being a time’.
This is because by possessing a time, to be treated in a sui generis fashion, the
former complies with the structural expectations of Ordinary QM.

As regards matters of principle, this is an issue of economy (why use a time if
it is not necessary) and of primality. I.e. the Machian ‘time is an abstraction from
change’ versus the absolutist ‘time is a prerequisite for understanding change’.

Fully Timeless Postulate. One now aims to supplant ‘becoming’ with ‘being’ at
the primary level (see [21, 99, 101, 340, 411, 413, 414, 418, 421, 692, 693, 731] for
partial antecedents). [In this sense, these Timeless Approaches consider the instant
or space as primary and change, Dynamics, history or spacetime as secondary.]

26.3 Supplanting Questions of Being at a Time

In this regard, one can pass from correlations between configurations, to clock states
being amongst the configurations involved. In this manner, ‘being at a time’ reduces
to timeless correlations between configurations.
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26.4 Classical Timeless Structures. i. Good g Quantities

These are a configuration space function subset of the gauge-invariant quantities
(g-beables, equal to Kuchař beables in the more commonly used theories). They
can be defined from the action of g on q, i.e. without ever involving momenta,
constraints or Poisson brackets. This restricted notion of beables can moreover be
phrased without constraints (but with generators). This adds a further reason to the
generator presentation of algebraic structures entertained in Chap. 9. It also conflates
Configurational and Spacetime Relationalisms. In this approach, Closure is more
primitive than Configurational Relationalism, since Closure involves just g by itself
whereas Configurational Relationalism involves g’s group action on q as well. Let
us end by noting that whereas reduced approaches proceed via further Principles
of Dynamics structures, the relationalspace formulation [37] arrives elsewise at the
relational q̃.

26.5 ii. Sub- and Super-structures for q

At this level, one only has configurations and the configuration spaces they form.
Various sub- and super-structures of these are, moreover, also implied.

Records are subconfigurations of a single instant that are localized in space (see
Appendices G.4 and N.8 for notions of distance upon which notions of localiza-
tion can be based). This is partly so that records can be controlled, and partly so
that one can have more than one such to compare. This also negates signal times
within conventional frameworks in which such are relevant. However, this is far
from necessarily the basis for a criticism; e.g. pp. 225–226 of [906] points out that
Relativistic Theories make use of a similar notion of locality.

Required structures include both sub-statespaces (Appendix Q.3) correspond-
ing to subsystems—the actually observed entities, and unions of statespaces (Ap-
pendix Q.4)—due to not knowing the exact contents of the Universe. Not knowing
one’s configuration beyond a certain level of precision is modelled with coarse-
graining (Appendix Q.6). Let us end by noting that remembering is far from a per-
fect process, and different people usually have experienced at least partially different
past occurrences.

26.6 iii. Information, Correlation and Patterns in q

Records contain information, correlations and patterns more generally (see Appen-
dices Q and R) for technical details of these structures). More specifically, Records
Theory requires useful information, and meaningful correlations and patterns. The
way to view this so as to make progress is systematic means of assessing whether a
pattern is random or due to an underlying cause.
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Moreover, a caution against fully Timeless Approaches might be found in the
following adage:

correlation does not imply causation. (26.2)

This may continue to apply when correlation and causation pick up specific math-
ematical and physical meanings. [In particular, causation picks up physical theory
dependent temporal content, whereas it is specifically timeless correlations that are
under investigation.] This may be a reason for the more minimalist programs docu-
mented in this book to not suffice by themselves.

26.7 iv. Formalization by Stochastic Mathematics on q

The key to progressing with Timeless Records Approaches is to consider significant
patterns in the sense of statistically significant, which is to be underlied by use of
Stochastic Mathematics. Let the configuration space q now be cast in the role of
probability space upon which probability distributions are defined (Appendix P.1).
Sharp notions of information, correlation and pattern assessment ensue. Statistical
Mechanics is moreover one possible source of notions of information (via the ‘ne-
gentropy is information’ inter-relation of Appendix Q.8).

Many of Appendix R’s structures applied to RPMs come from Kendall’s work
on the statistical theory of shape. I.e. distances between shapes based on Shape
Geometry, ε-collinearity, and notions of information and correlation for shapes. It
is the last of these that allows for diagnostics for whether a given configuration is a
record. The Author’s point of view is that not all configurations are records. Only
those with patterns in significant excess of what is to be expected from randomness
are held to be records.

Let us furthermore seek relational versions of the above structures. Residing
within timeless instants, ‘relational’ boils down to Configurational Relationalism, of
which there are two types of implementation as per Chap. 16: direct and indirect.

Example 1) Consider constellations of points in 1-d , modelling e.g. RPM config-
urations [33]. The inhomogeneous notion of clumping is already meaningful in
1-d ; this is a ratios of relative separations notion. E.g. Roach [738] gives a dis-
crete study of this, which can be interpreted as a coarse-graining of particle model
configurations.

Example 2) Consider constellations of points in 2-d , modelling e.g. RPM config-
urations [33]. These have additional shape information in the form of relative an-
gles. This can be handled in particular by Kendall’s approach [536, 537, 539]. In
particular, this probes for collinearity in threes, triples of points being the mini-
mal relational unit for the similarity geometry in question. By sampling in threes,
the relational triangle itself corresponds to sample size 1 for which no statistical
analysis is possible. On the other hand, the quadrilateral allows for sampling up
to 4 triangles. Kendall’s approach furthermore involves placing a probability mea-
sure on triangleland’s configuration space, which is geometrically (a portion of)
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Fig. 26.1 a) Clumping in 1-d and b) a discrete model of it as per [738]. c) Shape data in 2-d . This
could consist of e.g. standing stones or of the particle positions in an RPM. d) Can the number of
almost-collinear triangles involved be accounted for by coincidence or is it a statistically significant
pattern? This is a schematic version of the standing stones problem [539, 792], whether or not
within a convex (Appendix H.2) polygon edge

the shape sphere (Fig. G.11). This is a subcase of Geometrical Probability Theory
(Appendix R) and, more concretely, a Shape Statistics (see Appendix R). It tests an
ε-collinearity (Fig. Q.2) ‘tolerance parameter’ quantifying the extent of deviation
from collinearity that passes the test.

This is an example of using a subconfiguration space to analyze N -body config-
urations for N rather larger than 3. For use in Records Theory, note that this has
the spherical metric on it as a notion of distance. One can then define probability
distributions thereupon, and consequently such as co-variance and notions of infor-
mation.

Kendall’s original modelling situation for the above was the standing stones
problem [536, 538, 539] (cf. Fig. 26.1.d). One of Kendall and collaborators’ ap-
proaches to this built in the assumption that the standing stones lie within a com-
pact convex polygon: ‘the Cornish coastline’ for the Land’s End standing stones
problem itself (Fig. 26.1.d). This was done so as to cope with uniform independent
identically-distributed probability distributions (much as quantum physicists often
perform ‘normalization by boxing’). However, details of the polygon enter the test’s
outcome, and in an RPM setting this would be viewed as an absolute imprint. How-
ever, if one uses probability distributions that tail off, it ceases to be necessary to
involve a boundary, so these method carries over to the RPM setting.

Example 3) Scaled triangles form the configuration space R
3. ‖Dra‖2 is a Eu-

clidean notion of distance for this, after which standard Probability and Statistics
apply, including standard notions of co-variance and of information.

As regards specific Mechanics problems to be settled by Shape Statistics, clump-
ing questions include whether a given Celestial Mechanics configuration exhibits
a shape statistically significant number of tight binaries? Does it contains a shape
statistically significant globular cluster? Do two images of globular clusters have
sufficiently similar clustering detail to be of the same system or to be members of
similarly formed populations? A relative angles question is whether a configuration
exhibits a shape statistically significant number of eclipses.

Research Project 15)† Work out the smallest relationally nontrivial conformal
shape space’s topology and geometry, and the form taken by statistics thereupon
[36].
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Research Project 16)† Ditto for the affine case [36], which is likely to be interesting
also from the point of view of Image Analysis [788].

Research Project 17)† Ditto for the projective case [36], with side benefits in Image
Analysis [788] and in quantitative assessment of perspective drawings [815].
[Consult [698] for an outline of the forms taken by a wider range of affine and
projective shape spaces.]

Example 4) The Shape Geometry of Mini and ani are known. As for Kendall’s
shape spaces, these are finite-dimensional. [For all these do not have locality in
space, they are a useful precursor to the situation with perturbatively small inho-
mogeneities in vacuo.]

The Euclidean ‖dβ‖2 := dβ2− + dβ2+ is a useful notion of distance on ani for
Bianchi class A. Here one now takes the anisotropy parameters to be random vari-
ables. This involves standard Probability and Statistics, so standard co-variance
Cov(β,β ′) and the n-point function in ani make sense, and standard notions of
information also apply.

On the other hand, Probability Theory on Minkowski spacetime M
n has been

covered in e.g. [315] A remaining caveat preventing just uplifting some techniques
to configuration spaces which carry the Minkowski metric η is that the latter come
paired with specific potential functions. This is in contrast to traditional roles for
Probability and Statistics on R

n and M
n involving just Metric Geometry.

Research Project 18)†† To what extent can statistical analysis of this simple notion
of shape be extended to statistical analysis of the conformal-geometric notion of
shape in GR? I.e. do any of the above-mentioned ideas carry over from shape
space (and its cone) to Cs(�) and {Cs + V}(�)? What about the superspace(�)
version?

26.8 Supplanting Questions of Becoming by a Semblance
of Dynamics

For the previous four sections’ ‘pre-records’ structures to amount to a Timeless
Records Theory, one has to be able to extract a semblance of dynamics or history
from these timeless correlations between same-instant subconfiguration records.
Dynamics or history are now to be apparent notions to be constructed from the
instant [340, 411, 413, 418] by somehow implementing the following postulate. In
the absence of change at the primary level, one can only resort to timeless correla-
tions so as to attempt to obtain a semblance of dynamics, change, path or history.
Various different approaches to this have been proposed.

Page’s Records Approach In this approach [691–693], there is one present in-
stant containing both the subsystem of primary interest and memories or other
recorded evidence of ‘past instants’. This is as opposed to the conventional se-
quence of instants. For example, one might view such a present instant configuration



344 26 Fully Timeless Approaches

as researchers with data sets with memories of how they set up the corresponding
experiment. Further specifics of this approach have to await quantum treatment in
Chap. 51.

Limitation 1) It can readily be anticipated that Page’s Records Approach is highly
speculative and very hard to do calculations with.

Limitation 2) While Page’s Records Approach is very general in scope, it is not all-
encompassing insofar as it cannot explain the appearance of the Arrow of Time.
This is because the single instant employed corresponds to a sufficiently late stage
of the investigation, which amounts to an inbuilt direction of (the ensuing emer-
gence of) time. Experimental set-up also gives a distinguished role to the first rel-
evant instant, in terms of the experiment starting with the apparatus in a controlled
initial state.

Barbour’s ‘Time Capsules’ Approach Barbour terms his notion of record ‘time
capsules’ [99, 101]. More concretely, he considers these to be those configurations
from which a semblance of dynamics can be extracted. He also considers records to
be whole-universe configurations (unlike any other programs in this Chapter, which
consider records to be localized subconfigurations). He furthermore conjectured a
selection principle for ‘time capsules’; again, this requires Quantum Theory to fully
formulate, though some parts of it can already be discussed classically.

Bubble Chamber Arguments How α-particle tracks form in a bubble chamber
can be modelled using just the time-independent Schrödinger equation is an un-
derlying inspiration for various Timeless Approaches. Bell [126] subsequently sug-
gested that perhaps Quantum Cosmology could be studied analogously. Barbour
and Halliwell [413, 414] each subsequently developed their own version of such a
scheme, though presenting the latter is postponed until Histories Theory has been
discussed. It is useful to point out at this stage that in Quantum Cosmology, the
tracks should be in configuration space q rather than within a localized region of
space (a ‘bubble chamber’). The idea of modelling Cosmology as tracks in q itself
goes back to Misner [659], which further extends to viewing these tracks as ‘in’ and
‘out’ states of a scattering problem in q (cf. Fig. 37.1.h).

Barbour’s Conjecture 1) There are some distinctive places in the relational q (pos-
sibly linked to its asymmetries or to the most uniform state).

Barbour’s Conjecture 2) The quantum wavefunction of the Universe peaks around
Conjecture 1)’s places—described as ‘mist concentrating’ [101]—by which these
are probable configurations.

Barbour’s Conjecture 3) These places in q contain ‘time capsules’, from which a
semblance of dynamics can be extracted.

Problem 1) When he made this conjecture [98, 101], he also suggests the wedge
shape of his representation of triangleland could play a role. This feature is how-
ever merely representation-dependent [37]. So it is rather likely that his further
conjectures were made without a concrete and correct mechanism in mind. Con-
jecture 1) can however be reinterpreted in terms of irreducible features such as a
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particularly uniform configuration, the maximal collision itself, or, more generally,
the presence of strata. The last two of these features are laid out in Appendix G.

Problem 2) Conjecture 2) is open to assessment due to RPM quantum wavefunc-
tions having been computed, from which quantum probability density functions
can readily be extracted. While we postpone this to Part III, we comment here that
using classical geometrical probability distributions and Shape Statistics to ana-
lyze the classical dynamics of RPMs is a useful classical precursor. For instance,
tight binaries are a likely outcome from the Classical Dynamics of 3 bodies, which
could then be paralleled by atom-like constructs at the quantum level. Kendall’s
work involving collinearity in threes furthermore features records peaking about
the RP

k of collinear configurations of the full shape space. However, considering
gross over-representation of any other angle, one concludes that classical records
need not be tied to maximally physically significant zones of q. Another limitation
on the original form of Conjecture 2) which can even more readily be envisaged at
the classical level is that q geometry is but one of the major players in determining
confinement and concentration, the other being the potential function. In particular,
potentials can confine systems to regions of q which are away from the geomet-
rically distinguished features of q. Of course, Conjecture 2) can be modified to
encompass potential effects in tandem with q geometry.

Another issue is which concrete features distinguish time capsules from just any
instants. The notions of information content and pattern laid out in this Chapter are
likely relevant here. Passing to a localized subconfiguration conception may help as
well.

Suppose we view records as subconfigurations and subsequently approach Bar-
bour’s conjecture in this setting. The following further issue then arises. In the study
of branching processes, one learns that ‘how probable a subconfiguration is’ can
depend strongly on the precise extent of its contents. As an example (closely par-
alleling Reichenbach [731]), suppose we see two patches of sand exhibiting hoof-
shaped cavities. Here there are past interactions of these two patches of sand with
a third presently unseen subsystem—a horse that has subsequently become quasi-
isolated from the two patches. By these, there is a clear capacity of rendering the
individually improbable (low entropy and so high information) configurations of
each patch of sand collectively probable (high entropy, low information) for the
many sand patches–horse subsystem. This still does not explain why useful records
appear to be common in Nature: a separate argument would be required to account
for why branching processes are common. Whitrow [906] argued such approaches
to be problematic due to their dependence on the entropy of a ‘main system’. More-
over, one runs out of being able to resort to such an explanation as one’s increases
in subsystem size tend to occupying the whole Universe.

The Author’s Records Based on Shape Statistics This approach is based, firstly,
on the pre-records structures of the previous four sections. Secondly, following
statistician Simon Broadbent [172], let us next consider making use of a range of
different values for Shape Statistics’ tolerance parameter ε. E.g. in the case of the
standing stones problem, significant results for ε ≤ 10 minutes of arc would suggest
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that the stones were laid out skillfully by the epoch’s standards for e.g. astronomical
or religious reasons. On the other hand, ε ≤ 1 degree would suggest that they just
the markers of paths or fences between plots of land. So values of tolerance crite-
ria required to detect significant patterns can, at least qualitatively, contribute to a
semblance of history or of dynamics [33]. Thereby, Shape Statistics is not only a
mathematically advanced formulation of pre-records but also a candidate Records
Theory in its own right.

One may view this approach as replacing the conjecture that some global
configurations have special ‘time capsule’ properties by a concrete mathematical
approach—Shape Statistics—of judging which local subconfigurations have signif-
icant pattern and semblance of dynamics properties. In contrast to Barbour’s and
Page’s Records Approach, this approach is already viable at the classical level rather
than depending on evoking specifically quantum-mechanical machinery. Finally, it
is free from the bias of Conjectures 1) and 2)’s association of records with geomet-
rically distinct regions of q. q’s geometry clearly still enters this approach though
underlying the theory of Geometrical Probability and Shape Statistics thereupon,
just not in a manner which necessarily privileges geometrically distinguished re-
gions. This is because placing probability distributions on a geometrical space has
a life of its own, beyond the study of that geometry.

Hartle’s Information Gathering and Utilizing Systems [432] This is a model
arena for a recording device or a simple robotic observer (taken to mean ‘non-
sentient’). As well as being interesting in its own right, this may eventually con-
fer computational capacity to Page’s Records Approach. Since this approach can
also be taken to be rooted in q geometry, considerations along the lines of Shape
Geometry and Shape Statistics also apply here.

26.9 Cambium Records

This Chapter’s modelling of records can also be conducted within less sparse world-
views. Once change is primary, abstracting time from it becomes a viable competitor
to the semblance of dynamics from Fully Timeless Approaches. One can also as-
sume paths or histories (Chaps. 28 and 29) and proceed to study Timeless Records
Theory therein without needing to extract a semblance of history.

These less sparse worldviews come with their own versions of the sub- and super-
statespace schemes. See Appendix Q.6 for grainings of T(q) and T∗(q), and for
probability schemes in phase space are more familiar from Statistical Mechanics.

Let us end by arguing against what is on some occasions presented as another
motivation for Timeless Approaches, namely that ‘now is what we experience’. This
is however a notion of psychological experience which really involves the specious
present notion (Fig. 4.4), which in fact does have some extent in time. In this man-
ner, approaches which make reference to consciousness are not accurately imple-
mented by timeless instants.



Chapter 27
Spacetime Relationalism

Let us now start afresh with spacetime 〈m,g〉 assumed as the primary ontology.
We consider this in particular for theories within GR’s Einsteinian Paradigm, and
in contrast to Part II’s approaches hitherto which are based on space as primary
ontology.

27.1 Implementation of Spacetime Relationalism

At the classical level, Spacetime Relationalism is a resolved problem. In particular
for GR, the group of physically meaningless transformations acting on spacetime is
gS = Diff (m). Diff (m)-invariance is a central and physically sensible property of
GR, and this binds together much of the Problem of Time [483]. For GR with fun-
damental matter sources, 〈m,g〉 is augmented to 〈m,g,ψ〉 for fundamental matter
fields ψ and gS is augmented to gint × Diff (m)—of the form (18.1)—if the ψ pos-
sess an internal gauge group gint. This is moreover an extension of Spacetime Re-
lationalism to ‘Spacetime-and-Internal Relationalism’. g passes Sect. 10.1’s STR-i)
by being a solution of the Einstein field equations, which in the latter case are in
turn influenced by the matter content of the Universe ψ’s energy–momentum–stress
tensor T.

As regards model arenas, RPMs space-time does not have additional spacetime
structure or any counterpart of Diff (m). Minisuperspace considered in terms of
its spaces that are privileged by homogeneity also presents a drastic simplification.
These limitations motivate adding SIC (Chap. 30) to the repertoire of model arenas
that this book draws its detailed examples from.

On the other hand, SR fails to obey STR-i) due to ημν being a fixed background
metric; perturbative String Theory fails likewise. It is M-Theory—or at least some
limiting classical action for this—which would be expected to have further Back-
ground Independence aspects.
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27.2 Diff(m)’s Brackets and Algebraic Structure

GR involving gS = Diff (m) is contingent on this complying with Generator Clo-
sure under a suitable bracket. Moreover, unlike with Chap.’s 18 Diff (�) auxiliaries
Mi , these Dμ are not associated with dynamical constraints, nor is the suitable
bracket in question a Poisson bracket.

|[(Dμ |Xμ), (Dν |Y ν)]| = (Dγ | [X,Y ]γ ), (27.1)

so this matter is resolved in the form of an (infinite-d) Lie algebra in parallel to that
of the Diff (�). This is also to be contrast with the much larger and harder structural
form taken by the Dirac algebroid.

This case requires instead the Generator Closure notion. I.e. a consistency check
on whether a given set of generators close up without having to introduce fur-
ther generators. There is a lattice of cases for which closure is attained paralleling
Fig. 24.6. This version of closure that the spacetime setting requires is simpler than
the Canonical Approach’s Dirac Algorithm. This is due to the lack of appending, so
that no specifier equation based complications can materialize.

27.3 The Space of Spacetimes and of GR Solutions

The space of pseudo-Riemannian metrics (10 independent components in 4-d) on a
fixed topological manifold m was termed PRiem(m) by Isham [477]. The space
of pseudo-Riemannian geometries (6 independent component entities) is

superspacetime(m) := PRiem(m)/Diff (m). (27.2)

This nomenclature parallels that of Wheeler’s Superspace; superspacetime(m)was
furthermore considered by Stern (reported in [301]) and by Isham [477].

One also requires the solution space of those pseudo-Riemannian metrics
that additionally solve the Einstein field equations of GR, which we denote by
GR-sol(m). Let us take this to be the version without Diff (m) quotiented out,
while using Truespacetime(m) to denote the more interesting but harder to handle
version for which Diff (m) is also quotiented out. See Fig. 27.1 for comparison with
the 3 + 1 split version’s main sequence of spaces.

The space of conformal spacetime metrics (9 independent component entities) is

CpRiem(m) := PRiem(m)/Conf (m); (27.3)

this attains further significance as the space of causal structures. Finally, the space
of conformal spacetime geometries (5 independent component entities) is

Css(m) := CpRiem(m)/Diff (m) = PRiem(m)/Conf (m)� Diff (m),
(27.4)

which we term Conformal Superspacetime in analogy with Conformal Superspace.
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Fig. 27.1 a) Space–time split GR’s main sequence of spaces, in contrast to b) this Sec’s unsplit
spacetime’s diamond of spaces

27.4 The Path (Via) Alternative

Let us next contemplate rung III) on Part II’s opening ladder of ontological structure.
Paths Postulate (alias Non Tempus sed Via) Perhaps it is paths in q that are pri-

mary. In the finite case, denote these by γ := QA(λ); these are taken to be labelled
over the entirety of an interval, λ ∈ I (so they are ‘thick’ rather than ‘thin’). The
field-theoretic counterpart is straightforward enough, with the emergent-time ver-
sion now carrying a local or multi-fingered label.

Also use path(q) to denote the space of paths on q, e.g. path(Riem(�)) for
redundantly formulated GR.

The above are hitherto assumed to be labelled by a continuum notion of λ; one
can however consider discrete time-step versions of paths as well. Note moreover
that the coarse- and fine-graining notions introduced in Chap. 26 additionally apply
to discrete parametrizations of paths that capture differing amounts of detail about
the path.

A major inter-relation with spacetime is that ‘paths in Riem’ can addition-
ally be interpreted as spacetimes. In fact this requires paths in T(Riem(�)) or
T∗(Riem(�)), so as to know how the 3-metrics on each spatial slice fit together:
i.e. including extrinsic curvature or GR momentum information. This is developed
further in Chap. 31.

27.5 Spacetime Observables

Having considered m, we next Take Function Spaces Thereover. While there is
conventionally no complete spacetime analogue of Chap. 25’s beables, the notion
of Diff (m)-invariant quantities given by objects SQ such that

|[(Dμ | Yμ), (SQ | ZQ)]| = 0 (27.5)
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indeed remains useful and physically meaningful.1 Let us refer to these SF as space-
time observables.

Example 1) For φ a scalar field on m the value of the field coincident with some
particular particle—or some collection of other fields taking on a particular set
of values—are Diff (m)-invariant statements and so is an observable in the above
sense. This covers both matter time and internal time based on the gravitational
field. Moreover [483], this is a statement in excess of time being a local coordinate
on a spacetime manifold. Consider the practical case of time read off by spatially-
localized physical clock: the proper time along its worldline. This is Diff (m)-
invariant if the group in question acts concurrently on the points in m—and con-
sequently on the clock’s worldline—and on the spacetime metric g. In this man-
ner, if the initial and final points of the worldline are labelled using the matter or
gravitational internal time coordinate in question, the proper time along the inter-
connecting geodesic would attain an intrinsic character.

Example 2) Spacetime integrals are a particular subcase. For instance,

F[g] :=
∫

m
d4X
√|g| Rμνρσ ( �X; g] Rμνρσ ( �X; g]. (27.6)

Such observables are furthermore intrinsically non-local.
Example 3) The Weyl scalars are spacetime scalars built out of the spacetime Weyl

tensor by various products and contractions. Their specific forms were worked out
by physicists Robert Debever and Jules Géheniau [338]. The Weyl scalars are fur-
thermore foundational in the Newman–Penrose formulation of GR [706] (named in
part after relativist Ted Newman). Finally, the Weyl scalars are of potential prac-
tical importance through being observable in principle in a local and convenient
manner, such as by use of mathematical physicist Peter Szekeres’ gravitational
compass [825].

27.6 Use Diff(m) or Some Larger Group?

Diff (m) = {εμ( �X)} (27.7)

corresponds to coordinate alias point transformations2 �X → �̃X = �f ( �X). Berg-
mann’s path-based notion of gauge [133] is appropriate in this context. More-

1One might moreover consider a notion of weak equality instead, now meaning up to terms con-
taining the generators. Also, one is only to select subsets of generators which close algebraically.
The Jacobi identity applying to all Lie brackets, these SQ are also guaranteed to close as a Lie
algebra.
2Infinitesimal transformations �X → �̃X can be written as �X − �̃X = �ε. Viewed as solutions in terms
of Hamiltonian variables, the right hand side functions here are so-called descriptors: a fairly
standard Gauge Theoretic notion, see e.g. [13, 134]). For GR, descriptors are of the particular form

�ν( �X; �( �X)]. Here � denotes the set of dynamical fields ψ and h; note that this specifically excludes
the lapse α and shift βi . Dittrich’s Vμ in (25.30) and Chap. 27.5’s Weyl scalars can be viewed as
particular cases of descriptors.
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over, GR is invariant under a larger group [134]: the diffeomorphism-induced gauge
group3

Digg(m) := {εμ( �X; θ( �X)]}. (27.8)

Here θ( �X) denote the fields in one’s theory: the metric g( �X) alongside the matter
fields ψ( �X)].

27.7 Relationalism as Alternative Route to Physical Theories

N.B. that this book’s main Relational Approach does not in general concur that
constructing Lagrangians to obey a pre-determined list of symmetries is the only
approach to Physics. We shall see in Chap. 38 that Wheeler wrote in favour of a
wider perspective. This point of view is furthermore entailed by two of the answers
to his question (9.1), as laid out in Chaps. 32 and 33. This book emphasizes, rather,
looking for 〈q,g,s〉 triples in space–time split approaches, or for 〈m,gS,s〉
triples in spacetime approaches.

If such a triple fails, one is free to reconsider any part of the triple. In particular
this means that we do not necessarily choose the largest mathematically possible
group that a m (or q) can take as being the physical one.4 Nor do we necessarily
choose to include the totality of terms ins that are compatible with a given gS act-
ing on a fixedm (or a given g acting on a fixed q). Both the possibility of including
less terms are open to us, as well as that of considering more (by reconsidering one
or both of the pair).5

All in all, consistency determines which theories are allowed, whether in ana-
lyzing the closure of the spacetime brackets or by the a Dirac-type Algorithm in
the Canonical Approach. The second of these is demonstrated to be a comparably
restrictive filter to standard procedures in Chap. 33. Some major theories—in par-
ticular standard Gauge Theory and GR minimally-coupled to fundamental matter

3See [721] for the sense in which this is ‘induced’. Digg(m) might also be denoted BK(m) after
Bergmann and Komar [134], though they themselves referred to it as the ‘Q-group’. Physicists
Josep Maria Pons, Donald Salisbury and Kurt Sundermeyer prefer to use the Bergmann–Komar
name for the subsequent projected version of this group that introduced in Chap. 32.4. Incidentally,
the existence of this larger invariance group does not by itself dictate that it is the gauge group.
[This is one example of Sect. 27.7’s matter, as well as the more specific reason to use the projected
version.]
4For suppose that a model, with maximal symmetry group gmax, fails to capture some physically
meaningful features which themselves do not respect gmax. Then there is a smaller choice group,
H, which happens to be more physical. Moreover, one way of finding it and the missing physically
meaningful features is to consider not just gmax for the original model, but rather it and all its
subgroups. This is out of the possibility that one or more of these are more physically valuable
than gmax itself.
5Moreover, extending q or its spacetime equivalent may further enlarge the largest symmetry
group H, break H or both at once. I.e. extend the subgroup that survives a breaking in a different
way from the original H.
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fields—can indeed be arrived at by either approach. Furthermore, Chap. 33 gives
examples of how such schemes can produce more than just the ‘usual’ theories.
Thus Relationalism offers a distinct means of seeking and filtering out theories.

It is finally worth mentioning here that neither of the conventional approach’s
premises of Lorentz nor General Covariance are in fact guarantors of consistency,
by counter-examples 2) and 3) of Appendix J.15.

27.8 Contrast Between Spacetime and Temporal and
Configurational Relationalisms

The well-known Einstein–Hilbert action of the spacetime formulation of GR is built
from a spacetime scalar. Thus in the spacetime formulation, no manifest corrections
are required at the level of the action. This is to be compared with the d∂g that
entered Chap. 18’s actions, since their split-off kinetic terms do not constitute good
g objects without such corrections.

On the other hand, corrected-derivative entities analogous to Best Matching do
still exist for spacetime. These are now interpreted in terms of an auxiliary, rather
than physically-realized, higher-dimensional-manifold. E.g. Generally-Relativistic
perturbation theory can be cast as an unphysical but technically-useful stack of
spacetime 4-geometries that are interrelated through Lie derivative terms [814]:
another example of point identification map. On this occasion, the Lie derivative
is with respect to a spacetime 4-vector, rather than the Best Matching case’s spa-
tial 3-vector. This particular example can be considered as a local region within
PRiem(m), centred about the (usually highly symmetrical) unperturbed solution.

Thus all three Relationalisms—Temporal, Configurational and Spacetime—are
implemented by Lie derivatives [part ii) of each, whereas part i) of each is an ab-
sence of background structures]. However, the manner in which each type of Rela-
tionalism is subsequently resolved differs amongst the three. While a ‘principle of
minimum incongruence’ can be applied to spacetimes, there is not an underlying ac-
tion object unlike for Configurational Relationalism. As regards Chap. 3’s ‘acts but
cannot be acted upon’ criterion, that the background enters dynamical field equa-
tions but the dynamics does not enter background structures is of some relevance,
but suffers from issues of formulation dependence. See the discussion of the ‘1-orbit
criterion’ (group orbit) in [362] for a more advanced point of relevance at this stage.

Note moreover the absence of an underlying Machian principle as compared to
each of Temporal and Spatial Relationalism. This is not just because the advent
of spacetime postceded Mach’s work, but also because of space and time’s concep-
tual heterogeneity. A partial paraphrasing of Mach’s Space Principle—a ‘Mach-type
Spacetime Principle’ —is possible, along the following lines. ‘No one is compe-
tent to predicate diffeomorphism dependent things about spacetime. These are pure
things of thought, pure mental constructs that cannot be produced in experience.
All our principles of GR spacetime are, as we have shown in detail, experimental
knowledge concerning diffeomorphism-invariant quantities’. One can also extend
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to (spacetime) × (internal space of fields on spacetime) in parallel to Sect. 18.2.
However, the above has a lack of temporal inputs despite Broad’s point on time and
space’s co-geometrization as spacetime not overriding their conceptual distinction.
Whoever takes sufficient issue along these lines is of course free to continue using
separate Mach Time and Space Principles in a geometrodynamical setting.

More usually, one makes a choice to work with one of split or unsplit space-
time. However, detailed study of QFT often makes joint use of both Canonical and
Path-Integral methods: deriving Feynman rules canonically and then manipulating
complex calculations using path-integral methods. This suggests that Canonical ver-
sus Path Approaches is not a strict alternative, with combined Canonical-and-Path
Approaches presenting a third alternative. Thereby, one might be cautious about as-
cribing primary ontology exclusively to only one of configurations, configurations
and changes, paths, or the histories of the next Chapter. A case in which configura-
tions and one of paths or histories have coprimality is also plausible.

Furthermore, a few approaches to Background Independence and Quantum Grav-
ity do combine spacetime and split spacetime concepts. Consequently, these mani-
fest all of Temporal, Spatial and Spacetime Relationalism at once, and require con-
sideration of all of Diff (�), Diff (m), Diff (m,Fol), or of Canonical-and-Histories-
Canonical formulations as per the next Chapter. Note additionally that the Bergmann
spacetime primality, path-gauge notion and consequent notion of observable form a
consistent combination.

With Canonical Supergravity—unlike that of GR—not admitting separation into
Configurational and Temporal Relationalism, perhaps Supergravity is indicatory of
spacetime primality. Moreover, it is usually in the spacetime setting in which Su-
persymmetry arises from seeking a viable violation of the direct product of internal
and spacetime symmetries (11.16). Again, the unsplit super-Diff (m)—e.g. from
gauging the Poincaré supergroup—is more straightforward to handle than its split
counterpart. We denote the additional generators here by S .

Finally, as regards Nododynamics, Samuel [762] pointed out that the canonical
version of this is only formulated as the pull-back of a spacetime connection in the
original complex case with β = ±i. Suppose that formulation in terms of connec-
tions is taken to be central to such approaches. Additionally suppose that spacetime
structure is indispensable, whether as part of Background Independence in GR-type
theories or due to evoking a worldview with spacetime primality or canonical-and-
spacetime coprimality. Then if these aspects are to be combined in a simple and
natural way by use of connections which are geometrically spacetime objects, the
original complex case would be chosen over the real variables case.



Chapter 28
Classical Histories Theory

28.1 g-Free Case

We finally turn to the last rung IV) of Part II)’s ladder of ontological structure. Clas-
sical histories Q(λ)—where for now λ is a label time—are in part paths as in the
previous Section. Evoking these is clearly a Historia Ante Quantum approach. Let
us use (Hist,Hist-Point) to denote the space of histories and the corresponding mor-
phisms. Isham and physicist Noah Linden [504] pursue this by considering histories
to have a similar status to configurations. Further canonical structure is therefore
to be ascribed to histories. In other words, Histories Theory is taken to possess the
following structures.

1) Conjugate histories momenta P (λ).
2) Histories brackets

|[F(λ′),G(λ′ ′)]|H :=
∑

A

{
∂F (λ′)
∂QA(λ)

∂G(λ′ ′)
∂PA(λ)

− ∂F (λ)

∂PA(λ)

∂G(λ′ ′)
∂QA(λ)

}
. (28.1)

The fundamental histories bracket is, in the continuum label case,

{QA(λ),PA′(λ′)}H = δA
A′ δ(λ,λ′). (28.2)

Note how even a finite particle model gives a field-theoretic bracket here. The
discrete-labelled version remains finite in this sense (this has λ, λ′ −→ λ1, λ2

and Dirac δ −→ Kronecker δ).
3) 〈Q(λ),P (λ), |[ , ]|H 〉 =: Hist-Phase: histories phase space. Hist-Can are the

corresponding histories canonical transformations.

It is due to the above development that the Author [26] separates out Non Tem-
pus sed Historia approaches from Isham and Kuchař’s version of Tempus Nihil Est.
This further structure is also in excess to that possessed by a theory based on clas-
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sical paths.1 Isham and Linden’s particular approach can now on clear grounds be
dubbed a Histories Brackets Approach. It involves, moreover, continuous rather than
discrete time-steps. Finally, now that we have made the above distinction between
histories and paths, we can state the following postulate.

Histories Postulate (alias Non Tempus sed Historia): one’s primary entities are
to be histories (rather than configurations or paths).

Such histories primality in the sense used in this book is a perspective first
brought to the GR context by the Histories Theory of Gell–Mann and Hartle
[340, 428]. This is moreover a Historia Post Quantum approach, so discussion of
it is deferred to Part III. Isham and Linden’s own histories brackets work was fur-
ther developed by them and their collaborators: physicists Ntina Savvidou, Charis
Anastopoulos and Ioannis Kouletsis [11, 503, 504, 566, 767–771].

A case can be made that the above postulate, like spacetime primality, goes
against the tradition of basing Physics on Dynamics. On this occasion, however,
more similarities with Dynamics are preserved, as is clear from the paths momenta,
histories brackets and paths phase space’ names. One issue is whether paths or his-
tories have as much primary operational meaningfulness as configurations do. I.e.
whether they are entities that one can directly measure. Moreover, within Histories
Approaches, measurements at one instant of the history constitute records, and the
ontology allows for measurements at distinct instants of the history.

Marolf [639] proposed a distinct way of obtaining histories brackets. Here the
Hamiltonian is viewed as an extra structure by which the Poisson bracket is extended
from being a Lie bracket on phase space to a Lie bracket on the phase space of paths.
This is in contrast with the more usual approach, in which one puts the equal-time
formalism aside at this stage and introduces a new phase space Hist-Phase in which
the Poisson bracket is defined ab initio over the space of histories Hist.

One also has a notion of histories constraints, e.g.

CλC =
∫

dλ CC(λ) (28.3)

in the averaged sense. For now, an example of this in the g-free case is

Quadλ =
∫

dλQuad(λ). (28.4)

Sub-histories can be pieces of a history or the history traced in a subconfiguration
space. Notions of coarse- and fine-graining of histories are furthermore clearly sup-
ported on this set of structures. Let us use Cγ̄ to denote coarse-graining of paths
where γ̄ is a path consisting of a subsequence of the path γ’s instants. So path
formulations possess, in addition to the coarse-graining criteria in Appendix Q.3,
coarse-graining by probing at less times.

1There are further quantum-level structures that distinguish a path from a history in the sense of
Consistent Histories Theory (Chap. 53).
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Histories have a list of desirable properties, much as time has (as laid out in
Part I). For instance, histories have some form of time ordering and causality notions
as well, albeit conceptualized with the notion of history replaces the notion of time.

Examples covered by the current section include Temporally-Relational but
Spatially-Absolute Mechanics, 1-d scaled RPM, and the vacuum anisotropic and
minimally-coupled scalar field isotropic Minisuperspaces.

Finally N.B. that histories have matching structural levels to Appendix Q’s; in
fact many of the latter are better known in the Theoretical Physics literature.

28.2 g-Nontrivial Classical Histories

Presenting this in the emergent-time case, the preceding Sec’s histories constraint
Quadλ is now accompanied by

Flinλ :=
∫

dλFlin = 0. (28.5)

Research Project 19) Formulate the g-nontrivial classical Histories Theory ver-
sions of the layers of structure of physical theory whose configurational counter-
parts are given in Appendix Q.

Examples covered by the current section include triangleland RPM [25] and full GR
[428]. For the r-formulation of scaled triangleland, the histories can be taken to be
sequences of Dragt-type coordinates Draλ.

28.3 Classical Histories Constraint Closure and Beables

One subsequently encounters the obvious histories phase space generalizations of
the notions of first- and second-class constraints, Dirac brackets, extended phase
space, effective constraints and constraint algebraic structure. In cases in which
second-class histories constraints are initially present, the histories version of the
Dirac bracket or reformulation in terms of histories effective constraints are re-
quired. The algebraic structure obtained by the closure of the constraints is dis-
tinct from that involved in spacetime or in split spacetime. The seven strategies in
Fig. 24.3 all have histories theoretic counterparts, albeit these largely remain to be
studied. Finally, all constraint and observables subalgebraic structures in Fig. 24.6

pass over to histories versions L
H
c and L

H
b in conjunction with histories brackets

denoted with a H suffix: |[ , ]|H These are named by adjoining the prefix ‘histories’,
as in ‘histories Dirac observables’ etc.



Chapter 29
Classical Machian Combined Approach

We next combine the classical level’s Machian Scheme (Chaps. 15 and 23), Timeless
Records (Chap. 26), and Isham–Linden type Histories Theory (Chap. 28). Pairwise
one has the following.

1) Records within the classical Machian Emergent Time Approach (Sect. 26.9).
2) Histories within the Classical Machian Emergent Time Approach (Sect. 29.1).
3) Records within the classical Isham–Linden Histories Theory (Sect. 29.2).

A triple combination was furthermore given by Halliwell [413] for mechanical and
Minisuperspace models; the Author extended this to g-nontrivial models and gave it
a Machian interpretation [25, 37]. Most of the value of the Combined Approach is at
the semiclassical quantum level (Chap. 54). For now, classical motivations include
the following.

Motivation 1) This avoids purely Timeless Records Theories’ need for a semblance
of dynamics.

Motivation 2) A Records Theory sits within each Histories Theory.
Motivation 3) We shall see in Sect. 29.3 that Histories Theory helps with construc-

tion of beables.

29.1 Classical Machian Histories

Chapter 28 can be re-run with tem in place of λ. Classically, one can use either label
or emergent versions without any supporting relation linking the two. However—as
we shall see in Chap. 54—semiclassically, the label version is to provide the WKB
regime that produces the emergent time with respect to which the histories are to run.

There are three different accuracies of tem to be considered as inputs at the clas-
sical level; Sect. 54.2 provides four more at the quantum level.

Type 1) tem: the final output of the Classical Machian Emergent Time Approach.
Type 2) tem

0 : its un-Machian zeroth approximand.
Type 3) tem

1 : its Machian first approximand.

© Springer International Publishing AG 2017
E. Anderson, The Problem of Time, Fundamental Theories of Physics 190,
DOI 10.1007/978-3-319-58848-3_29

359

http://dx.doi.org/10.1007/978-3-319-58848-3_29


360 29 Classical Machian Combined Approach

Example 1) A Machian version of [11]’s Histories Theory for Minisuperspace was
outlined in [31], the most salient difference being that emergent Machian time
features in place of λ.

Example 2) For scaled triangleland in the r-formulation, we use that this shares the
same mathematics in conformally-transformed q as for 3-d mechanics in space,
which is covered in [510, 765]. Physically, the classical paths are now Dra�(tem),
with conjugate paths momenta PDra

� (tem) (these are g-free emergent times). The
nonzero part of the histories brackets algebra is

{
Dra�
(
tem
1

)
,PDra
$

(
tem
2

)} = δ�$δ
(
tem
1 − tem

2

)
, (29.1)

{
S�

(
tem
1

)
, S$

(
tem
2

)} = ε�$
"

S"

(
tem
1

)
δ
(
tem
1 − tem

2

)
, (29.2)

{
Dra�
(
tem
1

)
, S$

(
tem
2

)} = ε�$"Dra"
(
tem
1

)
δ
(
tem
1 − tem

2

)
, (29.3)

{
PDra
�

(
tem
1

)
, S$

(
tem
2

)} = ε�$
"PDra

"

(
tem
1

)
δ
(
tem
1 − tem

2

)
. (29.4)

The last two of these signify that the paths and their conjugate momenta are SO(3)
or SU(2) vectors.

The histories energy constraint is in this case

E t
sem :=

∫
dt semE(t sem) (29.5)

with E given by (9.8). Again, since there is only one histories constraint, the histories
constraint algebra is trivial (the histories-Dirac Algorithm produces no unexpected
secondary histories constraints).

On the other hand, in the unreduced formulation, the classical histories are
ρiμ(tem) with conjugate paths momenta piμ(tem) (for now for implicitly Rot(d)-
dependent emergent time). The nontrivial part of the histories brackets algebra is

{
ρiμ
(
tem
1

)
,pjν
(
tem
2

)} = δij δ
μ
ν δ
(
tem
1 − tem

2

)
. (29.6)

This now comes with the histories total zero angular momentum constraint

Lt
em :=
∫

dtemL
(
tem
)= 0 (29.7)

and the histories energy constraint (29.5). E t
em

is as per (29.5) with E given by the
triangleland case of (9.8).

The histories constraint algebra is now Abelian. Moreover,

{
E t

em(JBB)
,Lt

em(JBB)} = 0, (29.8)

by which Lt
em(JBB)

is a histories-conserved quantity.1

1We do not term this an ‘observable’ out of its having no operational meaning as an entity which
is fully determinable within a given (even specious) instant.
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While this example is useful as a formal illustration, there is an implicitness
problem with it since tem

Rot(2)-free is not known unless the Best Matching Problem
is solved. Moreover, if it is solved, the preceding Sec’s reduced approach is rather
more natural.

Example 3) In the case of full GR, this Sec’s double combination furthermore re-
quires labelling one’s histories with a many-fingered emergent time. [One can also
contemplate using tYork in GR—or its analogue tEuler in RPM—as a label within a
histories scheme.]

29.2 Records Within Classical Histories Theory

The need for a semblance of dynamics can readily dissolve if more structure is
assumed, for instance at least one of Histories Theory or the Classical, or Semiclas-
sical, Machian Emergent Time Approach are assumed. The three of these interpro-
tect particularly well; however since most of this interprotection is motivated at the
quantum level, we defer discussion of this to Chap. 54.

Gell-Mann–Hartle [340] and Halliwell [411, 413, 414, 421] found and studied
records contained within Histories Theory (see the next Chapter for details of this
Histories-and-Records Approach). At the classical level, on could consider records
within the classical part of Isham–Linden’s [504] reformulation of Histories Theory.
These use the Isham–Linden classical histories formulation to make sense of this at
the classical level.

Halliwell [413, 414] furthermore established some computationally valuable ex-
pressions for timeless probabilities. In particular, he considered an implementation
of timeless propositions

ProbR := Prob(classical solution will pass through a region R of q). (29.9)

He approached this by considering probability distributions, firstly on the classi-
cal Phase, w = w(q,p) and then at the semiclassical level (Chap. 54). For now, let
us note that the classical w is constant along the classical orbits,

0 = ∂w

∂t
= {H ,w}. (29.10)

Moreover, some applications involve a generalization of (29.9) to Phase [7, 416].
In terms of the characteristic function of the region R, denoted CharR(q),

ProbR =
∫ +∞

−∞
dt CharR

(
qcl(t)

)

=
∫

Dq CharR(q)

∫ +∞

−∞
dt δ(k)

(
q − qcl(t)

)

=:
∫

Dq CharR(q)AR(q,q0,p0): (29.11)
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Fig. 29.1 Halliwell’s approach considers propositions corresponding to fluxes through pieces of
hypersurfaces ϒ within configuration space q, and probabilities of dynamical trajectories entering
regions R

the ‘amount of time t’ the trajectory spends in R (Fig. 29.1).2 Furthermore, in terms
of the step function θ , which serves to mathematically implement the restriction the
entirety of Phase that is being integrated over to that part in which the correspond-
ing classical trajectory spends time > ε in region R,3

ProbR =
∫∫

Dp0 Dq0 w(q0,p0) θ

(∫ +∞

−∞
dt CharR

(
qcl(t)

)− ε

)
. (29.12)

An alternative computational expression is for the flux through a piece of a
{k − 1}-dimensional hypersurface within q,

Probϒ =
∫

dt
∫

Dp0 Dq0 w(q0,p0)

∫

ϒ

Dϒ(q) ν · M · dqcl(t)

dt
δ(k)
(
q − qcl(t)

)

=
∫

dt
∫

Dp′
∫

ϒ

Dϒ(q ′) ν · p′ w(q ′,p′), (29.13)

the latter equality being by passing to q ′ := qcl(t) and p′ := pcl(t) coordinates at
each t .

This is also a useful point at which to introduce the notions of imperfect
records—the subject of Halliwell’s [411]—as well as of deteriorated, or doctored,
records. The main point is that information can be lost from a record ‘after its forma-
tive event’—the word “stored” in (54.1). For instance, photos yellow with age and
can also be doctored. As another example, some features of the ‘cosmic microwave
background’ radiation that we observe have in part been formed since last scatter-
ing. The observed data has, for instance, contributions from foreground sources and
as a result of the integrated Sachs–Wolfe effect [215].

2This is, for now, absolute time in an ordinary Mechanics model, though this Chapter can be redone
in terms of label time λ for a wider range of examples; see also the next Section; finally recollect
that k = dim(q).
3ε itself is some small positive number that tends to 0, which is included to avoid ambiguities in
the θ -function at zero argument.



29.3 Beables in the Combined Approach 363

Machian Nontrivial-g Records Within Histories Theory Reconsider the pre-
vious Sec’s example under

q → K (a configurational basis of Kuchař beables),

p → πK and t → tem
g-free, k → r.

(29.14)

Some further complications are that curved measures occur at each stage and that
PPSCT invariance needs to be checked as per [25].

Example 1) For the r-formulation of scaled triangleland, the curved space effects
are alleviated by the conformal flatness. We then just have the

q → Dra, p → πDra and t → tem
Rot(2)-free, k → 3 (29.15)

case of the preceding Absolute Mechanics example’s results.

29.3 Beables in the Combined Approach

Halliwell’s Construct for Chronos Beables in the g-Free Case For a simple
k-d Particle Mechanics model, this is of the form [413, 421]

AR [q,q0,p0 ] =
∫ +∞

−∞
dt δ(k)

(
q − qcl(t)

)
. (29.16)

This has the property that

{H,AR} = 0. (29.17)

Thus, for g-trivial theories, we can write AR = C = D. While this construct is given
above for an ordinary Mechanics example, it extends to Minisuperspace models as
well [413, 414]. Finally, note that these are indeed beables—rather than histories
observables—since the t has been integrated over.

The g-Nontrivial Version Produces Dirac Beables The Author subsequently
considered the case in which K are a ‘basis set’ of configurational Kuchař beables
[under the substitutions (29.14)]. (Construction of the full set of Kuchař beables
would involve the extension of Halliwell’s construct to such as regions of Phase
since these have the more general dependence K = F[Q,P ].) For relational whole-
universe models, the classical Machian emergent time tem

g-free arises to fill in the role
of t and PPSCT invariance is held to apply as per Appendix L.11. Thereby, this
Chapter and its descendants are Combined Machian Emergent Time, Records and
Histories Approaches.

AR [K,K0,p
K
0 ] now obeys {Flin,AR} ≈ 0 because the K and pK0 are Kuchař

beables, to which Lemma 3 of Appendix J.18 applies. Also (29.17) still applies
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(Halliwell demonstrated this to be robust to curved configuration space use [413,
414]). Therefore the AR [K,K0,p

K
0 ] are indeed Dirac beables, D. To this extent,

one has a formal construction of Kuchař’s Unicorn (Sect. 9.15), at least for the
range of theories to which Halliwell’s construct can be applied. Also, as regards the
various No-Go Theorems, the above avoids Kuchař’s by not being of form (O.9) and
Torre’s by not being local in space or time.

Example 1) Since the classical Kuchař beables are known for 1- and 2-d RPMs,
pure-shape or scaled, we have Dirac beables for these. To be concrete, consider the
r-formulation of scaled triangleland. The extra geometrical factors vanish in this
case due to configuration space flatness, and we obtain AR [Dra,Dra0,P

Dra
0 ] as

follows. Additionally,

ProbR =
∫

dtem
∫

DP Dra
∫

R
Dϒ(Dra)nDra · P Draw(Dra,P Dra), (29.18)

for w a probability distribution on the classical Phase, ϒ a hypersurface in con-
figuration spaces with normal n. Furthermore,

A[Dra,Dra0,P
Dra
0 ] :=

∫ +∞

−∞
dtem δ(3)(Dra − Dracl(tem)), (29.19)

commutes with the classical constraints.

Alternative Indirect g-act, g-All Extension Here we make use of

Ag-free [ρ,p0,ρ0 ] =
∫

g∈g
Dg

→
gg

{∫ +∞

−∞
dtem
g-free δ(k)

(
ρ − ρcl(tem

g-free)
)}
. (29.20)

Comments More generally, whenever an algebraic structure of Flin can be ex-
tended by a Quad, Halliwell’s method can be adapted to provide a construction of
the extended case’s A-beables from the unextended case’s. From this point of view,

1) Halliwell’s original working extending id by Quad to construct Chronos beables
C from unconstrained beables U .

For theories which are elsewise unconstrained, the C are Dirac beables D. Then
note that this construction carries over to

2) extending an algebraic structure of Flin by a Quad, by which Dirac beables D

are constructed from Kuchař beables K .

The general formulation is more useful than 2) since not all theories’ constraint
algebraic structure are of the form 2); for instance Supergravity’s is not. In this case,
the generalized method promotes the NSK to NSD, but this does not attain the goal
of constructing the D themselves.

A final issue is that this method constructs individual beables, rather than being
guaranteed to produce an entire algebraic structure’s worth of these. For instance, it
remains unclear whether the form of the construct closes under taking the brackets
of two beables obtained by the construct.



Chapter 30
Slightly Inhomogeneous Cosmology (SIC)

Let us next develop this further and cosmologically-significant arena, for which this
book’s main Machian Strategy for A Local Resolution of the Problem of Time can
also be worked out in detail. The particular version considered here [35] is kine-
matically similar to that considered by Halliwell and Hawking [419]. In particular,
both are low-order inhomogeneous perturbations about S3 for the modelling reasons
given in Sect. 9.9, include a single minimally-coupled scalar field φ, and are treated
at most semiclassically. Moreover, the scheme for SIC presented differs from [419]
in various further details on TRi and technical grounds (Fig. 30.1).

Whereas Minisuperspace is trivial as regards the Configurational Relationalism,
Constraint Closure, Foliation Independence and Spacetime Constructability aspects
of Background Independence, and RPM is trivial for the Foliation Dependence and
Spacetime Relationalism and Construction aspects, SIC has all nine aspects non-
trivial. Thus it serves as the successor of both of Minisuperspace and RPM model
arenas’ qualitative insights, and as a first port of call for nontrivial investigations
of the Foliation Independence and Spacetime Constructability aspects. In particular,
SIC still admits a solvable Thin Sandwich and consequently an explicit classical
Machian emergent time and explicitly constructible beables. In fact, for SIC the Thin
Sandwich procedure turns out to be only a partial reduction which needs completing
by further means.

30.1 Relational Action for SIC

SIC’s configurations, q and g are presented in Appendix I.2. The relational action
is now

srelational = √
2
∫
∂s0,1,2

√
W0,2, (30.1)

where ∂s0,1,2 =√∑n [dFfn,dφ,dΩ,dFxn ][Mψ ⊕Mgrav ][dFfn,dφ,dΩ,dFxn ]T. The
non-auxiliary part of this can be read off Fig. I.2. Furthermore, the auxiliary terms
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match [419]’s Lagrangian’s under the correspondence jn/N0 → djn, kn/N0 → dkn;
here N0 is the zeroth approximation to the ADM lapse. In full,

dsn 2
0,1,2 = exp(3Ω)

2

{
−da2

n + n2 − 4

n2 − 1
db2

n + {n2 − 4
}
dc2

n + dd2
n + df 2

n + 6andfndφ

+ 2

3
dAndΩ +An

{
dΩ2 − dφ2}

}

− exp(2Ω)

{{
n2 − 4

}
dcndjn +

{
dan + n2 − 4

n2 − 1
dbn + 3fndφ

}
dkn

3

}

+ exp(Ω)

2

{{
n2 − 4

}
dj2

n − dk2
n

3{n2 − 1}
}
. (30.2)

This is via the useful combination An defined in Eq. (I.14).
Equation (30.2) can be split up into S, V, T pieces [345, 623], and into zeroth,

first and second order pieces. These pieces are readily visible above due to S being
labelled by an, bn and fn factors, V by cn factors, T by dn factors and perturbative
orders by how many powers of dyn, dun each term contains.

Also W̄0,2 = W̄0 +∑n W̄
n
2 forW0 given by (9.12) with zero subscripts added and

W̄ n
2 = exp(Ω)

2

{
1

3

{
n2 − 5

2

}
a2

n + {n2 − 7}
3

{n2 − 4}
n2 − 1

b2
n + 2

3

{
n2 − 4

}
anbn

− 2
{
n2 − 4

}
c2

n − {n2 + 1
}
d2

n

}

+ exp(3Ω)

2

{−m2{f 2
n + 6anfnφ

}− exp(−2Ω)
{
n2 − 1

}
f 2

n

− {m2φ2 + 2Λ
}
An
}
. (30.3)

The first line here is the second-order part of the Ricci 3-scalar, R̄n
2, whereas the

second comprises the matter potential and cosmological constant contributions.1

30.2 Constraints for SIC

H now gives (9.14) at zeroth order, and, at second order,

H2 =
∑

n

{ SHn
2 + VHn

2 + THn
2

}
for (30.4)

1We have added a cosmological constant term omitted in [419] itself, since this is useful in sub-
sequent cosmological modelling. This approach also immediately extends to multiple minimally-
coupled scalar fields.
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SHn
2 = exp(−3Ω)

2

{{
1

2
a2

n + 10
n2 − 4

n2 − 1
b2

n

}
π2
Ω +
{

15

2
a2

n + 6
n2 − 4

n2 − 1
b2

n

}
π2
φ

− π2
an

+ n2 − 1

n2 − 4
π2
bn

+ π2
fn

+ 2anπanπΩ + 8bnπbnπΩ − 6anπfnπφ

}

− exp(Ω)

2

{
1

3

{
n2 − 5

2

}
a2

n + {n2 − 7}
3

{n2 − 4}
n2 − 1

b2
n

+ 2

3

{
n2 − 4

}
anbn − {n2 − 1

}
f 2

n

}

+ exp(3Ω)

2

{
m2{f 2

n + 6anfnφ
}+ {m2φ2 + 2Λ

}{3

2
a2

n − 6
n2 − 4

n2 − 1
b2

n

}}
,

(30.5)

VHn
2 = exp(−3Ω)

2

{{
n2 − 4

}
c2

n

{
10π2

Ω + 6π2
φ

}+ π2
cn

n2 − 4
+ 8cnπcnπΩ

}

+ {n2 − 4
}
c2

n

{
exp(Ω) − 3 exp(3Ω)

{
m2φ2 + 2Λ

}}
, (30.6)

THn
2 = exp(−3Ω)

2

{
d2

n

{
10π2

Ω + 6π2
φ

}+ π2
dn

+ 8dnπdnπΩ
}

+ d2
n

{
n2 + 1

2
exp(Ω) − 3 exp(3Ω)

{
m2φ2 + 2Λ

}}
. (30.7)

Also M1i = [SMn
1,

VMn
1 ] is the vector corresponding to the vector of auxiliaries

[dkn,djn ]. Mi vanishes at zeroth order, and has S and V parts to first order:

SMn
1 = exp(−3Ω)

3

{
−πan + πbn +

{
an + 4

n2 − 4

n2 − 1
bn

}
πΩ + 3fnπφ

}
, (30.8)

VMn
1 = exp(-Ω)

{
πcn + 4

{
n2 − 4

}
cnπΩ
}
. (30.9)

In Hamiltonian variables, the H2 pieces and the M1 pieces moreover coincide for the
relational and ADM–Halliwell–Hawking approaches. As a first step toward whether
the system is well-determined, for now we have 10 degrees of freedom per mode
value n and 6 constraints imposed per n. A Principles of Dynamics level treatment
is required for further details, which go beyond a mere matter of counting, due to
involving the particular geometrical form of Phase.

30.3 Constraint Closure Posed

Note the distinction between leading-order inhomogeneity brackets and subsequent
mode-split brackets. In the first case, the only zeroth-order bracket is (24.16) with
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zero suffices on each object, no other zeroth-order brackets can be defined. More-
over, ( | ) reduces to the trivial when between two zeroth-order objects; it is here
included only for order-by-order consistency in the presentation.

The first-order brackets are

{(H0 | dJ0), (H1 | dK0)} = 0, {(H0 | dJ0), (H0 | ∂K1)} = 0, (30.10)

and the J ↔ K of the preceding. No other first-order brackets can be defined.
The second-order brackets are

{(H1 | ∂J1), (H0 | dK0)} = (Mi 1 |hij0 dK0
←→
∂j ∂J1) (30.11)

and the J ↔ K of this. Also

{(H0 | dJ0), (Mi 1 | ∂Li1)} = (£∂L1H1 | dJ0), (30.12)

{(Mi | ∂Li ), (Mj | ∂Mj )} = 0 (30.13)

up to fourth order. These equations mean that in this regime, the 3-diffeomorphisms
have lost their group relations, whereas the deformations retain nontrivial such.

The Poisson brackets with only up to second-order right hand sides are

{(H0,1,2 | ∂J0,1,2), (H0,1,2 | ∂K0,1,2)} = (Mi 1 | dK0∂
i∂J1 − dJ0∂

i∂K1)+O(y3
n ),

(30.14)

{(H0,1,2 | ∂J0,1,2), (Mi 0,1,2 | ∂Li0,1,2)} = (£∂L1H1 | dJ0)+ O(y3
n ), (30.15)

{(Mi 0,1,2 | ∂Li0,1,2), (Mi 0,1,2 | ∂Mi
0,1,2)} = 0 +O(y4

n ). (30.16)

Diff 1(�) is Abelian (up to fourth order, which is beyond where the current mod-
elling goes). Also, Diff 1(�) acts on H in its most nontrivial manner to second order:
H up to first order is a Diff 1(deformed S

3) scalar density. Additionally, Diff 1(�) is
Diff 1(S3) as regards its action in the bracket of two H’s. Finally, to second order,
hij = h

ij

0 are still structure functions for S3, so one still has an algebroid.
In the action, dhij 0 +∂hij 1 +∂hij 2 − £∂F1 {hij 0 +hij 1 }. So g = Diff 1(�), which

leads to Mi 1. Also (9.33) has a second-order right hand side. From this, one deduces
that H0 cannot produce Mi 1. Finally,

{(H | ∂J), (Mi | ∂Li )} = (£∂LH | ∂J). (30.17)

The entry in the second slot is forced to be (first order) × (first order). Comparing
with the right hand side, this has a first-order ∂Li factor, so it needs the correspond-
ing H to be first order as well, so that £ acts upon it nontrivially. So on this occasion
it is a bracket between H0 and M1 that produces H1.

SIC’s modewise constraints require no smearing because they are finite block by
block. By straightforward computation S, V, T cross-brackets are straightforwardly
zero or weakly zero to second order. Brackets between blocks of different n are also
straightforwardly zero. All this is saying is that in calculations which are at most
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second order, the modewise split into different values of n and the S–V–T split are
preserved under the brackets operation. Consequently, at most to second order, each
S, V, T piece for each value of n can be treated as a separate finite system in its own
right, i.e. without reference to the other such systems.

With each block being finite, self-brackets are moreover all zero therein. This
gives immediately that {H,H}2 = 0 for each S, V, T piece and each n, and
{M,M}2 = 0 likewise.

30.4 Outcome of Dirac Algorithm and Thin Sandwich

The preceding Sec leaves just two cross-brackets to evaluate: {SH, SM} and
{VH, VM}. Straightforward evaluation of these produces nontrivial right hand side
terms, in a manner which implies that SM and SH are not first-class constraints with
respect to each other, and neither are VM and VH.

{SH, SM} and {VH, VM} do not close. The corresponding phase space degrees of
freedom count is depicted in Fig. 30.2.

This counting resolution in turn reveals [419] to be using rather questionable
assumptions in its Quantization. Closer to the current stage of development, it also
affects how one carries out the Thin Sandwich resolution and reduced configuration
space treatment in the next two Secs and in Appendix I.2.

All the momentum constraint components (30.8), (30.9) are manifestly algebraic,
and, being linear, manifestly solvable. To address the Thin Sandwich Problem, re-
cast these constraints in the Jacobi–Mach formulation. By SIC’s momentum-change
relations, (30.8), (30.9) become the SIC Thin Sandwich equations

dan + n2 − 4

n2 − 1
dbn + exp(−Ω)

n2 − 1
dkn + 3fndφ = 0, dcn − exp(−Ω)djn = 0.

(30.18)
These are to be interpreted as to be solved for the first-order auxiliary variables djn

and dkn. The actual solving is in this case immediate. The above two equations are
decoupled and individually well-determined, as follows. There are even and odd djn

but also even and odd dcn, while everything in the equation for the single dkn comes
in a single copy. The two are, furthermore, algebraically trivial as regards making
whichever of its terms the subject. In particular, the Thin Sandwich Problem choice
of solutions is

dkn = −exp(Ω)
{{dan + 3fndφ}{n2 − 1

}+ {n2 − 4
}
dbn
}
, djn = exp(Ω)dcn.

(30.19)

The bulk of the Thin Sandwich or Best Matching approach’s work is however in
the subsequent elimination. One can readily substitute (30.19) back into the kinetic
metric, Appendix N.10’s examination of this reveals that only a partial elimination
has occurred. For, in performing this elimination of shift variables, the line element
does not lose a full shift’s contingent of further partner variables so as to complete
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Fig. 30.2 a) We here juxtapose the usual relational formulation analysis for vacuum GR of
Fig. 24.4 for useful comparison. b) is the version additionally including a minimally-coupled scalar
field. c) and d) consider what happens to the vacuum and scalar field case respectively, upon spe-
cializing to SIC and applying the SVT split. Note the appearance in both c) and d) of the non
SVT split variable An, alongside how the momentum constraints fail to quotient out a Diff (S3)’s
worth of degrees of freedom by case-dependent amounts. Some of that freedom has now been
transferred to the multiple Hamiltonian constraints. We concentrate upon the descent to modewise
superspace(S3); attaining this is marked with grey rectangles for clarity; this objective is presently
attained for c) but not for d). This is since the vacuum case c)’s VH can be used to eliminate the non
SVT split variable An. So in this case An attains only a temporary significance in performing suc-
cessive reductions. That the two cases c) and d) behave differently in this regard is an interesting
result in its own right, as regards the theory of the Thin Sandwich Problem facet

the loss of a Diff (S3)’s amount of variables. This reflects that the constraint equa-
tions involved in the reduction cannot all be first-class. So, whereas the algebraic
nature of SIC’s (30.19) parallels that of RPM, SIC has the further feature of not in-
volving solely first-class constraints. This is of further interest since these constraint
equations arose from an object Mi which, in its original unsplit form, is widely
known to be first-class.

It furthermore turns out that the amount by which first-classness fails differs be-
tween the vacuum and scalar field cases. In particular, the vacuum case has the
further feature that thin sandwich elimination causes the scalar mode an to drop out
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from the reduced kinetic term. This is one way in which the vacuum case is more
straightforward to resolve.

The corresponding geometry is provided in Appendix N.10, along with an out-
line of how the minimally-coupled scalar field case’s reduction has a number of
further ‘counter-intuitive’ features. A ubiquitous grouping which drops out from the
reduction is the scalar sum variable is

sn := an + bn. (30.20)

The formula for the potential in these new variables considerably simplifies the nth
mode’s contribution to the (densitized) spatial Ricci scalar: from the first line of
(30.3) to

R̄n = exp(Ωn)

2

{
s2

n − {n2 − 1
}
d2

n + An

3

}
. (30.21)

Note the Ωn to Ω and φn to φ equivalences in products which already contain 2
factors of the small quantities. On the other hand, the densitized matter potential
and cosmological constant contributions are just as in the second line of (30.3) with
n-indices attached. We make later use in particular of the vacuum case’s potential
combination

wn := exp(3 )× {(30.21)+ last term of (30.3)}. (30.22)

wn
2/W0 = εsds−1 � 1 gives moreover a first ‘scale dominates inhomogeneous shape’

small quantity, with further such arising by considering derivative versions.
Physicist Sumio Wada also considered reduction of SIC, albeit at the level of

the quantum equations (i.e. within a Dirac Quantization scheme). This and Reduced
Quantization as eventually attempted here are in general inequivalent. None the less,
a number of constructs that worked for Wada can be derived from the Author’s
reduced approach to the classical q geometry. Wada also introduced a scalar sum
variable (our sn up to proportionality). In fact, Wada performed reduction to three
different extents.

Reduction 1) In [870], he only eliminates VM1i .
Reduction 2) In [872] and the later more detailed paper with physicist Ikuo Shirai

[789], he eliminates precisely all of M1i . This is the case which corresponds most
closely to the Thin Sandwich.

Reduction 3) In [871], he eliminates all of M1i alongside H1 (which in the Rela-
tional Approach never arises since there is no primary lapse to be independently
varied).

In each case Wada corrects Ω by a distinct difference-of-squares variable. 1) uses
the identification

∑
n

SAn, 2) uses
∑

n
S,VAn and 3) uses the whole of

∑
nAn. He

qualifies the T-term within An as ‘not necessary’ for the quantum-level simplifi-
cations incurred. However, it is necessary as regards the combination including this
turning out to be inherited from the classical q geometry, as per Appendix I.2. Wada
also corrects φ in each case by subtracting off 3

∑
n bnfn.
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On the other hand, in the vacuum case, further reduction2 eliminating VH is pos-
sible (Appendix N.10), leaving one with

ds2
n = −dζ 2

n + ‖dvn ‖2. (30.23)

Finally, the corresponding configuration space of the modewise inhomogeneities
themselves is also clearly flat R3, with the vn playing the role of Cartesian coordi-
nates:

ds2
n = ‖dvn ‖2. (30.24)

dsn/dΩ = εsds−2 � 1 is the further kinetic ‘scale dominates inhomogeneous shape’
approximation.

The reduced action built as per above has conjugate momenta

pξn = −
√
w̃ndξ

ds
, pv

n
=

√
w̃ndvn

ds
; (30.25)

the tildes here denote reduction. The corresponding Hamiltonian constraint is

H̃n = 1

2

{−pξ 2
n + ∥∥pv

n

∥∥2}− w̃n/2(ξn, vn). (30.26)

N.B. that this is formed not only by solving the Thin Sandwich, but also requires
additional steps so as to cut out all the Diff (�) information.

The classical Machian emergent time is

CR(tem
CC) =

∫ √
{dξ2

n − ‖dvn ‖2 }/w̃n. (30.27)

Finally the reduced equations of motion are

√
w̃ndpξn/dsn = − 1

2

∂w̃n/2

∂ξn
,

√
w̃ndpv

n
/dsn = − 1

2

∂w̃n/2

∂vn

; (30.28)

the reduced system still possesses an ST split.
As regards the classical Machian approach to SIC, expanding CR(tem

CC) in the
manner of Chap. 23 gives the approximation

tem = t em
hom − 1

2

∫
dξ√
W0(ξ)

{∥∥∥∥
dv

dξ

∥∥∥∥
2

+ W1(ξ, v)

W0(ξ))

}
= t em

hom + O(inhomogeneity2).

(30.29)
I.e. the usual isotropic cosmic time now picks up O(inhomogeneity2) corrections,
of the order of 1 part in 1010.

2Clearly in this application, Sect. 2’s default—of reduction signifying removal of linear constraints
only—is overridden due to falling short of implementing the desired g = Diff (�).
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30.5 Beables for SIC

In the Problem of Beables for SIC, Kuchař beables K are merely functions of
‘particular S3 mode variables and associated momenta’. This means that the small
bumps in question are modes of S3-sphere itself, rather than of the deformed sphere.
However, working overall only to second order, the sandwich is restricted to an al-
gebraic equation, and furthermore one which is (locally) soluble. This simplification
goes hand in hand with the Kuchař beables being simple to handle to this order:

{(M1i | ∂Li1), (K0K |χK
0 )} ≈ 0, (30.30)

so K0K(t alone) are Kuchař beables. Dirac beables are more complicated since
(H | ∂J) has zeroth and first order contributions. Consequently, (DD |χD) has nontriv-
ial second and first order contributions, which are not merely functions of t alone.

Let us start by considering configurational Kuchař beables in the vacuum GR
case.

dn and sn ∈ k (the space of Kuchař beables). (30.31)

On the other hand, An /∈ k, which is a second difference between it and the rela-
tional triangle’s ellip variable. This can be spotted since whereas ellip contains a
rotationally-invariant difference of two squares, ‘the other gravitational modes’ in
An’s own difference of sum of squares include the unphysical vector modes cn. Nor
does the An quantity’s structure respect the status of sn, rather than of the individual
an and bn, as an invariant quantity. [The final form of the inhomogeneous part of
the vacuum potential is another quadratic difference, which does specifically com-
pare the amount of Diff (S3) invariant scalar inhomogeneity sn with the amount of
Diff (S3) tensor inhomogeneity dn. However, in this case the individual pieces are
already Kuchař beables before taking the difference, so we do not add this quantity
to our list of beables.] Moreover,

Ωn = Ω −An/3 ∈ k, (30.32)

as well as its arising as a blockwise simplifier of the geometry (Appendix I.2).
For the case with a minimally-coupled scalar field as well,

fn and φn := φ − 3bnfn ∈ k. (30.33)

Superspace’s other block reduction variable (N.13) is out be out by a factor of 1/2
in its correction to φ from that in the beable. Let us also note that Wada’s version
coincides with the latter at the level of the functional dependence of the quantum
wavefunction. Additionally, much as Ω is corrected by subtracting off an ellip type
variable, φ is corrected by subtracting off an aniso type variable; again, the resulting
difference is not itself a Kuchař beable.

We next point out that the momenta associated with these that are also beables
are no longer all conjugate momenta. I.e. the two πdn ,

π2sn := −πan + 1

4

n2 − 1

n2 − 4
πbn (30.34)
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Fig. 30.3 A range of
interesting notions of
constraint subalgebraic
structure and of A-beables for
SIC

and πΩ (which is specifically a weak Kuchař beable). Functionals of these ‘basis
beables’ are also classical Kuchař beables. The algebra formed by the ‘basis beables’
has 4 pairs of brackets giving 1’s in the manner of the Heisenberg algebra, alongside
the one further interlinking relation,

{Ωn,π2s2} = sn. (30.35)

In the case with a minimally-coupled scalar field as well, the momenta associated
with the above are πfn and the scalar dilational momentum

π2φ := φπφ + fnπfn . (30.36)

The further brackets are the fundamental bracket’s 1 for the fn,

{φn,π2φ} = φn, (30.37)

and the interlinking relations

{fn,π2φ} = fn, {π2φ,πfn} = πn, {φn,π2n} = − 3

4

n2 − 1

n2 − 4
fn. (30.38)

Moreover, these are merely associated momenta rather than conjugate momenta:
satisfying the Kuchař beables condition can require variables other than the conju-
gate ones.

In the vacuum case, the constraint algebraic structure is as in Fig. 30.3.a) and the
corresponding notions of beables are as in Fig. 30.3.b). So in SIC, Kuchař beables
K �= G (g-beables for g = Diff (S3); let us term the latter, more restrictive notion
Superspace beables SU . The K do not now suffice, in the sense that eliminating Flin
does not in this case send one to q/g (as is clear from 30.4). So eliminating Flin
under this symmetry restriction has ceased to coincide with gauging out the entirety
of Diff (�).

Note also that this SIC model has additional notions of A-beables, for which we
suggest the names ‘S-Kuchař beables’ and ‘V-Kuchař beables’, meaning that they
commute with just SM and VM respectively. Taking out just VM has a minimally-
coupled scalar field case parallel; this underlies an even more partial reduction of
Wada’s [870].
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30.6 The Averaging Problem in GR

Averaging in GR (in general, rather than just perturbative) is compromised by the
Einstein field equations’ nonlinearity:

Gμν(〈gρσ 〉) �= 〈Gμν(gρσ )〉. (30.39)

The difference between these might get confused with a further source’s Tμν
(whether a bona fide material energy–momentum–stress tensor, or pseudo-tensor
paralleling Appendix K.5). This has the status of a further unresolved problem. Note
finally that the inhomogeneous corrections of (30.29) suggested by Relationalism
are distinct from those due to averaging.

30.7 SIC Records

The Euclidean ‖dv‖2 is a useful notion of distance on Modespace (defined in Ap-
pendix I.2). One can furthermore extend the scope of Sect. 26.1’s propositions by
‘what is Prob(inhomogeneity is small) quantified by |v| < ε’. On the other hand,
modewise SIC is itself a local-in-time slab T×R

3 within Minkowski spacetime M4;
restriction to this slab affects the detailed form of probability distributions thereupon
and of subsequent statistical tests.

Research Project 20) Pass from considering Probability and Statistics on Minkow-
ski spacetime M

4 to considering these on a slab T × R
3 therein.

Probability distributions on 3-d flat space are straightforward, and probabilistic
studies on flat indefinite spaces were already pointed to in Sect. 26.7. As regards
correlations, Cov(v, v′) and the n-point function in the Modespace of the v’s make
sense. Finally, notions of information can be based on the ρ logρ combination (Ap-
pendix Q.8) built from a probability density on the Euclidean space of small inho-
mogeneities.

30.8 SIC Histories

Unreduced Histories For the Halliwell–Hawking model, the classical histories
configuration variables are Ω(λ), φ(λ), an(λ), bn(λ), cn(λ), dn(λ) and fn(λ) for λ
a continuous label time. Auxiliary variables are dj o

n (λ), dj e
n (λ) and dkn(λ). Let us

denote the conjugate histories momenta by πΩ(λ), πφ(λ), πan(λ), πbn(λ), πcn(λ),
πdn(λ) and πfn(λ). This model’s histories constraints are

SHλ =
∫

dtλSH(λ), VHλ =
∫

dtλVH(λ), THλ =
∫

dtλTH(λ), (30.40)
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SMλ =
∫

dtλSM(λ), VMλ =
∫

dtλVM(λ). (30.41)

One can now take λ = tem as one’s choice of label time [25], to consider this case
within the Classical Machian Emergent Time Approach.

Reduced Histories In the vacuum case, one could use ξn(λ), vn(λ), dn(λ) and
de
n(λ) as histories variables, with histories conjugate momenta. One could once

again use the corresponding tem as choice of label time λ [25]. This formulation’s
histories Hamiltonian constraint is

H̃λ :=
∫

dtλH̃(λ) (30.42)

for H̃ SIC’s reduced Hamiltonian constraint.

Combined Approach This is relatively straightforward modewise, through hav-
ing the same q geometry as for diagonal anisotropic models and particles in
flat spacetime. This coincides with the original scope of Halliwell-type models
[413, 414]. Finally, Halliwell’s construct can be extended to promote Superspace
beables SU to Dirac beables D.

30.9 Summary of the Model Arenas

An efficient way of handling RPM, Minisuperspace and modewise SIC equations
all at once involves the standard form

Chronos = {qp2
h + sp2

l

}
/2 − w = 0, (30.43)

and the following table of cases.

Model q s w

1- and 2-d scaled RPMs [23, 29, 37, 61] 1 1
ρ2 2{E − V }

Isotropic Minisuperspace with
minimally-coupled scalar field [31]

−1 1 exp(6Ω){exp(−2Ω)− V (φ)− 2Λ}

Bianchi IX anisotropic Minisuperspace vacuum −1 1 exp(3Ω) × (I.5)

n-modewise vacuum SIC [34] −1 1 (̃30.22)

30.10 Frontiers of Research

Research Project 21) Work out the reduced formulation, Records, Histories, and
Combined Approaches for SIC with minimally-coupled scalar matter.
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Research Project 22) Extend this Chapter’s work to more general SIC models. E.g.
consider third-order models, models with multiple matter fields, and models with
small anisotropies treated alongside the small inhomogeneities.

A limitation of modewise SIC is that its perturbative split carries background split
problems, even though it is not the same as the background Minkowski split that
more habitually carries such problems. Nonperturbative Midisuperspace models are
better in this regard. We shall see in subsequent Chapters how this affects the Fo-
liation Independence and Spacetime Constructability aspects of Background Inde-
pendence. Reasons to push to third order include that the SVT modes now start to
couple.

Research Project 23)† Consider time and the Problem of Time to a similar extent
to that considered in this book, but now for full, rather than perturbative, Midisu-
perspaces. It may help if you begin with T

3 or S3 Gowdy models.
Research Project 24)† Formulate SIC for Nododynamics. (This topic remains little

developed, and not due to a lack of trying. [156] may be a useful preliminary.)

SIC in Supergravity, on the other hand, has already been considered including in
mode-expanded form, in [232, 555, 868].



Chapter 31
Embeddings, Slices and Foliations

This Chapter considers Foliation Independence and its realization in the case of GR
by Refoliation Invariance. We approach this by generalizing Sec’s 8.4 consideration
of a single hypersurface � within a manifold M from both top-down and bottom-up
perspectives. Let us first remark that considering hypersurfaces picks out codimen-
sion C = 1, though the current Chapter’s M is more general than GR’s 4-d m.
Somewhat abusing notation, let us still use the � and σ notation in this more gen-
eral setting. A is the index corresponding to M and a to � and σ . The current
Chapter also retains the split formulation of GR’s bias that M = � × I for some
interval I, and that � is to be compact without boundary for simplicity. The idea
now is to reformulate this in a more global manner [573, 576–579, 581], in the sense
of improving on how previous works [73, 250] depended on choices of coordinates
which in general just hold locally. This Foliation Formulation is also of foundational
interest through its giving foliations a more primary status.

31.1 Single-Slice Concepts. i. Topological and Differentiable
Manifold Levels

Let us introduce the following conceptual types of map. Slice involves identifying a
particular slice � in M. On the other hand, Project involves keeping only informa-
tion projected onto �. Passing to σ involves forgetting that m was the source of
this information, now to be regarded as set up from intrinsic first principles. Forget
involves forgetting that 〈m,�〉 contains a particular hypersurface that is picked out
as a slice; see Appendix A for forgetful maps in greater generality. However, since
M = � × I, � and σ are for now just related by the identity map. Going in the
opposite direction, Embed allows for � to be treated as a hypersurface within some
ambient M; this map is denoted by �. Since � :σ → M, the embeddings in ques-
tion are homeomorphisms. The injectivity residing within this statement guarantees
that the spatial hypersurface � does not intersect itself, unlike Fig. 31.1.c). See also
Fig. 31.1.a) for how all of the above maps fit together.
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Fig. 31.1 a) The detailed sense in which (suitable extensions of) ‘embed’ and ‘slice and
project’ form a 2-way route at the level of topological manifolds. b) Given an identity-and-em-
bedding �◦ id (which we will take � to suffice to denote), and allowing for the spaces
in question to possess differentiable structure, the following additional maps are established.
The corresponding [382, 483] push-forward �∗v of a tangent vector v ∈ Tp(σ ) to a curve
γ in σ is a tangent vector ∈ T�(p)(�) to the image curve �(γ) in �. In the opposite
direction—projection-and-forgetting—� induces a pull-back �∗ : T∗

�(p)(�) → T∗
p(σ ) between

the space of 1-form linear maps. c) Embeddings are defined to preclude self-intersections [614],
such as the counter-example depicted

Allowing for differentiable structure as well, Fig. 31.1.b) associates embedding
and slicing with the differential-geometric notions of push-forward and pull-back
(concepts laid out in greater generality in Appendix D.2).

31.2 ii. Metric Level

The situation is more complicated at the metric level. One fundamental reason for
these complications is that each of M, � and σ carries its own metric, moreover
with the first two bearing relation. Let us begin to consider this by splitting the
Metric Geometry 〈M,M〉 with respect to � into of tangential and normal parts:

Tp(M) = Tp(�)⊕ n, (31.1)

for n the space spanned by the normal vector field nA. This is normal to the corre-
sponding isometric embedding: � : � → m. [This is �μ for some particular fixed
value of μ: a signature-neutral notation for the extra dimension’s coordinate with
value μ = μ1 picking out the hypersurface itself.] Using �A := �XA(�(x)) for �XA a
coordinate system on m [364, 483, 501, 502, 576], this is defined by

nA

(
xc ;�]�A

,b

(
xc
)= 0, (31.2)

MAB
(
�
(
xc
))

nB

(
xd ;�]nB

(
xc ;�]= ±1 ∀x ∈ �. (31.3)
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Here (31.2) is normality in the sense of being perpendicular to the hypersurface.
Also (31.3) is a normalization condition that depends on the signature of the extra
dimension: −1 is timelike and +1 is spacelike.

The induced metric can be interpreted as the pull-back m := �∗M. In compo-
nents, using a hypersurface-adapted coordinate system xc, μ with xc on � and

mab

(
xc,μ1

) := mab

(
xc,�μ1

]= (�∗M
)

ab

(
xc,μ1

)= (�∗
μ1

M
)

ab

(
xc
)

= MAB

(
�
(
xc,μ1

))
�μ,a
(
xc,μ1

)
�B

,b

(
xc,μ1

)
. (31.4)

A second fundamental reason for the metric-level version’s greater complexity
is that one now has not only h ∈ Riem(�) to contend with, but also a notion of
extrinsic curvature tensor K, whose possible values form the space of symmetric 2-
tensors, sym(�). The coordinate-free form of the definition of extrinsic curvature
is the shape operator Tp(M) → Tp(M) from a vector v to the variation of the
normal along v (cf. Fig. 8.2). The possible extrinsic curvatures form the space. This
is complicated by one needing to associate a K to each h.1

Slice now involves identifying a particular slice 〈�,m,K〉 in 〈M,M〉. Project
involves keeping only information projected onto 〈�,m,K〉. Passing to σ involves
forgetting that M was the source of this information, including forgetting K since
that is not intrinsic to σ . Forget now involves forgetting that 〈〈M,M〉, 〈�,m,K〉〉
contains a particular picked-out hypersurface 〈�,m,K〉 as a slice. Other reasons for
this step being less trivial than at the topological level include needing firstly to de-
rive the Gauss–Codazzi relations—(8.4)–(8.5) up to signature-dependent signs—by
projections. Secondly, one needs to solve these equations in order to obtain suit-
able m,K pairs. Moreover, 〈�,m〉 and 〈σ ,m〉 are not now in general related by
the identity map. For not all the m that one can place on σ are necessarily isomet-
rically embeddable into 〈M,M〉. Thereby, a nontrivial inclusion map ‘Include’ is
required (see Appendix A.1 for the general concept of inclusion maps. Addition-
ally, Embed now involves allowing for 〈�,m〉 to be treated as a hypersurface within
some ambient 〈M,M〉; this map continues to be denoted by �.

Example 1) in the ADM GR case 〈M,M〉 = 〈m,g〉: GR spacetime 〈�,m〉 =
〈�,h〉 spatial, xc = the actual spatial x and μ = t . (31.4) furthermore gives an
interpretation of the spatial metric as being induced by the spacetime metric, with
components [576]

hab(x, t1) = gμν
(
�(x, t1)

)
�μ,a(x, t1)�

ν
,b(x, t1). (31.5)

Further Examples 2–4) Chap. 8’s and the above’s level of theory for + + + spaces
interpreted as spatial hypersurfaces within − − + + + spacetimes readily gener-
alizes (up to sign differences only) to 2) − + + within − − + + + and 3) + + +

1This can be formulated in terms of a fibre bundle T(Riem(�)): the tangent bundles space of
extrinsic curvatures with over the base space Riem(�). Another formulation involves using p in
place of K. In the latter case, the sym involved is a space of symmetric 2-tensor densities and the
corresponding fibre bundles space is T∗(Riem(�)).
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within + + + +. They generalize again to 4) codimension C = 1 hypersurfaces
within an n-d manifold with p timelike and n − p spacelike dimensions. Note
however that the physical meanings of examples 1) to 3) (with however many ex-
tra +’s added) are rather different. In particular, 1) is aligned with the difference
between time and space and so with e.g. dynamics with respect to a time variable
and the standard formulation of Causality Theory, by which it is the case of prime
interest in this book. One can think of 2) as a particular slice, membrane worldsheet
or ‘braneworld’ within a C = 1 bulk, and of 3) as the Euclidean counterpart of 1)
[not directly physical, but of use in some programs.] Moreover, 1) to 4) diverge
at the level of Analysis and consequently of supporting PDE theorems. Since the
latter often involve well-posedness, this level of study is additionally relevant to
the design of numerical codes. Almost all work hitherto at this level has focused
on 1), for which well-posedness is attainable.

31.3 More General Examples

Further Example 5) codimension C > 1 surfaces can be treated with an ADM-like
split with multiple special rows and columns, i.e. multiple ‘lapses’ and ‘shifts’.
Subsequently there are a matching multiplicity of extrinsic curvatures [344, 777].
C > 2 makes sense if the application is to the evolution of a surface layer [322] or
brane that is allowed to have dynamics rather than being of a predetermined shape
at all times. It is also used in Sect. 31.5’s geometrical explanation of the notion of
foliation.

Already at the classical level, however, there are issues with using C > 2 as a
means of having multiple temporal dimensions. Consider for instance the ultrahy-
perbolic analogue of Minkowski spacetime. Here one ceases to be able to divide the
structure which has replaced spacetime into future and past. Also the corresponding
ultrahyperbolic analogue of the wave equation exhibits difficulties as a PDE prob-
lem (see e.g. Chap. VI.16 of [220]).

The above diversity of concepts and workings established, for the rest of this
book (bar Chaps. 29 and Epilogue II.A) we restrict ourselves to Example 1) with
the usual spatial dimension 3.

31.4 Spaces of Embeddings and of Slices

Here we use ‘all spacetimes’ to mean ‘all spacetimes on a fixed topological manifold
m, ‘all hypersurfaces’ to mean ‘all spacetimes on a fixed topological manifold σ ’,
and the suffixes ‘1’ and ‘2’ to denote particular members. Some spaces arising in
these contexts are as follows.

1) PRiem(m,slice(h1)): the space of spacetime manifolds exhibiting a slice
with a given intrinsic spatial geometry thereupon.
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2) slicespace(m,g2): the space of all slices within a given spacetime g2. Kuchař
considers the Differential and Metric Geometry for this in [576].

3) Emb(m,�): the space of all embeddings of spatial 3-metrics on a fixed � into
spacetime 4-metrics on a fixed m = � × T; e.g. Isham and Kuchař considered
this in [477, 483, 501, 502].2

Further relevant variety arises from restricting ‘spacetime’ to ‘spacetime solv-
ing the Einstein field equations of GR’. One would now have e.g. a version of
Emb(m,�) whose spacetimes are qualified as being GR ones. There are also in-
termediate situations, such as restricted to be ‘hypersurfaces’ by a property, such
as being CMC; ‘spacetime’ and ‘embedding’ might also be qualified. One could
also specify whether the embedding is locally or globally valid, with the latter being
partnered by ‘pieces’ of spacetime or of space. Finally Chap. 21 bears witness to
how K is not always left free in handling the GR constraint equations.

Let us next consider how this Sec’s workings so far combine with Configu-
rational and Spacetime Relationalisms. One can alter the output of slice or em-
bedding schemes to 3-geometries or 4-geometries by quotienting out Diff (�) or
Diff (m) at the end of the scheme. One can alter the input by picking a rep-
resentative from the equivalence class at the start of the scheme. One can en-
visage quotienting out Diff (�); doing so within slicespace(m,g2) produces
Kuchař’s ‘Hyperspace’ for which he provided a topological and geometrical
study of [576]. One can alternatively envisage quotienting out Diff (m,slice1) :=
Diff (m| a given slice1 is preserved). However, Diff (m,slice) := Diff (m| any
slice is preserved) is just id .

31.5 Foliation in Terms of a Decorated Chart

Let us now generalize Chap. 8’s definition of foliation to f = {lA }A∈A. This denotes
a decomposition of an m-dimensional manifold M into a disjoint union of con-
nected p-dimensional subsets—the leaves lA of the foliation—such that the follow-
ing holds. p ∈ M is to have a neighbourhood Np in which coordinates (x1, . . . , xm)
are valid. I.e. Np → R

m such that for each leaf lA the components of Np ∩ lA are
described by xp+1 to xm constant: the obvious extension of Fig. 8.3.d). The codi-
mension of the foliation is C = m− p.

31.6 ADM Kinematics for Foliations

For example, in ADM’s 3 + 1 split of 4-d indefinite (− − + + +) GR spacetime,
M = m, so m = 4 and the leaves lμ are 3-d spacelike (+ + +) hypersurfaces �t.

2They furthermore arm this with the topological structure that it inherits naturally as an open
subset of c∞(�,m). This space can be considered [426] as a manifold in the sense of Fréchet
(see Appendix H.2).
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Fig. 31.2 a) The flow lines of the foliation of m [483]. nt1 is here the normal vector field on the
hypersurface �t1 (�) → m; extending along the flow lines, one has the normal vector field nt to
the whole foliation. b) gives the lapse α and shift β in the context of a foliation [483, 501, 502]

So in this case, p = 3 and so c = 1: the temporal dimension. For GR formulated as
Geometrodynamics on a fixed spatial topological manifolds �, a ‘global in space’
foliation’s leaves are each of that fixed �. Henceforth we restrict attention to c = 1
foliations.

The foliation �t : � × R → m. Its inverse �−1
t : m → � × R is a diffeo-

morphism as well, of the form [483] �t−1( �X) = (σ( �X), τ( �X)) → � × R. The map
τ : m → R here is a global timefunction, which provides the t := {τ(�t (x)) = t

∀x ∈ �} notion of natural time parameter associated with the foliation. Isham [483]
cautions, however that such a ‘definition of time’ is artificial (from an operational
perspective: concerning its measurability and associated clock manufacture). On the
other hand, σ : m → � is some kind of ‘space map’.

Next, for each x ∈ �, the map �x : R → m defined by t  → �(x, t) := �t(x) is
a curve in m. Thus there is a corresponding a 1-parameter family of tangent vectors
on m; let us denote these by

�̇x(t) whose components are �̇μx (t) = �̇μ(x, t). (31.6)

The corresponding vector field is the deformation vector field; Fig. 31.2 a) gives the
corresponding flow lines. This exhibits a simple duality in the sense that for each
x ∈ σ , �̇x(t) is a vector in T�(x,t)(m) at the point �(x, t) in m. Isham counsels
[477, 483] that this object is best regarded as an element of T�t (Emb(σ ,m)): the
space of vectors tangent to the infinite-d manifold Emb(σ ,m) of embeddings of
σ in m at the particular embedding �t . The deformation vector field, moreover, is
a reinterpretation of Sect. 8’s time flow vector field tμ, according to

tμ( �X) = �̇μ(x, t)
∣∣ �X= �X(x,t). (31.7)

This corresponds to viewing it as acting on a slice or leaf.
The functional derivative of hab(x;�] with respect to � projected along nμ is

of value in considering dynamical evolution. Computationally, [454, 575] this takes
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the form

nμ(x;�] δ
δ�μ(x))hab(x′,�] = −2Kab(x;�]δ

(
x − x′), (31.8)

for K the extrinsic curvature of the hypersurface �(�), which in this formulation
is given by [cf. (31.5)]

Kab(x;�] := −∇μnν(x;�]�μ,a(x)�ν,b(x). (31.9)

Also, ∇αnβ(x;�] is here the covariant derivative obtained by parallel transporting
the cotangent vector n(x;�] ∈ T∗

�(x)(x)m along the hypersurface�(�) usingm’s
metric g.

The deformation vector can be decomposed into one piece lying along the hyper-
surface �t1(�) and another parallel to nt . In the ADM formulation (31.6) can then
be expanded out as (Fig. 31.2.b)

�̇μ(x, t1) = α(x, t1)gμν
(
�(x, t1)

)
nν(x, t1)+ βa(x, t1)�α,a(x, t1), (31.10)

using nμ(x, t) as a shorthand for nμ(x;�t ]. From a more minimalist perspective,
note that lapse α and shift β remain meaningful for just a pair of neighbouring slices.
[This is now indexed by t1: the value on the initial slice, and interpreted in terms of
a single embedding�t1 corresponding to this slice.] Indeed as regards β, one can go
so far as to reinterpret it in terms of changes of coordinates on a single hypersurface.

Moreover, from the spacetime perspective α and β depend on the spacetime met-
ric g as well as on the foliation (a partly invertible relationship [483]). For a fixed
foliation, α and β are identified with pieces of g. E.g. these can be formulated
using the pull-back �∗(g) of g by the foliation � : � × R → m in coordinates

�Xμ, μ = 0 . . . 3, on � × R that is adapted to the product structure: �Xμ=0(x, t) = t .
Here [483] �Xμ=1,2,3(x, t) = xμ=1,2,3(x) for xa, a = 1,2,3 some coordinate system
on �.

The components of �∗(g) are (31.5),

(
�∗g
)

0a(x, t) = βb(x, t)hab(x, t), (31.11)
(
�∗g
)

00(x, t) = βa(x, t)βb(x, t)gab(x, t)− α(x, t)2. (31.12)

In this way, ADM’s conception of the split can be replaced by one based on folia-
tions [483, 576]. This can be interpreted as �ref : � × R → m with respect to some
choice of reference foliation.

Let us end by noting that whereas Mi corresponds to Diff (�) in an obvious
manner, H is linked to a hidden invariance: Refoliation Invariance.
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31.7 Spaces of Foliations

Foliations are 〈m,h〉 → (a sequence of h’s on a given �), i.e. curves in
Emb(�,m). Foliations map to paths in Riem(�) and Sym(�), or jointly in
T(Riem(�)) or GR’s phase space.

foliationspace(m,g2) is the space of all foliations within a given spacetime g2.
Also PRiem((m),Fol): the space of all foliations of all spacetimes.

There are also intermediates, such as replacing each use of ‘foliation’ above by
‘foliation with a given property’. E.g. ‘foliation by CMC slices’, with ‘spacetime’
being understood to being restricted to ones for which one or more such foliations
exist. One could also specify ‘globally valid foliation’ or ‘locally valid foliation’,
with the latter case being paired with ‘pieces of spacetimes’ rather than whole space-
times. Also, one might replace ‘spacetime’ by ‘spacetime solving the Einstein field
equations of GR’, in which case one would have e.g. GR-sol(m,Fol) in place of
superspacetime(m,Fol). This distinction reflects that one can as well foliate any
pseudo-Riemannian spacetime, but one is interested in particular in foliations of GR
spacetimes.

31.8 Refoliation Invariance

Section 10.8 already accounted well for Refoliation Invariance. Note also that the
points depicted in Fig. 10.3.c) are points of a suitable fibre bundles over Riem(�)
so as to represent the hypersurfaces indicated. Finally, Refoliation Invariance hold-
ing implies assuming that the thick sandwich [552] is satisfied which does limit the
rigour and generality of the result.

31.9 Bubble Time and Its Dual: Many-Fingered Time

These are useful conceptual and technical characterizations of time in GR and in ar-
bitrary general frame Field Theory more generally. Multiple choices of timefunction
are valid herein, with each corresponding to a foliation. This validity reflects e.g. the
multiplicity of GR’s coordinate times and consequences of this upon performing a
space–time split, giving a ‘many-fingered’ notion of time. In GR, moreover, time
is local: in some places at a given time, a choice of finger is longer than at other
places (Fig. 31.3.b). The instant of time is a slice, with a continuous sequence of
non-intersecting slices forming a foliation as per Sect. 31.5.

Moreover, thinking of a particular slice as the surface of a bubble, one encounters
the further notion of bubble deformation3 under evolution due to the above local
aspect of GR time.

3This notion of deformation indeed coincides with that of hypersurface deformation and of defor-
mation algebroid.
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Fig. 31.3 a) Each finger of time corresponds to deforming the original hypersurface to a different
bubble front. b) Note that each of these is additionally a field theoretic notion, meaning that the
lengths of a given choice of finger in general vary from point to point. In this way, it corresponds
to an outbreak of small bubble deformations

‘Many-fingered time’ to ‘many bubble deformations time’ is furthermore a ‘ray
to wavefront’ type of duality in spacetime (Fig. 31.3.a).

As regards bubble time being more generally a field-theoretic feature rather than
just a feature of the geometrodynamical formulation of GR, bubble time was de-
veloped in the field-theoretic context by physicists Peter Weiss [890] and Sin-Itiro
Tomonaga [851]. As a functional integral method, this eventually bears close rela-
tion to quantum path integrals. Indeed, bubble time entered Canonical GR through
Dirac being aware [246] of its preceding development in QFT. Bubble time’s re-
lation to geometrodynamical deformations was subsequently further developed in
[454, 573, 574].

Use of bubble time in Geometrodynamics can moreover be seen as a ‘covariantiz-
ing’ feature—a mathematical implementation [573] of a prior insight of Wheeler’s.
This is attained through the formalism’s many-fingered dual aspect considering all
coordinate times at once. This can be envisaged as the bubble time presentation
concurrently covering an infinity of ADM presentations. Each ADM presentation
involves a particular local choice of coordinates, by which Refoliation Invariance
ceases to be manifest; passing to a bubble time formulation restores this. Dirac’s
own approach avoided making a local choice of coordinates; while this does not
coincide with Kuchař’s bubble time approach, the two are canonically related [573].
The bubble time formulation can also be envisaged as considering all foliations at
once.

Bubble time formulations are, moreover, one major way in which Parametrized
Field Theory model arenas enter Problem of Time considerations [586]. Arbitrary
slicing up ensues when one parametrizes a Field Theory; a salient difference in the
case of GR is that (as Sect. 17.1 explained) GR comes already-parametrized.

31.10 Issues Involving Specific Foliations

Specifier equations arising provides one further way in which the Foliation Depen-
dence Problem can rear its head. This is since in geometrodynamical theories, some
specifier equations are foliation-fixing equations.
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31.11 Various Other Arenas’ (Lack of) Foliation Concepts

Newtonian Mechanics and RPMs The notion of foliation retains some meaning
in RPMs, in the sense of a strutting. Firstly, such possess a lapse α or instant I like
notion. Secondly, they possess a point identification map [814] that corresponds to
such as the auxiliary rotations in moving along the dynamical curve in the redundant
setting.

However, the GR lapse and shift (or instant and frame in the TRiPoD version)
are more than just naïve elapsation and point-identification struts of this nature. This
is in the sense that they additionally pack together with the 3-metric configurations
to form a unified spacetime 4-metric, which turns out to have a number of further
significant features. In addition to Chap. 27’s mention of Diff (m), this now includes
the following notions of space–time split GR spacetime.

1) It realizes the standard isometric embedding mathematics.
2) It possesses Refoliation Invariance, by which reslicing and consequently unre-

stricted recoordinatization of GR spacetime render it not just a privileged slicing
evolving with respect to a single time. Indeed, it is also a theoretical framework
in which each slicing evolves with respect to one of the many fingers.

3) GR spacetime’s linear constraints are integrabilities of the Hamiltonian con-
straint (Chap. 24), so the two types of strutting are interlinked for GR but not
for RPMs.

4) Subsequently GR’s constraints form an algebroid versus RPMs’ algebra. More-
over GR’s constraints specifically form the Dirac algebroid. This firstly explains
Refoliation Invariance. Secondly, it can be interpreted in terms of deformations
of hypersurfaces. Indeed, the GR constraint algebraic structure is not a Lie al-
gebra because [501, 502] the 3 + 1 split has brought in Foliation Dependent
information, and this requires a much larger algebraic structure to encode. En-
coding Diff (m,Fol) for an arbitrary (rather than fixed) foliation Fol can now be
identified as the underlying reason for the much larger Dirac algebroid replacing
unsplit spacetime’s Diff (m) [since the Dirac algebroid is Diff (m,Fol)].

Minisuperspace’s Privileged Foliation (Diagonal) Minisuperspace spacetime
has a foliation privileged by the spatially homogeneous slices. Locally and with
one dimension suppressed, this gives a spherical shell version of Fig. 8.4.a). One
can similarly envisage tilted cosmologies in parallel with Fig. 8.4.b). This foliation
resolves Minisuperspace’s foliation issues in a very straightforward manner (see
however the next page’s caveat).

The only surviving constraints bracket is (24.16): just an Abelian algebra. This is
due to Di annihilating everything; consequently, subtlety (24.21) and the algebroid
structure are lost.

Minisuperspace and Minkowski Spacetimes in Arbitrary Frames Dirac [250]
already pointed out that for Minkowski spacetime M

4 in arbitrary frames—
implemented by arbitrary-hypersurface foliations— the full constraint brackets
(9.31)–(9.33) are required.
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The above observations carry over to a certain common interpretation of Min-
isuperspace: the one in which the Universe’s contents have to follow suit with the
homogeneity. A simple example in which this is not the case are the tilted homoge-
neous cosmologies [812] in the sense of Fig. 8.4.b). In this case, the fluid velocity
vector is not orthogonal to the group orbits. One can also consider arbitrary folia-
tions of Minisuperspace spacetimes corresponding to the fleet of observers within
now being free to accelerate as they please (cf. Fig. 8.4.c). Thus there are some sit-
uations in which spatial homogeneity is a great simplifier, though there are others
for which a fully general working is needed even if a spatially-homogeneous slice
foliation exists.

Finally, this carries some Equivalence Principle connotations.
Cosmic time, like any GR-type theory’s timefunction, defines spatial slices by

the dual level hypersurfaces that foliate the corresponding notion of spacetime. For
the FLRW models, these are of constant-curvature. This gives a constant-curvature
spatial hypersurface version of Fig. 8.4. (Exercise: determine which features do not
carry over!)

SIC (Fig. 31.4) This has a solvable thin sandwich due to its being algebraic by the
spatial derivative annihilating everything it acts on. However, this is accompanied
by breakdowns of nontrivialities of some other Background Independent aspects of
GR. In particular, constraints are no longer smeared, so the bracket of two H’s is
zero. With this trivialized, the Refoliation Invariance condition does not require any
3-diffeomorphisms to close up, and is independent of the 3-metric. In this particular
case, this is not a very desirable simplification, since it means one remains restricted
to the foliation privileged by spatial homogeneity. Indeed, one can see that this situ-
ation is the same as for unperturbed Minisuperspace. This also causes the constraint
brackets to form a genuine algebra, thus facilitating Quantization (but at the cost of
it being a restriction to a privileged foliation).

Let us next consider a model whose perturbation terms specifically depend on
spatial position in a manner which specifically produces field-theoretic constraints.
To zeroth order, this is as for Minisuperspace.

1 + 1 GR In the 1 + 1 case, Teitelboim noted that [836] if density-normalized
(nμnμ = h), undergoes the cancellation

√
h hij = 1, so a genuine Lie algebra ensues.

Nododynamical Counterpart of Refoliation Invariance In complex versions
based on imaginary Barbero–Immirzi parameter β , the Ashtekar–Dirac algebroid
sufficiently resembles the Dirac algebroid for Refoliation Invariance to follow
through. On the other hand, as Giulini pointed out, in the case of real β , the con-
nection not being a pull-back of a connection on m (Sect. 27.8) has the knock-on
effect of causing the Poisson bracket underlying Refoliation Invariance to not work
out either [363, 364]. Thus there are two conceptual reasons—tied to two of the
types of Background Independence—why to not introduce a β , or to select the orig-
inal β = ±i. In such a case, reality conditions would need to be faced by Ashtekar’s
original approach or one of Thiemann’s more modern approaches.
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Fig. 31.4 For Minisuperspace [31] and modewise SIC, Foliation Dependence works out trivially.
a) and c) are more elaborate depictions from a purely Minisuperspace perspective compared to
b) and d). For d), without loss of generality, dLi = id, due to all points being physically identical.
a) and c) are moreover needed for comparison with subsequent inhomogeneous perturbations. I.e.
e) as the slightly bumpy version of c) and f) as some indication of e) in the presence of small de-
formations. In fact the Hamiltonian constraint’s action and the evolution are typically between two
distinct small deformations of S3, as indicated in g). The reader can easily imagine that the ‘going
via a red or purple choice of a third spatial hypersurface’ extension of this progression nontrivially
manifests SIC’s Foliation Dependence Problem and its classical Refoliation Invariance resolution.
In this way, the complicated choice of third hypersurface case is nontrivial in this example

Research Project 25) In GR, the Dirac Algebroid formed by the constraints ascer-
tains Refoliation Invariance. Whether Supergravity possesses Refoliation Invari-
ance is then an interesting question [868], particularly given the notable distinction
(Sect. 24.10) between the Supergravity and GR constraint algebroids.



Chapter 32
Applications of Split Spacetime, Foliations
and Deformations

32.1 Deformation Approach to Geometrodynamics

We next consider a first answer to one of Wheeler’s principal questions: (9.1). Hoj-
man, Kuchař and Teitelboim [454] addressed this by assuming, firstly, 3-d spacelike
hypersurfaces described by Riemannian Geometry. More concretely, they assign pri-
mality to deformations of such hypersurfaces, subject to the further assumption—
also suggested by Wheeler [899]—of their embeddability into (conventional 4-d
semi-Riemannian) spacetime. These deformations are decomposed as per Fig. 32.1.

Evaluating Poisson brackets, these objects form the deformation algebroid [833]

{
Shufflei (x),Shufflej

(
x′)} = Shufflei

(
x′)δ,j

(
x, x′)+ Shufflej (x)δ,i

(
x, x′),

(32.1)
{
Shufflei (x),Pure

(
x′)} = Pure(x)δ,i

(
x, x′), (32.2)

{
Pure(x),Pure

(
x′)} = hab(x)Shufflej (x)δ,i

(
x, x′)

+ hab
(
x′)Shufflej

(
x′)δ,i

(
x, x′). (32.3)

Hojman, Kuchař and Teitelboim additionally declare a representation postulate,
by which obeying the deformation algebroid is to be entertained as a first princi-
ple for candidate Gravitational Theories. I.e. that for conventional spacetime to be
produced, Htrial and Mtrial

i constraints for these theories are to take a form such that
they close in the same manner as the deformation algebroid of Pure and Shufflei
(32.1)–(32.3). GR indeed satisfies this because the Dirac algebroid is of this form;
the main point however is in inserting much more general ansätze and proving that
the postulate narrows these down to the GR case alone.

The outcome is that the first Poisson bracket straightforwardly fixes Mtrial
i to be

the GR Mi , and the second solely restricts Htrial to be a scalar density of weight 1,
in each case for the reasons already familiar from Geometrodynamics (Sect. 9.14).
The lion’s share of the calculation involves the last Poisson bracket. Here, Hojman,
Kuchař and Teitelboim evoke two subsidiary assumptions: locality—that the metric
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Fig. 32.1 The general deformation of a hypersurface a) decomposes into b) a shuffling of points
around within that hypersurface corresponding to a constraint Shufflei . c) a pure deformation cor-
responding to a constraint Pure

is to be only locally affected by a pure deformation—and 2 degrees of freedom per
space point. They proceed by induction and by leaning on the 3-d version of Love-
lock’s Theorem [629] (the 4-d counterpart of which underlies Chap. 7’s Lovelock
simplicity postulates). This results in the GR form of H (including Λ); altering the
signature also preserves the result up to at most a sign in the algebraic structure of
the Poisson brackets of the deformation generators.

Teitelboim [832, 833, 835] also showed that the form of the Hamiltonian and
momentum constraints Hgrav-ψ and M

grav-ψ
i for GR alongside minimally-coupled

fundamental matter fields ψ also fits the Deformation Approach’s first principles.
Here the Einstein–matter system’s Hamiltonian and momentum constraints are of
the form

Hgrav-ψ = Hgrav + Hψ and M
grav-ψ
i = M

grav
i + M

ψ
i . (32.4)

Thus the representation postulate extends additively to the constraints’ matter con-
tributions, so these separately obey the Dirac algebroid.

Teitelboim succeeded in including minimally-coupled scalars, Electromagnetism
and Yang–Mills Theory in the above manner, alongside the extra postulate that
Hgrav-ψ is ultralocal in hij . Ultralocality holds trivially for the minimally-coupled
scalar, whereas it pins down an a priori unrestricted 1-forms Ai or AiI to have con-
jugate momenta obeying the Gauss or Yang–Mills–Gauss constraints respectively.
Teitelboim furthermore argued for the gauge symmetry of the latter two being a con-
sequence of embeddability [833, 835]. This approach leads to the further deduction
that the corresponding Lie algebra is a direct sum of U(1) and compact simple Lie
algebras, which is in accord with the Gell-Mann–Glashow Theorem outlined in Ap-
pendix E. See also Wheeler’s appraisal of Hojman, Kuchař and Teitelboim’s work
[900], and e.g. [17, 62, 363, 567] for subsequent commentary.

Research Project 26) Can the Deformation Approach be extended to include spin- 1
2

fermions and their Gauge Theories?
Research Project 27) Is there a Conformogeometrodynamics parallel of the Defor-

mation Approach to Geometrodynamics?
Research Project 28) Is there a Supergravity counterpart of the Deformation Ap-

proach?
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Fig. 32.2 Tilt–translation split

32.2 Universal Kinematics for Hypersurfaces in Spacetime
(ADM Split Version)

Let us first observe that the split with respect to a hypersurface � of the spacetime
covariant derivative ∇μ acting on a general spacetime tensor field does not just pro-
duce the obvious spatial covariant derivative Di [364, 577–579]. This is intuitively
clear from spacetime derivatives involving extra components of the spacetime con-
nection �(4). The extra pieces produced by such a split can, moreover, be given the
following lucid hypersurface-geometrical interpretations [576–579].

I) Hypersurface derivatives ◦ �β, as already encountered in Chap. 8, which imple-
ment ‘shift kinematics’.

II) Tilts are one part of the further translation–tilt split of pure deformations; this is
a local split around each point p on the hypersurface (Fig. 32.2).

The translation part is such that α(p) �= 0, {∂iα}(p) = 0.
On the other hand, the tilt part is such that α(p) = 0, {∂iα}(p) �= 0. The suitability

of this name [576–579] can most simply be seen in the spacetime formulation of SR,
where a boosted fleet of observers on a flat spatial surface tilted at a fixed angle to
the undeformed flat spatial surface. Cf. also the tilted flow in Fig. 8.4.b), in which
manner tilt plays a role in Cosmology.

III) Derivative couplings1 are terms linear in each of the extrinsic curvature and the
tensor field itself. Absence of such terms is known as the Geometrodynamical
Equivalence Principle [454], which is a statement concerning minimal coupling
(the complement of derivative coupling).

For example, in the case of a 1-form Aμ (so this example is illustrating adjunction
of matter) the 4-d covariant derivative’s pieces decompose as follows.

∇aA⊥ = DaA⊥ − KabA
b, (32.5)

α∇⊥Aa = −δ�βAa − αKabA
b − A⊥∂aα, (32.6)

∇bAa = DbAa − A⊥Kab, (32.7)

α∇⊥A⊥ = −δ�βA⊥ − Aa∂aα, (32.8)

1This name reflects that these feature in metric-matter kinetic cross-terms in theories with
nonminimally-coupled matter fields [577–579].
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Looking at the right hand sides, (32.6) and (32.8)’s first terms are hypersurface
derivatives, their last terms are tilts, and (32.5) and (32.7)’s last terms and (32.6)’s
second term are derivative couplings. Moreover, the antisymmetric combination of
derivatives entering Electromagnetism’s kinetic term ensures freedom from tilt and
derivative coupling terms.

N.B. that I), II) and III) constitute a universal set of hypersurface kinematics.
This is in the sense that arbitrary tensor fields can exhibit these, and no other, hy-
persurface kinematics features.

32.3 Thin Sandwich Completion in Terms
of Hypersurface Kinematics

The Thin Sandwich treatment of Chap. 18.9 can be extended as follows by taking
universal hypersurface kinematics into consideration.

Thin Sandwich 6) Thin Sandwich 4) permits one to construct an emergent version
of the tilt, ∂bN.

Thin Sandwich 7) Thin Sandwich 3.a), 4.a) and 6) form the set of universal kine-
matics for split spacetime tensor fields, by which their construction further amounts
to being able to construct a wide range of spacetime objects. These include the
spacetime connection (Sect. 34.5), and, in the extension of the thin sandwich to
include tensor field matter, the spacetime form taken by this tensor field matter.

32.4 Space–Time Split Account of Observables or Beables

We next continue Sect. 27.6’s considerations of whether Diff (M) is a large enough
group, by now allowing furthermore for space–time split formulations. A third
group is

Data(m) := {εμ( �X; �CD ]}, (32.9)

where ‘CD’ denotes dependence on the fields only through the Cauchy data on a
spatial hypersurface �. The Author chooses this name for the group to emphasize
its relation to the notion of data-gauge.2 The associated Data-invariance involves

2Both notions are appropriate in canonical formalisms, hailing back to Dirac’s formulation of The-
oretical Physics in terms of Poisson brackets. Emphasizing this pair of notions’ similarities by
giving them similar names goes back to Bergmann and Komar, who termed them ‘D-group’ and
‘D-gauge’ respectively. Moreover, their ‘D’ stands for ‘Dirac’, whereas the current book’s use of
‘data’ is additionally descriptive of the joint underlying conceptual nature of these entities. This
renaming has further practical value since, firstly, coincident authorship need not imply conceptual
similarity, especially in the case of an author of Dirac’s creative magnitude. Secondly, this pair
of notions remains relatively unknown due to resting upon under-emphasized subtleties. Conse-
quently, many readers will not have come across these notions before, so this book presents them
under clear descriptive names.



32.4 Space–Time Split Account of Observables or Beables 395

transformations which are unchanged under 4-d coordinate transformations that re-
duce to it on initial � on which the canonical Cauchy data are defined. For instance
any spatial 3-vector, hab or pab are Data-invariant.

The fourth and final group we consider in this discussion is, using footnote 2’s
notation,

PDigg(m) := {εμ( �X; �] ∈ Digg(m)
∣∣ εμ = nμ( �X)ν0 − δμa νa

}
. (32.10)

This group is also historically due to Bergmann and Komar [134], and has on some
occasions been referred to as ‘the Bergmann–Komar group’ [724], though this term
is somewhat ambiguous and we use a descriptive name instead. The name ‘PDigg’
is rooted upon this group’s interpretation as a projection, which was discovered in
physicist Lawrence Shepley’s collaboration with Pons and Salisbury [721]. In more
detail, it is the projection from configuration–velocity space T(q) to Phase (via a
Legendre map) of Digg(m). Hence PDigg stands for ‘projected Digg’ (or ‘Phase
counterpart of Digg’) In effect, the whole of Digg(m) itself cannot be completely
realized in phase space, by which adopting the smaller PDigg(m) instead is moti-
vated.

The corresponding active canonical transformation is

Gν = �Pμ �̇νμ + {�Hμ + �βρfνμρ �Pν
}�νμ. (32.11)

Here �Pμ are the momenta conjugate to �γμ := [α,βi]: the spacetime 4-vector of
auxiliaries. Also Hμ denotes the 4-vector of constraints [H,Mi]. Finally, the fνμρ(h)
are the Dirac algebroid’s structure functions wrapped up in the spacetime tensor
form corresponding to �Hμ.

Bergmann and Komar [134] furthermore posited a number of relations between
the four groups. This led them to conclude that Dirac and Bergmann observables
turn out to coincide, but they provide no proofs for the underlying relations and this
claim has since been contested [630, 920]. We next pass to considering some exam-
ples and counter-examples of relevance to the theory of Bergmann observables.

Example 1) The Weyl scalars (Sect. 27.5) can additionally be considered as a
concrete proposal [134, 720] for observables in the sense of Bergmann. Indeed
Bergmann and Komar converted the spatial components of the spacetime Riemann
tensor and contractions with the spatial hypersurface normal nμ to be purely in
terms of canonical variables. This means that this formulation has hab and pab but
not lapse or shift. I.e. the Weyl scalars can be written in terms of the canonical
variables, as befits many of the expectations about observables. In this application,
they are to be interpreted as intrinsic coordinates, and also as ‘making use of a set
of scalars as a gauge fixing’.

Counter-example 2) [720] argue that Torre’s No-Go Theorem proves nonexistence
of constant-in-time observables, i.e. constants of the motion, built as spatial inte-
grals. This is as opposed to its referring to Bergmann observables such as the Weyl
scalars. On the other hand, Dittrich and Thiemann’s approach [251, 845] gets round
Torre’s No-Go by [722, 724] involving series of Cauchy data derivatives that are in
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principle up to infinite order. Finally, Halliwell’s classical construct avoids Torre’s
No-Go by not being local in space or time and avoids Kuchař’s by not being of
form (O.9).

Let us end by examining a few features of the Digg and PDigg formulations which
are retained in a model arena that is rather more tractable than full GR.

Example. Some of this section’s issues already have nontrivial counterparts for
Temporally Relational Mechanics. In place of Diff (m), one now has

(reparametrizations) R = {ε(t)}, (32.12)

instead of Digg(m),

Rigg = {ε(t;qI ]} : (32.13)

the reparametrization-induced gauge group, and instead of PDigg(m),

PRigg = {ε(t;qI ] ∈ Rigg
∣∣ ε = t ξ

(
t;qI ]/α} : (32.14)

the projective version of the previous. How complete the (P )Rigg are as a model of
the (P )Digg(m) remains to be worked out in detail.

Such models already suffice to exhibit the distinction in size of the transformation
group in passing from Rigg to PRigg. On the other hand, Lee and Wald’s [615]
further inter-relation between Digg(m) nontriviality and GR’s Dirac algebroid fails
to work for Rigg. This limits the extent to which Rigg functions as a model arena
for Digg(m).

32.5 Difference Between Hamiltonians and Gauge Generators

The next two Secs are based on works of Pons, Salisbury and Sundermeyer [722,
724]. The ‘evolution’ generator δt{ �γ · �H + �̇γ · �P} does serve to replace solutions at
time t by the original solutions evaluated at t − t.. However, this is merely its action
on one particular member of each equivalence class of solutions. I.e. the particular
member for which the lapse and shift form the chosen explicit 4-vector function �γ .
Its action on all other members of these equivalence classes generates variations
different from global time translations.

In more detail, points p ∈ sol�—the configuration space of the dynamical fields
�—are specific spacetimes (plus matter fields when relevant), i.e. solutions of the
equations of motion as described in a particular coordinatization.

Let us denote by D the data for the dynamical fields on some spatial hypersur-
face that is labelled by ‘initial time’ t0. Given a specific selection of the arbitrary
functions of the dynamical variables λμ, the corresponding Dirac Hamiltonian is
H = �γ · �H + �λ · �P. This dictates—via the Poisson brackets—the time evolution in p.
In particular, for an infinitesimal t., this Hamiltonian gives what the field data D′ are
on the subsequent spatial hypersurface labelled by t0 + δt. If we carry out this pro-
cedure for all times t, of course a ‘null operation’ ensues: we have remained exactly
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at the same point p ∈ sol�. This simply reflects that the dynamics as described by a
given observer takes place within a given spacetime in a given coordinatization.

Finally consider the gauge generator that, after suitable choice of the descriptors,
happens to coincide in its mathematical form with the Dirac Hamiltonian at time t0.
By this coincidence, its action likewise transforms the field data D into D′. However,
these data D′ are now to be interpreted at time t0, because the notion of gauge trans-
formations in question are equal-time actions. What has occurred is that we have
moved from p to another, albeit gauge-equivalent, spacetime p′. I.e. it is mathemat-
ically another point in S, but it is physically the same. Next suppose we undertake
the same procedure for any time t while continuing to assume that the descriptors
at time t match up with the lapse and shift at t. Thus we end up having mapped the
whole spacetime p to p′. Notice that the field configurations in p and p′ differ solely
as regards their time labels. In this way, a passive diffeomorphism t → t − δt renders
both descriptions mathematically identical. This demonstrates that the gauge gen-
erator’s capacity to mimic the Hamiltonian is conceptually unrelated to there being
real physical evolution in a given spacetime p. Therefore dynamical evolution in p
is not the same notion as gauge action on p.

32.6 ‘Nothing Happens’ Fallacy

A common type of frozen argument is that (9.39) means that nothing happens. How-
ever, the inference that ‘nothing happens’ is a fallacy on the following grounds
[722].

On the one hand, following from the preceding Sec, we have an ‘evolved config-
uration’ D′ lying to the future of an ‘initial configuration’ D. On the other hand, D
and D′ are related by a gauge transformation. Since ‘gauge transformations do not
alter the physics’, we deduce that ‘the physics’ in D and D′ is the same. So the future
configuration is gauge-equivalent to the initial configuration and therefore ‘nothing
happens’.

The fallacy comes from each of these two hands using a single common lan-
guage for two sets of things that are in fact conceptually different in each case.
Firstly recollect from Chap. 24.8 the distinction between gauge transformation in
Dirac’s sense and in Bergmann’s. Furthermore there are also two corresponding no-
tions of ‘the physics’. The second hand involves mapping solutions of the equations
of motion to other such solutions. Thus it requires the ‘entire field configurations’
of a ‘whole-path’, ‘whole-history’ or ‘whole-spacetime’ physics perspective, which
rests on involves Bergmann’s notion of gauge. In contrast, the first hand involves
‘configurations at a given time t0’ (D and D′). I.e. a ‘time-sliced’ physics’ dynam-
ical perspective in which Dirac’s notion of gauge applies. In this way, each of the
two hands in fact uses a distinct notions of ‘gauge’ and also a corresponding dis-
tinct notion of ‘the physics’. Since the ‘nothing happens argument’ does not take
these differences into account, it is rendered fallacious. See [524, 720, 723, 845] for
further support of this point.
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Finally, this resolution of the ‘nothing happens paradox’ corresponds to the dis-
tinction between time-dependent beables DD(t) for t an intrinsic coordinate scalar
that constitutes a gauge fixing. This is as opposed to just a constant DD (see Chap. 3.4
of [724] for more on this point). Clearly the former are not ‘constants of the motion’!

32.7 Discussion

Let us first comment that [720, 722, 723] are supportive of the notion of partial
observables. [722] does limit support in the sense of insisting that partial observables
be spacetime scalars (a standard tenet of Internal Time Approaches, which we touch
upon two sections down). None the less, [720] argues for Weyl scalars exemplifying
partial observables (which of course do in this case comply with being spacetime
scalars). In this way, Rovelli, Dittrich and Thiemann’s works on observables acquire
yet wider conceptual support and motivation.

Research Project 29) Can Pons et al.’s work [722, 724] be rendered compatible with
Temporal Relationalism?

Research Project 30) Do the conceptual and technical differences between GR and
Supergravity alter the outcome of Pons et al.’s work?

Let us end by noting that Bergmann’s approach to observables in fact involves not
only spacetime primality but also the Canonical Approach at a secondary level.
Moreover, the enlargement of Diff (m) to Digg(m) [or PDigg(m)] can now also
be viewed as a particular form of Spacetime Relationalism, with some inter-relations
with Canonical-and-Covariant Approaches. See also the last Section below for an
outline of Histories Theory counterparts.

32.8 Foliation Considerations end Unimodular Approach to
Problem of Time

Let us next remark that classical knowledge of foliations suffices to end the Uni-
modular Approach at the level of counting degrees of freedom, as follows. In such
models, the cosmological constant Λ itself plays the role of the variable with an
isolated linear momentum; cf. Eq. (20.6). At the quantum level, this would get pro-
moted to the derivative with respect to the unimodular internal time function tUni,
due to the presence of which the corresponding Quantum Theory would be un-
frozen. There is however a large mismatch between this single time variable and
the standard Generally-Relativistic concept of time, which is ‘many-fingered’ with
one finger per possible foliation. This is clear from the derivative with respect to
tUni being a partial derivative, whereas a GR problem of Time resolution would be
expected to be in terms of a functional derivative. The geometrical origin of this
mismatch is that a cosmological time measures the 4-volume enclosed between two
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embeddings of the associated time functional. However, given one of the embed-
dings, the other is far from uniquely determined by the value of tUni. This is because
pairs of embeddings that differ by a zero 4-volume are obviously possible due to the
Lorentzian signature and cannot be distinguished in this way.

32.9 Spacetime to Foliations to Internal Time

We next pass to considering internal time candidates within a worldview in which
spacetime is presupposed [483]. In such a setting, internal time candidates are re-
quired to be spacetime scalars (this is a different manifestation of a Spacetime Con-
struction Problem from that in the next Chapter). Functions of this form succeed,
moreover, in being Foliation Independent.

In contrast, in Canonical Approaches, functionals of the canonical variables are
involved. Consequently, there is no a priori reason for such to be spacetime scalar
fields, so one is faced with the following dilemma.

1) Perhaps one is to find functionals which are spacetime scalars, so as to estab-
lish Foliation Independence by construction, alongside recovery of the standard
spacetime interpretation.

2) Perhaps instead one is to find some new classical means of arriving at the stan-
dard spacetime interpretation. The next Chapter develops this further. We first
make a detour to Histories Theory, motivated by how 1970’s to 1990’s Internal
Time Approaches have accrued various substantial histories-theoretic descen-
dants from the 1990’s onward.

32.10 Covariant-and-Canonical Histories Theory

Such would be expected to concurrently exhibit Temporal, Configurational and
Spacetime Relationalism cast in terms of histories, and both configurational and
histories notions of observables or beables.

Example 1) Savvidou pointed out [11, 765, 768, 769] that Isham–Linden type His-
tories Theory has a distinct structure for each of two conceptually distinct notions
of time.

I) A kinematical notion of time that labels the paths or histories as sequences of
events. (This is a ‘labelling parameter of temporal logic’ taken by [11] to also
mean causal ordering, though see also [503].)

II) A dynamical notion of time that is generated by the Hamiltonian.

Savvidou subsequently argued that having these two distinct notions of time allows
for such a Histories Theory to be canonical and covariant at once. This is clearly
of interest in understanding, and reconciling various viewpoints in, QG.
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Hypothetical Example 2) One could also follow solving the GR momentum con-
straint at the Lagrangian Best-Matching level or at the Hamiltonian level by finding
a single ‘time-map’ Histories Theory.

Example 3) Kouletsis and Kuchař provided a means of including the set of foli-
ations into an extension of ADM’s geometrodynamical Phase that is Generally
Covariant. This amounts to extending Phase to include embeddings so as to take
into account the discrepancy between the Diff (m) algebra and the Dirac algebroid.
(This is itself an older idea of Isham and Kuchař [501, 502].) It is implemented here
by constructing of a ‘time map’ and a ‘space map’; indeed, one can set up a Histo-
ries Theory with these features. They subsequently reduce away the ‘space-map’
structure to pass to a new ‘time-map’ Kouletsis and Kuchař [568] considered the
above for the bosonic string model arena, whereas Kouletsis [566] considered it
for classical Geometrodynamics.

Example 4) As a further Combined Approach, consider Kouletsis’ [566] tie be-
tween Histories Theory, the Internal Time Approach and the Problem of Beables.
This program follows on from the preceding in involving a space map as well as a
time map for how the family of geometries along each path or history embed into
spacetime.

Let us end by note that, despite being based on classical paths, the Bergmann and
histories notions of observables are technically and conceptually distinct extensions
of which gauge groups one can attribute to a physical theory. This is clear from
the shift in basic canonical entities in the latter, with the ensuing introduction of a
histories brackets algebraic structure absent in Bergmann’s work and with a number
of subsequent parallels to Dirac’s notion of observables. None the less, Savvidou
[769] showed that Hist-Phase can also carry representations of Digg(m).



Chapter 33
Spacetime Construction and Alternative
Emergent Structures

The Relational Approach places on a common footing theories which have the same
configuration space q but different physically irrelevant transformation groups g
(cf. Sect. 27.7). This approach permits investigation in greater generality of why
some symmetries happen to be widely shared in nature. This Chapter lays out a more
general version of the Relational Approach, which proceeds by considering not ac-
tions s posited to have a pre-determined list of symmetries, but rather a broader
range of actions corresponding to the ‘zeroth principles’ of the relational postulates.
We now consider families of actions providing families of constraints and we then
put each family together through the TRi Dirac-type Algorithm. This reveals most
of the other possibilities to be inconsistent. Furthermore, filtering theories in this
way or by presupposing g do not always produce the same outputs. For instance,
we shall see that whereas GR with local SR arises both ways, the alternatives ac-
companying GR in each case differ. This demonstrates the Relational Approach’s
capacity to find alternative theories. The Relational Approach also re-expresses the
choice between universal local theories of Relativity in algebraic terms, as various
ways in which the constraint algebraic structure can close.

Spacetime Construction is most clearly explained as a procedure after consid-
eration of Constraint Closure and Refoliation Invariance. This is in the sense of
involving a more general range of action or constraint ansätze within which the GR
case—already known to comply with these other facets—sits. However, in space and
configuration space primary approaches, Spacetime Construction is logically prior
to considering Spacetime Relationalism and foliations. I.e. construct spacetime first,
then investigate its own Relationalism, its foliations and whether it possesses Refo-
liation Invariance. Correspondingly, to complete the Relational Approach, we first
consider Spacetime Construction, and then re-visit Spacetime Relationalism and
Refoliation Invariance in this emergent spacetime context in the next Chapter.

Since such a Spacetime Construction does not assume spacetime features at the
outset, it realizes the Broad worldview to a greater extent than GR as Geometrody-
namics does.

The family of actions considered provides a family of Htrial constraints, which
are then restricted by the TRi Dirac-type Algorithm. In this way, a second answer
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to Wheeler’s question (9.1) arises. This program was started by Barbour, Foster and
ó Murchadha [109], was continued by the Author [15, 17, 19] and eventually fin-
ished in collaboration with physicist Flavio Mercati [62]. The Relational Approach
starts from the assumption of space, which is more minimalistic than starting with
spacetime. This goes beyond Wheeler’s further suggestion that embeddability into
spacetime is necessary, proceeding instead through Constraint Closure as an exhaus-
tive restriction from which embeddability is deduced as one option. In this way,
the Relational Approach additionally incorporates a type of Spacetime Construc-
tion [62], in the sense of constructing spacetime from space. Because this approach
assumes less structure, this construction is harder than splitting space. In particular,
one has less structure available than in the Deformation Approach, which did adhere
to Wheeler’s further suggestion.

It is now additionally natural to further ask why Diff (�) and Riem(�) them-
selves are in use. There is space in this Chapter to investigate the first of these—
we also contemplate g = id, Conf (�) � Diff (�) and VPConf (�) � Diff (�): the
group of volume-preserving conformal transformations on �. On some occasions
the additional caveat in (24.7) is realized. Consequently, one is forced to alter one’s
candidate g due to integrability conditions appearing. Riem(�) itself is adopted
here due to the virtues of modelling space with positive-definite metrics as outlined
in Part I and Appendix D.

We finally point to the second great facet decoupling uncovered in this book:
noninterference between Assignment of Beables and Spacetime Construction;
Figs. 25.1 and 34.6 each follow on from Fig. 24.2 without mutual interference.

33.1 Relational First Principles Ansatz
for Geometrodynamical Theories

We begin with the usual choice of q = Riem(σ ) and g = Diff (σ ). However, let us
now entertain a more general geometrodynamical ansatz for a family of geometrical
actions built from differentiable and metric level spatial objects [37, 62, 109],

sw,y,a,b =
∫∫

σ
d3x

√
aR + b ∂sw,y. (33.1)

Here, ∂sw,y is built out of the usual ∂F and the more general if still ultralocal su-
permetric Mw,y with components Mabcd

w,y := √
h{hachbd −w habhcd}/y. This ansatz

also assumes that the kinetic metric is homogeneous quadratic in the changes. The
inverse Nx,y of Mw,y has components Nx,yabcd := y{hachbd − x habhcd/2}/√

h for
x := 2w/{3w − 1}. The parametrization by x has been chosen such that GR is the
w = 1 = x case. w = 1/3 is excluded due to rendering M non-invertible.

The conjugate momenta are then

pij = Mijkl
w,y

∂Fhkl
2 ∂I

. (33.2)
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The quadratic primary constraint is

Htrial = Hx,y,a,b := Nx,yabcdpabpcd − aR + b = 0, (33.3)

and the secondary constraint is just the usual GR momentum constraint Mi again. So
if one takes Diff (σ ) to be physically meaningless, the only choice is the contraction
of the Codazzi embedding equation (8.28) giving the constraint Mi .

33.2 Geometrodynamical Consistency, Local Relativity
and Spacetime Construction

Consistent Geometrodynamics Theorem If the geometrodynamical ansatz (33.1)
is assumed, the following four outcomes are consistent.

i) Recovery of GR.
ii) A 1-parameter family of geometrostatics.

iii) A 1-parameter family of strong gravity theories.
iv) A group of formulations and theories based upon

Di{p/
√

h} = 0. (33.4)

Consistent Relativities Theorem Upon adding minimally-coupled matter, emer-
gent local Relativity is Lorentzian for i), Galilean for ii) and Carrollian for iii). This
is in the sense of an emergent shared propagation speed that is finite for i), infinite
for ii) and zero for iii).

Classical Spacetime Construction Theorem In case i), GR spacetime emerges by
construction from assuming of just space, Temporal and Configurational Relation-
alism.

Toward establishing these theorems [15, 62, 65, 109], form the Poisson brackets
of the constraints and apply the TRi Dirac-type Algorithm. This gives [62] (9.31)
and (9.32) with the family of constraints Hx,y,a,b in place of H, alongside

{
(Hx,y,a,b | ∂J), (Hx,y,a,b | ∂K)

}

= −2a y
(
Djpi j + {x − 1}Dip

∣∣ ∂J
←→
∂ i∂K

)

= a y
(
Mi + 2{1 − x}Dip

∣∣ ∂J
←→
∂ i∂K

)

= a y
(
Mi

∣∣ ∂J
←→
∂ i∂K

)+ 2a y{1 − x}(Dip
∣∣ ∂J

←→
∂ i∂K

)
. (33.5)

This picks up an obstruction term to a brackets algebraic structure [62] in four
factors:

2 × a × y × {1 − x} × (Dip
∣∣ ∂J

←→
∂ i∂K

)
. (33.6)
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Each factor provides a different way in which to complete the TRi Dirac-type Algo-
rithm (Fig. 33.1). The first three are strongly vanishing options (Sect. 33.3), whereas
the fourth is a weakly vanishing option which includes cases in which the TRi Dirac-
type Algorithm has further steps (Sect. 33.6). Any of these options give automatic
closure, so Hx,y,a,b is rendered first-class.

33.3 Strongly Vanishing Options: GR, Strong Gravity,
Geometrostatics

GR with Embeddability into Spacetime The third factor in (33.6) strongly fixes
[109] the supermetric coefficient to x = 1; correspondingly, w = 1. This is indeed
the DeWitt value that characterizes GR (cf. Chap. 8.10). In this case, GR spacetime
is furthermore constructed as follows.

Construction I) The Machian version of the Thin Sandwich construct of Chap. 18.9
applies. One can now construct an object Cab interpreted as an emergent object of
the Machian relational form

d(change)

d(other change
: Cab := ∂Fhab

∂I
. (33.7)

Furthermore all the geometrical change is given the opportunity to contribute to
the ∂I that each individual change is compared to here, so it is a STLRC entity.

Construction II) H subsequently takes the form of the double contraction of Gauss’
embedding equation that is the GR Hamiltonian constraint. Thus it matches the
contraction of Codazzi’s embedding equation that is the GR momentum constraint.
Consequently, a pair of embedding equations arise [832], which constitute the 4 0μ
components among the 10 components of the 4-d Einstein field equations. The
equations of motion turn out to be a linear combination of the Ricci embedding
equation (34.20), the contracted Gauss embedding equation and the metric times
further contractions. In this way, these equations form the TRi version of the re-
maining 6 Einstein field equations. So in this approach, one recovers equations and
makes a meaningful grouping of them. Contrast the decomposition into projection
equations of Chap. 8, or Wheeler’s suggestion of presupposing embeddability into
spacetime of [454, 832] and Chap. 31.

Construction III) One can then posit an ambient metric 4-geometry that the metric
3-geometry of space is locally embedded within. This could be the conventional
spacetime if its signature is indefinite alias Lorentzian: − − + + +, correspond-
ing to a > 0. In this case, one lies within the scope of the standard Mathematical
Physics of Appendix O.7 applying locally. Alternatively, it could be the counter-
part whose signature is positive-definite alias Euclidean: + + + +, corresponding
to a < 0. The distinction between these is not made by the Dirac Algorithm: both
are consistent. See two Sections down for a physical dismissal of this Euclidean
alternative.
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Construction IV) The momentum formulation is entirely unaffected by the distinc-
tion between (8.14) and (34.4). The ADM and relational momenta coincide in
the x = 1 = w, y = 0 case for which they all exist. Thus in this case comparing
the ‘ADM-momentum to Kab relation’ and the ‘relational momentum to Cab rela-
tion’ permit the identification of Cab and 2 Kab . One is henceforth entitled in this
x = 1 = w, y = 0 case to use the shorthand

∂Fhab
2 ∂I

= Kab. (33.8)

The conventional extrinsic curvature interpretation can then be recovered by hy-
persurface tensor spacetime-space duality.

Construction V) At the level of the action, the relational action (15.7) ensues from
the x = 1 strong fixing. This can be repackaged as, firstly, the TRi-split action
(34.6), and, secondly, as the Einstein–Hilbert action. [Moreover, this end-product
is a local construct in the same senses that the field equations are.]

y = 0: Geometrostatics In this case, the trial quadratic constraint ceases to con-
tain a kinetic term. This option was already mentioned in Teitelboim’s work [835].
It has a non-dynamical interpretation as a geometrostatics.

Moreover, if one insists that the action must be built from first principles, this
geometrostatics option is not possible. This corresponds at the most primary level
to the Relational Approach precluding a geometrodynamics in which the geometry
indeed undergoes nontrivial dynamics. On the other hand, if one attributes primary
significance to the constraint algebroid, this option is allowed in both such a restric-
tion of the Relational Approach and in the Deformation Approach [835].

a = 0: Strong Gravity In this option, the potential ceases to contain a Ricci scalar
since the cofactor of a in the action is R, For w = 1 = x, this amounts to recovering
the Strong Gravity that corresponds to the strong-coupled limit of GR. However,
removing the above obstruction term in no way requires fixing the supermetric co-
efficient w. Instead, a family of theories for arbitrary w arises in this manner. These
can moreover be interpreted as strong-coupled limits of Scalar–Tensor Theories that
likewise apply in the vicinity of singularities in those theories. Clearly from each
worldline only being able to communicate with itself, other than near singularities
these geometrodynamical theories very much do not match everyday Physics.

Henneaux’s work [445] can moreover be interpreted the hypersurface derivative
or Best Matching corrected derivatives maintaining 4-space to 3-space duality, with
the 4-objects involved having a distinct nature from GR’s. Henneaux [445] and Teit-
elboim [835] followed this up by working out the Strong Gravity analogue of the
geometry of hypersurfaces within spacetime. This turns out to have a degenerate-
signature manifold (0 + ++) for its split space-time structure. In this way, Strong
Gravity serves as an example that such duality is not exclusive to GR spacetime and
its Euclidean counterpart.

So it turns out that both Geometrostatics and Strong Gravity greatly simplify
the constraint algebraic structure. This is because these are factors in common with
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the momentum constraint arising from the Poisson bracket of two trial-Hamiltonian
constraints. In this way, Mi is not an integrability of the corresponding Htrial.

Additionally, by strongly killing off the right hand side of the Poisson bracket of
two H’s, the algebraic structure ceases to involve any structure functions. Thus it is
a bona fide algebra rather than an algebroid.

All in all, (24.18), (24.19), (24.23) are obeyed [472, 835] in each of the last two
cases. These correspond to entirely opposite representations of the object H: pure
potential and ‘pure kinematical plus Λ-term’ cases respectively.

33.4 Family Ansatz for Addition of Minimally-Coupled Matter

This extension is required for the next Section’s consideration of the local Relativ-
ities corresponding to each option. This is a requirement from the perspective that
these local Relativities are not a property of some container spacetime but rather of
all the physical laws bar Gravitation (which is less local as per Chap. 7). Thereby,
the framework requires extension to include at least two matter field laws.

To this end, we introduce fundamental bosonic matter fields ψA of unspecified
tensorial rank; it turns out that a sufficient set of these can be treated all at once.
These are as per Chap. 18.11 but with split-off species-wise coefficients yψ and aψ,
We use

∂sgrav-ψ =
√
∂sgrav 2
y,w + ∂s2

ψ with ∂s2
ψ :=
∑
z∈Z

y−1
ψ Mzz′∂ψz∂ψz′

for configuration space metric Mzz′ blockwise corresponding each species ψz, taken
to be ultralocal in the spatial metric h and with no dependence on the matter fields
themselves. Also

Wgrav-ψ := aR + b +
∑

ψ
aψUψ.

This can only depend on the spatial derivatives of the spatial metric through the
spatial Christoffel symbols.

For many purposes an equivalent starting point is

Hx,y,yψ,a,aψ,b := Nx,yabcdpabpcd +
∑

ψ
yψNzz′

!z!z′/
√

h

− aR + b +
∑

ψ
azUz = 0. (33.9)

For these models, changes in all the matter degrees of freedom do have the oppor-
tunity to contribute to

t em
g-free =

∫
∂sgrav-ψ/

√
2W

grav-ψ
. (33.10)
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The new Poisson bracket of Hx,y,yψ,a,aψ,b with M
grav-ψ
i is the obvious result of a

3-diffeomorphism Lie dragging. On the other hand,1

{(Hx,y,yψ,a,aψ,b | ∂J), (Hx,y,yψ,a,aψ,b | ∂K)}

=
(
ay
{
M

grav-ψ
i + 2{1 − x}Dip

}

+
∑

ψ

{
ay

⌈
!Z δ£∂LψZ

δ∂Li

⌉
− 2aψyψM

ZZ′
!Z

∂Uψ

∂ ∂iψZ′

}

− 2y

{
pjk − x

2
p hjk

}
hil
∑

ψ
aψ

{
∂Uψ

∂�cjl
hck − 1

2

∂Uψ

∂�cjk
hlc
}∣∣∣∣∂J

←→
∂ i∂K

)
.

(33.11)

33.5 The 3 Strong Obstruction Factors as Relativities

The GR Case of Geometrodynamics Possesses Locally Lorentzian Relativity
Here ay = azyz arises, by which matter wave equations are formed between the
first and second underlined terms. In this way, cz = cgrav is enforced: each of these
matter fields ψz is forced to have the same maximum propagation speed cmax—and
consequently null cone—as Gravitation. Thereby, any pair of these matter fields ψz,
ψz′

are forced to share these entities with each other: cz = cz′ and a common null
cone for z and z′. In this way, the Relational Approach derives rather than assumes
the Lorentzian Relativity Principle, as a consistency condition [62, 109].

The Euclidean-signature case which also arises in this manner does not occur
physically as is clear from the observed existence of finite propagation speeds.

Geometrostatics Possesses Locally Galilean Relativity Here the shared cmax =
∞. This amounts to the local SR null cones have been squashed into planes, which is
the Galilean limit of causal structure: Fig. 4.4.b). In the flat-space case, this amounts
to a derivation of Galilean Relativity, in fact of an in-general curved-space geomet-
rostatics which is a ‘Galileo–Riemann’ generalization [62].

Strong Gravity Geometrodynamics Possesses Locally Carrollian Relativity
Here the shared cmax = 0. Thus the null cones become squeezed into lines, so
that each point can only communicate with its own worldline. This consequently
possesses Carrollian Relativity (Sect. 4.1). Henneaux [445] pointed out that Strong
Gravity exhibits this limit of null cones (Fig. 4.4.c). Physicist John Klauder [558]
additionally studied such a zero propagation speed matter sector: ‘ultralocal matter

1The third term’s ‘ceiling parenthesis’ denotes the extent to which the variational derivative inside
acts. The above-listed matter fields all have no Christoffel symbol terms in their potentials, so the
last underlined grouping drops out.
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fields’. Finally, in these last two cases (some of) the matter can be the opposite lim-
iting case to the gravitational sector. Of course, none of the options in this paragraph
are physically realistic.

Discussion As a package, the three possible strong ways of evading the obstruc-
tion term are the maximum propagation speed cmax = 0, finite and ∞ trichotomy.
Local Relativity now follows from closure of the constraint algebroid rather than
being postulated a priori as it was historically by Einstein. Physical observation of
finite maximum propagation speed serves to select GR alone out of the above set of
theories.

As an obstruction result, the three types of localized Relativity arise in a similar
manner to the much-vaunted critical dimensions 26 and 10 for bosonic strings and
superstrings respectively (Sect. 11.8). This is in the sense that all of these are picked
out as strong impositions that produce a closed algebraic structure of constraints.
Albeit this Chapter’s case involves the classical Poisson brackets closure as a Dirac
algebroid (9.31)–(9.33) or the simpler bona fide algebra (24.18), (24.19), (24.23).
This is in contrast with String Theory’s quantum commutator closure as a Virasoro
algebra or its supersymmetric counterpart ([368, 385, 386] and Appendix V).

Moreover, suppose one adopts the physical choice of locally Lorentzian Rela-
tivity. This comes hand in hand with deducing embeddability into a GR spacetime,
a formalism and worldview which has long been known to be widely insightful
[440, 874].

This Chapter can furthermore be interpreted as an answer to Wheeler’s question
(9.1). So the GR form of H arises as one of but a few consistent options upon assum-
ing just the structure of space. This answer to Wheeler’s question ascribes primality
to space rather than to spacetime and yet leads to spacetime emerging. Thus it pro-
vides a resolution of the classical Spacetime Construction Problem as well, in the
sense of construction from space. This result can be considered to arise from local
SR, GR and its spacetime structure being rigid, rather than mutable as functioning
mathematical structures.

Let us finally compare Einstein’s historical route to GR with the Relational Ap-
proach’s. Einstein chose to consider spacetime primality instead of spatial primality.
In this setting, he changed the status of frames from SR’s Lorentzian inertial frames
to local inertial frames that are freely falling frames. This made direct use of the
spacetime connection in passing locally to freely falling frames. Considering the
corresponding curvature tensors is now natural, and leads to a law relating the Ein-
stein curvature tensor to the energy–momentum–stress tensor of the matter content.
This accounts for the local inertial frames on physical grounds, and the spacetime
geometry is to be solved for rather than assumed. However, this approach does not
directly address Machian criteria for time and space. On the other hand, in the Re-
lational Approach, the horn in which space is primary is chosen; time and space
are conceived of separately, and Leibniz–Mach relational criteria (Chap. 3) are di-
rectly applied to each. The notion of space is broadened from that of the traditional
absolute versus relational debate arena so as to include geometrodynamical theo-
ries. This approach’s equations pick out a particular subcase for which an ambient
spacetime manifold is implied; this is a very fruitful perspective as per Chap. 7.
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So in the Relational Approach, SR arises as an idealization that holds well locally
in many parts of the Universe. SR’s assumed universal symmetry group and shared
null cone is explained in the Relational Approach as an emergent phenomenon.
Oppositely to Einstein’s historical route to SR and then GR (Chaps. 4 and 7), one
arrives at SR via GR.

This formulation having constructed spacetime curvature from its split space–
time form, it is conversely now natural to ask whether spacetime connections also
play a role in the theory: a ‘Discover Curvature and then Connections’ approach.
One can build the latter out of elements natural to the spatially primary perspec-
tive as per (34.23). Thus in the Relational Approach one finally arrives indirectly
at the identification of local inertial frames with freely falling frames. (Moreover,
some—but not all—parts of the Equivalence Principle already feature in the Ge-
ometrodynamical Equivalence Principle [454].) On the other hand, in the spacetime
formulation of GR, one has the Equivalence Principle modelled by connections prior
to bringing in curvature: a ‘Discover Connections and then Curvature’ approach.

33.6 The Fourth Weakly-Vanishing Factor

Equation’s (33.6) fourth factor contains a Dip core, the vanishing of which can be
written as

Di{p/
√

h} = 0 (33.12)

without loss of generality, since
√

h is covariantly constant. This presents a weakly-
vanishing option, covering maximal slices (21.3) and CMC slices more generally. It
can be formulated as

D := p − √
h c = 0 (33.13)

for c spatially constant, by performing one integration. Moreover, the maximal sub-
case proves to be too restrictive for the combination of consistency and physical
plausibility, along the lines of Chap. 21 and Sect. 33.8. These considerations even-
tually motivate more general realizations of solutions than the above.

33.7 Discover-and-Encode Approach to Physics

At the classical level, this amounts to trying out a g, finding it gives further inte-
grability conditions that enlarge g and then deciding to start afresh with this en-
larged g.

Metrodynamics Assumed (g = id) This is a more minimalist assumption [15,
682] than assuming a geometrodynamics ([683] is even more minimalistic). It leads
to the following result.
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Consistent Metrodynamics Theorem Consider ansatz (33.1) but with g = id, so
the ∂F are removed. Then the following five outcomes are consistent.

i) Recovery of GR, through Mi appearing as an integrability condition thus forc-
ing g = id’s enlargement to Diff (σ ).

ii) A 1-parameter family of metrostatics.
iii) A 1-parameter family of Strong Gravity metrodynamics theories.
iv) A group of formulations and theories based upon Di{p/

√
h} = 0.

v) A ‘unit-determinant geometrodynamics’, corresponding to g = id’s enlarge-
ment to the group of unit-determinant diffeomorphisms, UDiff (σ ) [62].

Derivation [15, 62, 682] In this case, to start off with there is just a primary con-
straint Hx,y,a,b . In considering the Poisson brackets this forms with itself, one no
longer has an initial right to a priori ‘parcel out’ an Mi . One is instead to use the
first form of the right-hand side of (33.5) and define

Sxi := 2
{−Djpj i + {1 − x}Dip

}
(33.14)

as the preliminary secondary constraint entity arising from this Poisson bracket.
This is now smeared with some differential vector ∂ιi .

Equation (33.14) features unless one of a = 0 or y = 0 holds, in which case the
above right hand side strongly vanishes. The Abelian constraint algebra (24.23) ap-
plies in both of these cases. Moreover, each case involves a diametrically opposite
representation of the H object itself. I.e. the mostly kinetic H0,b,x,y of Galileo–
Riemann metrostatics: case ii) versus the zero-kinetic term Ha,b,x,0 of strong metro-
dynamics: case iii). Note that these theories are not the same as the previous Sec-
tion’s, since now they have no diffeomorphism-related constraints and thus remain
metrodynamical rather than geometrodynamical theories.

If Si is present,

{(
Si | ∂ιi

)
,
(
Sj | ∂χj

)} = (−2Djpj i + 2{1 − x}{3x − 2}Dip | [∂ι, ∂χ]i) (33.15)

ensues. Comparing (33.5) and (33.15) gives that the constraint algebroid closes only
if x = 1, x = 2

3 or Dip = 0. The last of these gives case iv) as usual.
If x = 1, then Sxi collapses to Mi the generator of diffeomorphisms and therefore

the main GR case i) of the working is recovered.
If x = 2

3 instead, a distinct clear geometric meaning arises as follows. The corre-
sponding

Ua := S
2/3
a = −2

{
Dbpab − 1

3
Dap

}
(33.16)

is the generator of unit-determinant diffeomorphisms: diffeomorphisms that pre-
serve the local volume element

√
h: case v). �

At the level of Riem(σ ), this corresponds to picking the degenerate (null signa-
ture) supermetric. This degeneracy means that case v) has no underlying relational
action. This theory’s exact meaning remains unknown; it is an example of a theory
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lying somewhere between a metrodynamics and a geometrodynamics. We intro-
duce the names U -diffeomorphism, U -geometry and U -superspace for this theory’s
counterparts of the geometrodynamical entities. U -diffeomorphisms use up 2 de-
grees of freedom per space point, leaving U -geometry with 4.

33.8 Conformogeometrodynamics Assumed

Case 1) Maximal Slicing Obstruction We now assume from the outset that q =
Riem(σ ) and g = Diff (σ ) � Conf (σ ). Then conformal superspace Cs(σ ) :=
Riem(σ )/Conf (σ )� Diff (σ ). This corresponds to p = 0.

For Conformogeometrodynamics, obtaining ‘good’ Conf (σ )-objects is some-
what more problematic than usual. If one continues to insist on second-order equa-
tions of motion, one needs a ϕ such that the metric and it form a simple, internally
conformally-invariant pair

ϕ −→ ω−1ϕ, hμν −→ ω4hμν. (33.17)

Thus hμνϕ4 is Conf (σ )-invariant, and the action is to be built out of this. Writing
this is a local scale–shape split (since ϕ depends on position). This is implemented
by the action2

s=
∫∫

σ
d3xϕ6

√
ϕ−4 {R − 8�hϕ/ϕ}∂s. (33.18)

Here, following from Appendix D.7’s consideration of conformally-covariant com-
binations,

∂s = ‖∂Fhij + 4 h ∂ϕ/ϕ‖M (33.19)

(for the undensitized form of M).
This action leads to the vacuum Λ = 0 case of the Lichnerowicz equation (21.6)

as a primary constraint. It also gives Mi as a secondary constraint from Fi -variation,
and the maximal slice condition (21.3) from a part of the free end spatial hypersur-
face ϕ-variation. However the other part of this last variation is the corresponding
specifier equation that entails frozenness for the compact without boundary σ ’s of
interest (Chap. 21).

Case 2) Global Ratio Action A first way around the above frozenness is to con-
sider a further pure-ratio action [64, 107]. This was obtained by dividing (33.18) by
the homogenizing power of the volume V2/3 by the Author, Barbour, Foster and ó
Murchadha. Note the similarity with forming the RPM actions (16.14) and (19.5)

2For simplicity, the Λ term is omitted; see [64] for its inclusion. Also, [107] considered this using
2 separate multipliers instead of a single more general auxiliary whose velocity also features in the
action and has to be free end spatial hypersurface varied [64].
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by dividing by
√
I . Moreover, this does not give GR but rather an alternative theory,

and a questionable such at that, on grounds of action at a distance and no apparent
means of having a viable cosmology [64].

Case 3) Generalization to CMC Slices A second way of avoiding the above
obstruction was considered, now paralleling York’s generalization [922] of Lich-
nerowicz’s work [622] on the GR initial value problem: from maximal slices to
CMC slices. Conformal Relationalism proceeds by considering (global) volume-
preserving conformal transformations (VPCTs).

One candidate implementation for VPCTs is [65]

case 3.a): hab −→ ϕfin-int 4hab = ϕ4

〈ϕ6 〉2/3
hab; (33.20)

here the denominator is an average (N.5); this implementation was originally used
[65] to provide an action from which York’s initial value formulation follows. An-
other candidate is [16]

case 3.b): hab −→ ϕfin-diff 4hab = {1 + �ζ}2/3hab (33.21)

Here ‘fin’ stands for finite, ‘int’ for integral and ‘diff’ for differential; ϕfin-int was
originally denoted ϕ̂ in the literature. However, all g considered so far have corre-
sponded to infinitesimal transformations. Whereas the above two formulations each
implement individual VPCTs, they do not implement the VPCTs as a group, at least
not with a multiplicative action.

I.e. the composition of two transformations of the form (33.20) is not itself of that
form, nor does the composition of two transformations of the form (33.21) share that
form.

One possibility is to consider infinitesimal formulations instead [48]:

case 3.c): hab −→ {1 + 4
{
χ − 〈χ〉}= : {1 + 4 χ}hab (33.22)

—i.e. correction by a small contrast-type object (N.6)—and [16, 48]

case 3.d) : hab −→ ϕinf-diff 4hab =
{

1 + 2

3
�χ
}

hab. (33.23)

Only then do VPConf (�), and consequently Diff (�) � VPConf (�), Riem(�)/
VPConf (�), and Riem/Diff (�)� VPConf (�) realizations of {CRiem + V}(�)
and {Cs + V}(�) respectively make sense. The two integral implementations both
encode a version of (21.4) with a particular kind of functional in place of (21.4)’s
straightforward constant:

p/
√

h = 〈p/
√

h〉, i.e. D′ := p/
√

h = 0. (33.24)
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On the other hand, each of the two differential implementations encodes

�(p/√
h) = 0, among the solutions of which are the CMC slices p/

√
h = const.

(33.25)
Indeed, this is similar to the manner in which the Conformal Relationalism option
arises as the fourth factor in (33.6). Moreover, each of the two equations above has
the same structural form as the corresponding encodement of VPCT in the corre-
sponding infinitesimal and consequently group-theoretically successful case.

Equation (33.24) and the outcome of (33.25) is to be interpreted as a constraint
rather than as a slice equation in this context. Smear D with some partial differential
scalar ∂σ(z). This obeys the following Poisson brackets.

{
(D | ∂σ), (D | ∂ι)

} = 0, (33.26)

so D forms an Abelian subalgebra.

{
(D | ∂σ),

(
Mi | ∂Li

)} = (£∂LD | ∂σ) ≈ 0, (33.27)

so D is a scalar density as regards the 3-diffeomorphisms (just as H is).

{
(Hx,y,a,b | ∂J), (D | ∂σ)

} = (L ∂J | ∂σ) − 3

2
(Hx,y,a,b | ∂σ ∂J) (33.28)

for L ∂J = 0 a fixing equation for the partial differential of the instant ∂J. I.e. another
example of the TRi Dirac-type Algorithm’s specifier equation. The corresponding
second-order linear differential operator takes the form

L := 2a� − {2aR + 3b} − y

{
3

2
x − 1

}
c p/

√
h.

Furthermore, this is a TRi reformulation and generalization—by the presence of
coefficients a, x, y—of the well-known CMC lapse fixing equation (21.31). By this
arising on the right hand side of the last Poisson bracket, D knocks H off its perch
of being hitherto first-class: these are now second-class with respect to each other.
Thus the degrees of freedom count is now 6 × 2 − 3 × 2 − 2 × 1 = 2 × 2. I.e. it is
unaffected overall by there being a new constraint but its presence alters the status
of an already-present constraint.

Next, consider D′ likewise. The first two Poisson brackets are unaffected by the
same geometrical interpretations applying, whereas the nonzero Poisson bracket is

{
(Hx,y,a,b | ∂J),

(
D′ | ∂σ

)} = (L1∂J | ∂σ), (33.29)

where now

L1 := 2a� − {2aR + 3b} − y

{
3

2
x − 1

}
〈p/

√
h〉 p.
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Case 4) Reinterpreting Cs+ V as Cs(�) A third way around the obstruction
was subsequently provided by Barbour and ó Murchadha [108]. This is based on
reinterpreting York’s use of {Cs + V}(�) as containing a global scaling redun-
dancy, by which CMC slices are argued to be tied, rather, to Cs(�). This is due to
identifying an overlooked homothety on the space of the geometrodynamical data,

(hij ,Kij ) −→ (̃hij , K̃ij ) = (k2hij , kKij
)
. (33.30)

Since this approach does not introduce VPCTs, it avoids case 4.c)’s problems.

Comments The 0–finite–∞ propagation speed trichotomy of Carrollian, Lorentz-
ian and Galilean Relativities arises with an unexpected fourth conformogeometro-
dynamical CMC slicing partner which is almost equal (from the same obstruction
term, but now as a weakly-vanishing factor). This is a joint packaging that has not
been seen before in Theoretical Physics; it is furthermore interesting since the last
option can be interpreted as a notion of absolute simultaneity lying hidden within
GR.

Some of the variants of this last option are known as ‘shape dynamics’ [650].
This program has so far mostly developed branches 3.a) and 4). However, this Sec’s
analysis suggests changing focus to branches 3.d) and 4, with some consideration
of 3.c) as well. Each choice of 3.a)–d) alters the entirety of the detailed calcula-
tions of the ensuing ‘shape dynamics’ (i.e. the ones explicitly involving ϕ’s). On
the other hand, the ‘core ϕ = 1 equations’ of the schemes, such as the Hamiltonian
constraint, momentum constraint and CMC slice condition, continue to coincide. In
this way, all of the schemes in question make contact with CMC-sliced, GR paral-
leling formulations used in the GR initial value problem. Moreover, in infinitesimal
interpretations, one needs to take care not to over-implement the infinitesimalness
prior to variation. Indeed, enough use of approximations prior to variation leads
instead to the linearized Lichnerowicz–York equation being encoded.

33.9 Simpler Cases of Spacetime Constructability

Example 1) Newtonian Mechanics and RPMs have no such notion, due to these
having no notion of spacetime in the first place. The analogue of this Chapter’s
working for these gives that their simpler constraint brackets exhibit no corre-
sponding obstruction terms.

Example 2) Minisuperspace modelled within the foliation by hypersurfaces privi-
leged by homogeneity. This greatly simplifies the study of spacetime. Moreover, in
this case the obstruction term vanishes, since it contains a spatial derivative opera-
tor factor Di that now acts upon a homogeneous entity. Minisuperspace addition-
ally has no Mi . The constraint algebraic structure consequently ends up being just
H commuting with itself (for any a, b, w, y). Thus generalized Minisuperspace is
not restricted by constraint algebraic structure consistency. This is very similar in
content to the metrodynamical case of Strong Gravity. [In the former case, R is
just a spatial constant, so aR + b behaves just like 0 + b′ for a new constant b′.]
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Example 3) SIC. Here the sandwich can be solved because it is algebraic. This sim-
plification, albeit rooted in the leading-order homogeneity, unfortunately comes
hand in hand with a trivialization of other Problem of Time facets, including triv-
ialization of Refoliation Invariance by a restriction to a privileged foliation. This
takes effect through finite algebraic constraints coming without smearing variables,
so the self-bracket of each scalar constraint must be zero. The self-bracket of H is
of this kind, and this argument clearly extends to the self-bracket of Ha,b,x,y , on
which the current Chapter focuses. Thus the current Chapter’s obstruction term
also collapses to triviality for this book’s choice of SIC model arena. In a sense,
this model has already assumed spacetime structure due to the privileged foliation
involved. Furthermore, changing the coefficients in the supermetric is not restricted
by the Dirac Algorithm in this regime, unlike for full GR.

We consequently need to consider more inhomogeneous models than this one
before the obstruction term takes effect. For example, in the perturbative scheme
involving specifically spatially-dependent constraints (using full rather than mode-
wise expression for the constraints):

{
(Hx,y,yψ,a,aψ,b | ∂J), (Hx,y,yψ,a,aψ,b | ∂K)

}
2

=
(
ay
{
M

grav-ψ
1i + 2{1 − x}exp(−2Ω)DiD1

}+ ay

⌈
π

ψ
1

δ£∂Lψ
δ∂Li

⌉

− 2aψyψ exp(−3Ω)πψ
0

∂U1 ψ

∂ ∂iψ

∣∣∣∣Sij {∂K0∂j ∂J1 − ∂J0∂j ∂K1 }
)
. (33.31)

In this way, Spacetime Construction from space is fully functional to second order
in SIC.

Additionally, the second-order contribution {(H0x,y,yψ,a,aψ,b | ∂J1), (D1 | ∂J1)}
gives the term (L ∂J1 | ∂σ0) with surviving � contribution. Thus the ∂I fixing equa-
tion features as the usual kind of initial-value PDE problem for GR. SIC taken to
second order is consequently a nontrivial model arena for further investigating these
formulations.

Research Project 31) Is there an Ashtekar variables analogue of this Spacetime
Construction from assuming just the spatial level of structure?

33.10 Caveats on Further Matter Results

[109] contains further claims that matter uniqueness and the Equivalence Princi-
ple can be derived from Temporal and Configurational Relationalism postulates
alone. These claims were however subsequently shown to rely on further math-
ematical simplicities. This is because the matter term ansätze of [58, 109] were
insufficiently diverse. Canonical formulations which presuppose spacetime [577–
579] can be readily seen contain further terms, and on occasion these terms also
manage to comply with the relational postulates [17, 19]. Some extra terms can be
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cast into TRi form by linearities other than the square root of a quadratic kinetic
term (Sect. 17.2). Some extra terms include metric–matter kinetic cross-terms.

Matter uniqueness claims concerning deriving Gauge Theory just from relational
first principles fail since various other vector Field Theories can be cast into rela-
tional form [17, 19]. One such example is Proca Theory. Further examples are a sub-
set of physicist Ted Jacobson’s Einstein–Aether theories [516], which are Scalar–
Vector–Tensor Theories for which the vectors are unit vectors. The latter examples
of relational theories also violate the local SR null cones.

The claim that the Equivalence Principle can be derived from relational first prin-
ciples was also overturned. For instance, it was found [17] that [109]’s ansätze tac-
itly assumed what had been known to be a ‘geometrodynamical’ form of Equiva-
lence Principle since [454]. This tacit assumption entered through precluding the
presence of the metric–matter kinetic cross-terms that are kinematically appropri-
ate for nonminimally-coupled tensor matter field. The final version of [109] already
conceded that Brans–Dicke Theory can also be cast in relational form; this exten-
sion contains cross-terms, and limits some GR uniqueness and Equivalence Prin-
ciple derivation considerations. Furthermore, different values of the Brans–Dicke
parameter corresponding to w �= 1 become consistent via involvement of metric–
matter cross-terms. In this way, Brans–Dicke theory and other more complicated
Scalar–Tensor Theories are available not only as a strong gravity limit resolutions
of Spacetime Construction but also as finite propagation speed alternatives to the
GR outcome [15].

Inclusion of fermions [14, 37] requires a linear kinetic term Tlin being additively
appended to the product of square roots as per Sect. 18.11.

Moreover, if Temporal and Configurational Relationalism requirements are ex-
tended to a theory of Background Independence, uniqueness results are strengthened
For instance, some of the other Background Independence postulates can be used to
exclude all the Einstein–Aether theories . As such, there is at least some chance that
a subset of the matter claims that RWR attempted to rest upon Temporal and Config-
urational Relationalism alone could rest on a more complete notion of Background
Independence instead.

Research Project 32) Work out the a priori distinct affine and metric structure coun-
terpart of Spacetime Construction.

Research Project 33)† Work out the full Supergravity counterpart of Spacetime
Construction. This could be based on an action ansatz or a constraint ansatz.



Chapter 34
TRi Foliation (TRiFol)

We next consider an alternative version of Chap. 8’s Geometrodynamics and
Chaps. 31–32’s Foliation Formulation. All these formulations are spacetime-
assumed positions; the current Chapter’s distinction is in having not ADM but
TRi kinematics. This is a suitable follow-up on the previous Chapter’s derivation
of spacetime within the Relational Approach via the TRi Dirac-type Algorithm’s
Spacetime Construction.

34.1 TRi-Split Version of Geometrodynamics

At the geometrodynamical level, the differences between the two formulations are
summarized in Fig. 34.1. The underlying splits are depicted in Fig. 34.2.

The partial differential of the frame [48] is ∂Xμ = hμν∂sν . This is another
formulation of the point identification map. It is also a hypersurface tensor by
nμ∂Xμ = nμhμν∂sν = 0, so it can be written ∂ �X or ∂X; the Relational Approach
version is ∂F.

The partial differential of the instant [48] is −nμ∂sμ = ∂τ. This is another for-
mulation of duration of GR proper time, now in the additionally simplified form of
identifying τ with τ(t, xi) itself. [∂τ is not conceptually the same as ∂I, since the
former is assumed but the latter is emergent.]

In parallel with Chap. 31 rather than Chap. 8, these can be set up by consider-
ing the TRi analogue of the time flow vector field tμ: a change-covector ∂sμ. The
decomposition (8.13) needs to be replaced by

∂sμ = ∂Xμ + ∂τnμ. (34.1)

In this way, TRi-foliations are interpreted in terms of a choice of time t and an
associated time flow vector field change-covector ∂sμ.

Next, in place of (8.7), ∂sμ and t are restricted by

∂sμ∇μt = 1 and ∂wμ∇μt = 0 for any tangential ∂wμ. (34.2)
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Fig. 34.1 ADM and TRi splits compared. The darker shading is for rank-±2 objects to the lighter
shading being for rank-±1 ones

The TRi formulation furthermore admits a decomposition into change-covariant
time flow and tangential parts. If (34.2) holds, it is consistent to identify ∂sμ∇μ
with both ∂/∂t and with £∂s. On the other hand, nμ remains a change-scalar. In-
deed, rearranging (34.1) to make nμ the subject,

nμ = [∂n0,−∂Xi
]
/∂τ (34.3)

and ∂s0 is numerically 1 but remains none the less a change-covector.
Next note that the TRi split of the spacetime metric g has pieces of three differ-

ent change weights: the change-scalar induced metric, the change-1-form g0i and
the change-2-form g00. The corresponding split of the inverse metric g−1 has three
different opposing change weights: a change-scalar, a change-vector and a change-
2-tensor.
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Fig. 34.2 TRi counterpart of Fig. 8.3.b)–c). a) 3 + 1 split of a region of spacetime, with differential
of the instant ∂T and differential of the frame ∂Xi . b) Local presentation of the split of ∂sμ into
nμ and ∂Xμ. c) is the TRi version of the decomposition of deformations, in parallel to Fig. 32.1

The TRi explicit computational formula for extrinsic curvature is, in more detail,

Kij := ∂Xhij
2 ∂τ = ∂hij − £∂Xhij

2 ∂τ . (34.4)

Note that this is now in terms of the Best Matching corrected derivative (18.23),
whose general form is in terms of a Lie derivative correction on account of the
shuffling procedure entailed. By the relation between the Lie derivative of the metric
and the Killing form (E.20), and under passing from ADM split quantities to TRi
split ones, this can be seen to be mathematically equivalent to the hypersurface
derivative (8.14). This is underlied by Barbour’s Best-Matching covariant derivative
(18.23) being the 3-space dual interpretation of Kuchař’s hypersurface derivative
(8.15).

The Gauss–Codazzi equations are change-scalars, so their form carries over from
Chap. 8. However, i) in the previous Chapter’s application, due to not yet presuppos-
ing the signature of spacetime, each equation’s K term has an extra factor of ε: the
normalized version of −a for ordinary Lorentzian (ε = −1) and Euclidean (ε = 1)
GR. ii) These equations are in that case interpreted specifically in the ‘embedding
into spacetime deduced’ setting as opposed to the ‘projections of an assumed space-
time onto a spatial hypersurface’ setting.

On the other hand, the new TRi split formulation’s version of the Ricci embed-
ding equation is

R(4)⊥a⊥b = ∂XKab + DbDa∂τ
∂τ + KacKcb. (34.5)
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The TRi counterpart of the ADM action is

sTRi =
∫

dt
∫

�

d3x ∂CTRi :=
∫

dt
∫

�

d3x
√

h ∂τ{KabKab − K2 + R
}
. (34.6)

This is now in terms of the Machian variables hij and dhij ; ∂CTRi is the ∂-Lagrangian
change-covector which replaces the notion of Lagrangian L.

The geometrical form of the manifestly ∂-Lagrangian TRi-split action is then
∫

dt
∫

�

d3x ∂τ{TTRi−JD + R − 2Λ},

for TTRi−JD = ‖∂Xh‖2
M/4. (34.7)

[The configuration space metric MAB is a change-scalar.]
Whereas H and Mi are change-scalars, the TRi-split evolution equations in terms

of momenta take the new form (in vacuo for simplicity)

∂Xpij

∂τ = √
h

{R
2

hij − Rij
}

+
√

h{DjDi − hij�}∂τ
∂τ

− 2√
h

{
picpc

j − p

2
pij
}

+ 2√
h

hij
{

pijpij − p2

2

}
. (34.8)

In this case, recasting them in terms of extrinsic curvature does not keep one within
a change-scalar form due to their higher-derivative multi-slice status. Alternatively,
in terms of Kab ,

−{∂XKab − hab∂XK} − {DbDa − hab�}∂τ
∂τ

−
{

2KacKbc − KKab + KijKij + K2

2
hab

}
+ Gab = G(4)ab = 0. (34.9)

The three TRi-split Einstein field equations can all be interpreted in terms of con-
tractions of the Gauss–Codazzi–Ricci embedding equations. In this way, one passes
from the Constraint–Embedding Theorem of GR to the Constraint–Evolution–
Embedding Theorem of GR. The latter has fine distinction between an ADM- and
TRi-split form through the last piece—the GR equations of motion—not being
already-TRi.

34.2 TRiFol Itself

Let us next reconsider Chap. 31’s foliation upgrade of the ADM formulation, but
now for TRi kinematics as suits working within spacetime emergent from relational
first principles [48], as summarized in Fig. 34.3.



34.2 TRiFol Itself 423

Fig. 34.3 TRiFol: foliations using TRi kinematics compared with Chaps. 31–32’s foliations using
ADM kinematics

Fig. 34.4 a) The flow lines of the TRi foliation of m. b) The differentials of the instant and of
the frame in the TRi Foliation Formulation

The basic account’s time flow vector field is now the change-covector

∂�x(t) whose components are ∂�μx (t) = ∂�μ(x, t). (34.10)

The change-covector version [48] of the deformation vector field is the correspond-
ing change-covector; Fig. 34.4.b) depicts the corresponding flow lines. N.B. in this
Sec’s approach, ∂sμ is more primary than ∂Xi and ∂τ (or ∂Fi and ∂I). Thus it
is the first object to be allocated nontrivial change weight and to set the ‘vector or
covector’ sign convention and the size convention for the unit weight [44]. The man-
ifestation of duality is now that for each x ∈ σ , ∂�x(t) is a vector in T�(x,t)(m)
at the point �(x, t) in m. Moreover, the change-covector deformation vector field
is a reinterpretation of the change-covector time flow vector field ∂sμ according to

∂sμ( �X) = ∂�μ(x, t)| �X= �X(x,t). (34.11)

This corresponds again to viewing this as acting on a slice or leaf. Consequently,
in the Deformation Approach the previous comment about the time flow as the first
nontrivial TRi homothetic weight quantity to be encountered carries over to the
likewise primary change-covector deformation vector.

The change-covector (34.10) now expands out as

∂�μ(x, t1) = ∂τ(x, t1)gμν
(
�(x, t1)

)
nν(x, t1)+ ∂Xa(x, t1)�

μ
,a(x, t1). (34.12)
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From a more minimalist perspective, ∂I and ∂Fi remain meaningful for just a pair
of neighbouring slices. [This is again indexed by t1.] Indeed, one can interpret ∂Fi ,
in terms of change of coordinates on a single hypersurface.

Finally, the components of �∗(g) are the already-TRi change-scalar (31.5), the
change-covector

(
�∗g
)

0a(x, t) = ∂Xb(x, t)hab(x, t), (34.13)

and the change-2-tensor
(
�∗g
)

00(x, t) = ∂Xa(x, t) ∂Xb(x, t)gab(x, t)− ∂τ(x, t)2. (34.14)

In this way, the TRi-split conception can be replaced by one based on TRi-foliations.
This parallels the replacement of the ADM split by one based on foliations in [483,
576]. This is �ref : � × R → m with respect to some choice of reference foliation.

34.3 Many-Fingered and Bubble Times, and Deformation First
Principles

Let us first note that the coordinate fixing aspect of ADM’s approach carries over to
the case in which the ADM split is substituted for the TRi split.

The bubble time reformulation can also be used to free the TRi version [20] of
ADM’s approach from its own aspect as a coordinate fixing. In particular, [573]
eliminates lapse α and shift β, which corresponds to another formulation of the
Thin Sandwich. The TRi counterpart of this instead eliminates the cyclic partial
differential of the instant and of the frame, corresponding to another formulation of
the TRi Machian Thin Sandwich.

TRi Deformation First Principles for GR were provided in Sect. 32.1 in un-
smeared form. While this was implicitly derived with the plain smearings corre-
sponding to the ADM formulation, it can clearly be rederived using TRi-smearings.
A TRi version of the Deformation Approach (also in Sect. 32.1) ensues. This is not
however used in the Relational Approach since those results still presuppose space-
time. In contrast, the Relational Approach has its own procedure as per Chap. 33
which is additionally a bona fide Spacetime Construction. Finally, Teitelboim’s mat-
ter results (Sect. 32.1) also readily admit TRi counterparts.

34.4 Machian Hypersurface Kinematics

There are still three types of hypersurface kinematics, but their interpretations need
to be reworked [62] from the perspective of spatial primality and this leads to two
of them being renamed as well. See Fig. 34.5 for a summary.

1) Best Matching corrected derivatives ∂F have now replaced the hypersurface
derivatives δ�β they are dual to as per Sect. 34.1.
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Fig. 34.5 Universal hypersurface kinematics in standard and Machian TRi forms compared

2) Spatial gradients of the change of the instant ∂i∂I have now replaced the tilts
∂iα. The renaming involved here is in part due the name ‘tilt’ is itself inspired by
spacetime geometry. We consequently reserve this terminology for the spacetime
setting. This is one part of the spatial gradient of the change of the instant–
translation split.

The TRi version of the translation is the part such that ∂I(p) �= 0, {∂i∂I}(p)= 0.
On the other hand, the spatial gradient of the change of the instant part such

that ∂I(p) = 0, {∂i∂I}(p) �= 0. Subsequently the ‘proper time labels instants’ du-
ality converts this to the usual notion of tilt as recognizable from the above sim-
ple SR realization. This is linked by the proper time of the observers’ clocks
exhibiting a constant gradient over space on the flat hypersurface tilted at a fixed
angle.

3) Derivative couplings are as before, except that now the underlying formula for
Kij is (34.4) rather than (8.14). I.e. in Spatially Relational primary terms Kij
is now interpreted as comparison of each geometrodynamical change with the
STLRC, ∂I.

The above can also be used to reformulate the range of theories of matter considered
in [468, 577–579]. References [14, 16, 19] also made use Kuchař’s hypersurface
kinematics based on the ADM split followed by the analogue of the BSW multiplier
elimination of α as a guide to which theories can be formulated from relational first
principles. Finally, using the Xi , τ version of the above Machian TRi hypersurface
kinematics corresponding to the TRi split of the spacetime metric followed by ∂-
Routhian reduction of τ returns one to the relational formulation.

34.5 Machian Thin Sandwich Completion

Consistently accommodating a spatial tensor field in a space–time TRi-split formu-
lation in general requires associating it with further tensor fields in combinations
such as

−∂FAa − ∂τKabAb − C ∂a∂τ. (34.15)

Subsequently at the level of constructed spacetime level, this is interpreted as
∂τ ∇⊥Aa with C recast in the role of the further spacetime form’s component A⊥.
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Fig. 34.6 The last part of the ‘technicolour guide’ to the Problem of Time: Spacetime Construc-
tion, Spacetime Relationalism and Refoliation Invariance as combined with previous Problem of
Time facets. The end of Fig. 24.2 branches, so that both Fig. 25.1 and the current Fig are distinct
continuations of this

Consequently, Machian Thin Sandwich 3.a) is a construction of the Best-
Matched derivative, whereas Machian Thin Sandwich 5) constructs Kij . As such,
postulating the following move completes the synthesis of hypersurface kinemat-
ics.

Machian Thin Sandwich 6) Machian Thin Sandwich 4.a) further permits one to
construct an emergent version of the spatial gradient of the change of instant, ∂b ∂I.
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Fig. 34.6 (Continued)

In this way, one can once again construct a wide range of spacetime geometrical
objects as per above.

Example 1) Re-running Sect. 32.2’s example gives the following two pairs, each
consisting of one change-scalar and one change-covector

∇aA⊥ = DaA⊥ − KabAb, (34.16)
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∂I ∇⊥Aa = −δ �∂FAa − ∂IKabAb − A⊥∂a∂I, (34.17)

∇bAa = DbAa − A⊥Kab, (34.18)

∂I ∇⊥A⊥ = −δ �∂FA⊥ − Aa∂a∂I, (34.19)

In the right hand sides, (34.17) and (34.19)’s first terms are Best Matching cor-
rected derivatives. Their last terms are emergent spatial gradients of the instant.
Finally, (34.16) and (34.18)’s last terms and (34.17)’s second term are derivative
couplings.

The Spacetime Construction version also requires the following variants which are
somewhat more generally formulated due to presupposing less structure. The Ricci
embedding equation, moreover, now takes the cyclic partial differential form

R(4)a⊥c⊥ = {−∂FKab − εDaDb∂I}
∂I

+ KacKcb. (34.20)

In the Lorentzian GR case,

0 = {∂FKab − hab∂FK − DbDa∂I + hab�∂I}
∂I

− {2KacKcb − KKab + {KijKij + K2}hab/2
}+ Gab (34.21)

is discovered. This can be set to be a G(4)ab by identifying Fi as Xi , ∂I as ∂τ, and re-
casting the Best Matched derivative ∂F as a hypersurface derivative δ

∂
→
X

. The other

two pieces of this remain as per Chap. 8; together, these form G(4)μν = 0: the Tempo-
rally Relational form of the vacuum Einstein field equations. Moreover, addition of
minimally-coupled matter poses no problem to this construction.

More simply at the level of the action, as fixed up by the consistency conditions
imposed at the level of the constraints,

∫∫

σ
d3x
√
Rds is equivalent to the action with integrand R + KijKij − K2.

(34.22)
For � compact without boundary, this is equivalent to the Einstein–Hilbert action
with gμν subjected to the TRi split.

Example 2) In support of Chap. 33’s Spacetime Construction, the spacetime con-
nection arises in 3-space terms as (e.g. in ⊥ formulation)

�(4)
c
ab = �cab, �(4)

⊥
ab = Kab, �(4)

a
b⊥ = −εKba, (34.23)

�(4)
⊥

⊥b = 0, �(4)
a

⊥⊥ = ε{∂b ∂I}/∂I, �(4)
⊥

⊥⊥ = 0; (34.24)

these can be identified as given and packaged together to form �(4)
μ
νρ .
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34.6 TRi Refoliation Invariance

We here we pass from the usual presentation of the Dirac algebroid (9.31)–(9.33)
to the TRi-smeared version (24.18)–(24.20). Consequently, Fig. 24.5.b) replaces
Fig. 10.3.b). Figure 34.6 summarizes the facets dealt with in Chaps. 33 and 34.



Chapter 35
Classical-Level Conclusion

35.1 Classical Machian Emergent Time Approach

Part II has concentrated on a classical Machian Emergent Time Approach. This re-
solves Temporal Relationalism’s primary-level timelessness by Mach’s ‘time is to
be abstracted from change’. More specifically, it is a ‘GLET is to be abstracted from
STLRC’ realization, where STLRC stands for ‘sufficient totality of locally relevant
change’, and GLET for ‘generalized local ephemeris time’ (Chaps. 15 and 23). In
various settings, this is an emergent version of Newtonian time, proper time and
cosmic time. We have argued at the conceptual and technical levels for such a time
rather than various other candidates such as scale time, hidden time, matter time and
unimodular time. We subsequently provided (Chap. 23) an approximation scheme
for the classical Machian emergent time, in which the configuration variables are
split into slow heavy ‘h’ and light fast ‘l’. This covers all of ‘island universe’ mod-
els, and Classical and Quantum Cosmology. Moreover, this scheme is only fully
Machian once one passes from the zeroth-order emergent times—whose form is
F [h,dh]—to at least first-order emergent times, of form F [h, l,dh,dl]. I.e. in the
latter setting the l degrees of freedom are given the opportunity to contribute, which
is itself a desirable relational premise.

35.2 Denizens of Each Problem of Time Facet

For the denizens of each facet treated piecemeal, read off the monochromatic ob-
jects in the three ‘Technicolour Guide’ Figs. 24.2, 25.1 and 34.6. Presenting these
requires a number of Part II’s mathematical developments that go beyond the scope
of Part I.

1) More well-adapted and general implementations of Temporally Relational ac-
tionssrel, in particular the geometrical Jacobi(–Synge) formulation (Chaps. 15
and 17).

© Springer International Publishing AG 2017
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2) The g-Act g-All Method (Chap. 14) for implementing Configurational Rela-
tionalism.

3) Split algebraic structures (Appendix E and Chap. 24) are used in addressing
Constraint Closure.

4) Lattices of constraint and beables subalgebraic structures Lc and Lb (Ap-
pendix S.4 and Chaps. 24, 25.

5) Trial families and how their resultant obstruction terms are handled (Chap. 33 in
approaching Spacetime Construction and the recovery of local SR.

6) The Foliation Formulation of split spacetime in more detail, as per Chaps. 31–32.

35.3 Interferences Between Classical Problem of Time Facets. i

Part II’s main theme of interference between local Problem of Time facets at the
classical level can then be perused by considering the polychromatic objects in
Figs. 24.2, 25.1 and 34.6.

One of the main features of this is that adhering to the TRiPoD and TRiFol for-
mulations (Temporal Relationalism implementing Principles of Dynamics and Foli-
ations respectively: Appendix L and Chap. 34) keeps us from re-incurring Temporal
Relationalism issues in considering the other facets.

As a first instance of this, implementing Configurational Relationalism by Best
Matching with cyclic differentials gives the TRi-compatible Machian form of the
GR Thin Sandwich (Chaps. 16 and 18). Figure 35.2.a) depicts Configurational and
Temporal Relationalism’s ‘loop the loop’ of Chaps. 14 to 18 (Fig. 24.2). In this way,
a geometrical best-matched actionsrel is produced on a configuration space q for
which the group g of transformations is held to be physically irrelevant.

Temporal and Configurational Relationalism are moreover only mathematically
well-defined in cases in which Constraint Closure (Chap. 24 and Fig. 24.2) addi-
tionally applies. The triple 〈q,g,srel 〉 is, rather, a candidate ‘key’ with which to
attempt to open the ‘gate’ of Constraint Closure, in accord with the TRi Dirac-type
Algorithm given in Chap. 24. In successful cases, the Shuffle are confirmed to be
gauge constraints Gauge; first-class linear constraints Flin are often, but not always,
equivalent to Gauge. For GR, these constraints are H and Mi respectively. In this
case, Fig. 35.2.a)’s path works out since H and Mi close. These furthermore close
in the form of the Dirac algebroid, by which they can be treated in a split manner
with Mi but not H supplying a subalgebraic structure.

Once the consistency check of Constraint Closure is passed, it makes sense
to contemplate the further mathematical problem of Assignment of Beables
(Fig. 25.1). We argued that Dirac beables D are the most interesting notion, since
these take all the constraints into account. We showed furthermore that the notion of
Kuchař beables K—which commute with the Flin—only applies to a limited range
of theories, due to the Flin not universally closing by themselves. This notion is
are meaningful for GR. Moreover, this book’s model arenas and Supergravity differ
in these details, which thus pick up a theory-dependent character. A more general
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Fig. 35.1 Features of rotations versus diffeomorphisms and split diffeomorphisms

notion of A-beables A has been argued to replace the notion of Kuchař beables;
‘A’ here stands for ‘algebraic substructure’; A-beables can be defined by association
with each closed algebraic substructure of a theory’s constraints.

35.4 ii. Supporting Model Arenas

Model arenas exhibit a number of simplifications. These models have helped sub-
stantially in working out the full GR case. Indeed, Part II demonstrated how
the book’s principal model arenas’ Background Independence aspects’ summary
Fig. 10.5 arises.

For metric Relational Particle Mechanics (RPMs), Configurational Relational-
ism is trivial in the scaled 1-d case and resolved for the pure-shape 1-d [59] and the
scaled and pure-shape 2-d [37]. A first consequence is that Temporal Relationalism
is resolved for these models at the classical level. Constraint Closure also works
out straightforwardly, with Shuffle = Gauge. A second consequence is that the g-
beables G (commuting with Gauge) coincide here with the Kuchař beables K. These
are functions of shapes, scale and their conjugate momenta, and so are known and
well-understood. Finally, there is no GR-like notion of spacetime. Consequently
none of Spacetime Relationalism, Spacetime Construction or Foliation Indepen-
dence arise. See Fig. 35.1 for a summary of many of the key differences arising
from rotations being mathematically simpler than diffeomorphisms.

Example 2) For Minisuperspace, homogeneity render trivial the GR momentum
constraint Mi . A first consequence of this is that Configurational Relationalism is
trivial, so Temporal Relationalism is resolved at the classical level as well. A sec-
ond consequence is that the only remaining constraint is the Hamiltonian con-
straint H, and finite theories with just one constraint trivially obey Constraint Clo-
sure. A third consequence is that any functions of the coordinates and the momenta
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will do for G = K in Minisuperspace. Finally, using the foliation by spatial hyper-
surfaces which are privileged by homogeneity renders both Foliation Dependence
and Spacetime Construction trivial.

Example 3) Slightly Inhomogeneous Cosmology (SIC) exhibits the following use-
ful features (in perturbatively small form): spacetime, foliation, and construction
features are nontrivial, as are all diffeomorphism-specific features. This is spelled
out in Chaps. 30, 32 and 33. Also in SIC, the constraint algebraic structure has
some surprises in store; in particular, the momentum constraint ceases to carry all
the Diff (�) information. Thereby, Kuchař beables K and Superspace beables SU

(this model’s G)—are now distinct notions.

35.5 iii. Further Facets in the Case of GR

We subsequently retraced Sect. 35.3’s steps for a trial family of theories encoded by
strial, or, alternatively, by Htrial with or without Mi assumed. This larger trial family
approach is outlined in Fig. 24.3 and is depicted in Fig. 35.2.b) by use of a bunch
of keys (representing Chap. 33’s ansatz) rather than an individual key. One of these
keys amounts to a recovery of the GR form of H (the DeWitt supermetric coefficient
and enforcement of Ricci 3-scalar potential), alongside recovery of embeddability
into spacetime and local recovery of SR (Chap. 33). In this way, Constraint Clo-
sure can come hand in hand with Spacetime Construction for geometrodynamical
theories.

Spacetime having been recovered, it has Diff (m)-based Spacetime Relational-
ism as per usual. Finally, this recovered spacetime can be foliated as per usual, ex-
cept that it is more consistent to use TRiFol, which is kinematically natural within
the Relational Approach. Because this paragraph’s considerations are independent
from those in the last paragraph of Sect. 35.3, the route through the Problem of Time
facet ‘gates’ depicted in Fig. 35.2.e) branches in its latter portion. In this way, we
have completed A Local Resolution of the Problem of Time at the classical level.
In the case of GR, this is modulo one limitation in current mathematical knowledge
and two formal steps as indicated below.

In a wider range of programs, for classical GR, Constraint Closure, Refoliation
Invariance and Spacetime Construction all follow from either the Dirac algebroid,
or from a family of algebroids which collapses to the Dirac algebroid as one of a
small number of consistent possibilities as per Chap. 33.

Research Project 34)† The mathematics of the Dirac algebroid, moreover, remains
to be fully developed. Improve on this while continuing to pay attention to its
geometrical and physical interpretations. [See e.g. Appendix V.6 for an outline and
references both for this and for the mathematics of algebroids more generally.]

Formality 1) The Thin Sandwich—the full GR case of the Best Matching imple-
mentation to Configurational Relationalism—is not an explicitly solved problem,
though, at least locally, it has good existence and uniqueness properties. In partic-
ular, Configurational Relationalism needs to be resolved so as to have a practical,
rather than merely formal, expression for the classical Machian emergent time.
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Formality 2) The classical Problem of Beables is not in general explicitly resolved
either, for sufficiently GR-like theories.

Moreover, particular cases in which Formality 1) for Diff (�)—or its Best Matching
generalization for g more generally—is resolved, have two further useful features.

A) The Constraint Closure Problem is now resolved by the reduced formulation
possessing only one constraint (per space point in the field-theoretic case): the
reduced Q̃uad, which in many cases straightforwardly closes with itself.

B) g-beables G are now automatically available at the classical level.

35.6 Further Orders of Passage Through the Problem
of Time’s ‘Gates’

For comparison, Fig. 35.2.c) depicts the Arnowitt–Deser–Misner (ADM) approach.
A spacetime ontology is assumed here. The ADM split of the metric leads to H and
Mi arising together from the corresponding split of the Einstein–Hilbert action and
its subsequent variation. [One could moreover treat Mi as secondary here since it is
an integrability of H; this orders rather than splits this path.] Constraint Closure is
now attained in the usual Dirac algebroid form.

Figure 35.2.d) provides further contrast with the Deformation Approach of
Chap. 32. This approach also assumes a spacetime ontology, and proceeds to split
this with respect to a foliation. This produces the deformation algebroid of con-
straints (which has the same mathematical form as the Dirac algebroid). One next
deduces circumstances under which the generators of this must take the forms of Mi

and H. Finally, since c) and d) are approaches which assume a spacetime ontology,
these figures have Spacetime Construction crossed out as unnecessary.

Approaches with (unsplit) spacetime primary ontology (Chap. 27) are tied to
spacetime diffeomorphism invariance, Generator Closure in place of Constraint Clo-
sure, and observables which commute with the generators. Some such approaches
make use of larger diffeomorphism induced gauge groups, Digg. On the other hand,
some Histories Approaches (Chap. 28) involve a histories phase space Hist-Phase
that is considerably larger than the usual Canonical Approach’s phase space Phase.
These approaches indeed possess notions of history-dependent spatial diffeomor-
phisms, histories constraints, and histories observables which histories brackets
commute with the histories constraints. Neither of these notions of observables are
to be confused with those arising in conventional Canonical Approaches. More-
over, the Bergmann notion of observables has been shown to not only feature in a
spacetime-primary setting but also to have subsequent ties to space–time split for-
mulations.

The classical Timeless Approach that we principally focused on is Timeless
Records Theory. Very detailed explicit examples are available for this by virtue of
developments in Shape Statistics [539], which arose entirely independently from the
Relational and QG literatures.
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The Combined Approach—consisting of emergent Machian time, histories and
records—(Chap. 29 and Fig. 35.2.f) furthermore provides a construction of Dirac
beables from Kuchař beables by Halliwell’s method [413, 414]. This is depicted as
the dashed path in the Figure. The rest of the path depicted, on the other hand, is a
histories precursor to the Classical Machian Emergent Time approach. Because this
is a histories rather than time-based approach, Temporal Relationalism is crossed
out here, and Spacetime Construction is also circumvented. This approach is some-
what spurious at the classical level but we shall see in Part III that it has a descen-
dant which is much more significant at the semiclassical level. While the classical
Combined scheme has relatively few interprotections, it is a classical precursor of
a semiclassical scheme which makes rather more equable use of each of histories,
timeless records and emergent Machian time.

We finally pointed out that for Supergravity, the Flin do not close by themselves,
so a number of GR’s notions, such as superspace(�), the possibility of treating
Flin and Quad separately, and the use of Kuchař beables, cease to be well-defined.
This leaves open the possibility of further theories whose classical manifestation of
Background Independence is markedly different form GR’s.

35.7 Ties Between Time and Other Concepts

As well as ties between time and space, there are ties between time and configura-
tion, time and energy, time, time, space and charge (as in CPT), and time and Su-
persymmetry. In this manner, studies of time alone are subject to open-endedness.
This explains why this book covers space and configuration as well. On the other
hand, energy, charge and supersymmetry’s inter-connections with the Problem of
Time have so far been studied at most in outline. Some Research Projects in this
direction are suggested below and in Part III.

Research Project 35)† GR exhibits deep conceptual and technical Problems of En-
ergy [823, 824] as well as Problems of Time. While a few such pairs of problems
are known to be inter-related, a systematic joint study remains to be attempted.

Research Project 36)† If fundamental Supersymmetry occurs in Nature, how does
this alter theorization about time? [Sections 19.8, 24.10 and 27.8 contain some
preliminary considerations; this Project is intended to have further scope than
Projects 10), 12), 27), 28), 30) and 33).]



Chapter 36
Epilogue II.A. Threading and Null Formulations

36.1 The 1 + 3 Threading Formulation

Spacetime primality can be envisaged as involving a 4-manifold before a (3, 1)
split into space and time. Within (3, 1) primality views, moreover, one can either
view space as primary: 3 + 1 approaches, or time as primary: 1 + 3 approaches. In
Part II’s study so far, the base objects have been spacetimes or spatial hypersurfaces:
3 + 1 approaches. We next consider timelike threads instead (see also Sect. 8.5):
a 1 + 3 approach. This threading formulation’s analogue of foliation is filling by a
congruence of threads: a space-filling non-intersecting collection of such threads.

Research Project 37) Some specific types of spatial slice and foliation—such as
CMC—turn out to be mathematically tractable, geometrically significant and pos-
sibly of physical significance. Do any particular types of threads, or of filling con-
gruences, have comparably fruitful developments?
Given Chap. 28 and Epilogue II.C’s Canonical Approaches for a wider range of
entities than just the usual configurations, is a Canonical Theory of threads con-
ceptually sound, and if so, what form does this take? Given that the structure of
Diff (m) is substantially altered by a hypersurface split, what happens under a
threading split?
Also assess whether there is a ‘Filling Congruence Dependence Problem’ ana-
logue of the Foliation Dependence Problem. Is this classically resolved by some
‘Rethreading Invariance’ analogue of Refoliation Invariance? Furthermore, given
Spacetime Construction from a spatial slice, how well-behaved is the analogous
‘Spacetime Constitution’ from threads as a PDE problem? Finally, to what extent
is there threading-foliation duality not only at the level of objects but also at the
level of splits of the Einstein field equations?

Research Project 38) The threading formulation gives a further setting for ‘path
observables’ concepts. Investigate in more detail, including comparison with
Bergmann and histories observables.

© Springer International Publishing AG 2017
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Fig. 36.1 There are 3 types of split depending on whether 0, 1 or 2 null directions are involved.
While could be used in place of space or time directions, passing to null directions while leaving
the time direction untouched causes additional complications and is not usually attempted. Primal-
ity can also be ascribed to each of the six entities in the figure in turn. Each of the six notions
depicted as vertices has its own space of spaces, and each edge in the diagram has corresponding
maps running in both directions. In these ways, the current Chapter’s considerations substantially
increase the number of Problem of Time facets. Whereas the 2 instances of space in the diagram
are the same object, the associated PDE systems are different in the case of each split

36.2 Characteristic, 2 + 2 and Twistor Formulations

The sense in which ‘characteristic’ is meant here is explained in footnote 3. There
are moreover two types of characteristic formulations for 4-d GR spacetime. The
first involves one null direction. The second involves two, which form null 2-
surfaces; in this case, spatial conformal 2-geometries play the role of configurations.
Indexing a foliation by values of a coordinate indeed continues to make sense in the
case of a null coordinate; see e.g. [874] for a brief introduction to null congruences.
As for space–time splits, each of these approaches have two lobes as regards which
part of the split is taken to be primary (Fig. 36.1).

Development 1) Some versions of the above are useful for causal or observer-based
considerations, in contrasted with the dynamical considerations modelled by the
ADM split. What a given conformal 2-geometry is causally interconnected with
is a partial analogue of Geometrodynamics’ consideration of which sequence of
3-geometries a given 3-geometry evolve to become.

Development 2) The above involves substantially different PDE Theory from the
3 + 1 split; see e.g. [814] for the characteristic case and [243] for the double-null
case. These approaches build on the insight that characteristic directions are dif-
ferent, which can already be understood for simple linear wave equations (consult
e.g. [220] if interested).

Research Project 39) Can spacetime be constructed from the assumption of 2-space
geometries? Is the 2 + 2 approach to GR approach more heavily dependent on
presupposing spacetime than the 3 + 1 approach is?

Development 3) Twistor Theory is an approach first developed by Penrose [707]; it
has a spacetime primary ontology and is further based on the null split. The null
structure is emphasized by taking null cones to be sharply defined—which results
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in points being quantum-mechanically fuzzy—as opposed to working with sharp
points, which results in fuzzy cones. Twistor Theory furthermore involves C math-
ematics, formulation in terms of spinors, and Projective Geometry. More specifi-
cally, Ex IV.16 gives a useful preliminary indication of how Minkowski spacetime
M

4 can be reinterpreted in terms of C mathematics. Moreover, complex spinorial
entities form their own configuration spaces—‘twistor spaces’, most of which are
structures rooted in Projective Geometry.

Twistor Theory furthermore involves split formulation entities of note, such as
‘hypersurface twistor spaces’.

Finally, note various parallels between twistor and Ashtekar variables ap-
proaches. Among these, we have already mentioned complexified GR, and that
the use of self-duality is strongly tied to spacetime dimension 4. A further parallel
is that both involve providing new phase space coordinates; moreover, these are
nonlocal in the case of twistors, which might therefore be viewed as more radical.

36.3 Summary and Machian Evaluation

Recollect Broad’s point that space and time’s co-geometrizability does not preclude
their being conceptually separate entities. From a Machian position, moreover, it is
specifically time that is a derived entity. From this point of view, null directions are
composites of one entity which is derived and one which is not (space). On the other
hand, splitting out time is directly aligned with singling out the derived entity for
distinct treatment. Using 3 + 1 rather than 1 + 3 furthermore builds in the position
of time specifically being the derived entity as per Mach’s Time Principle. In this
way, space–time splits are picked out, as is spatial primality therein. In this manner,
we return to this book’s main perspective, now from within the much wider set of
formalisms covered by Fig. 36.1.

Research Project 40) Elucidate which form temporal properties, Background Inde-
pendence aspects, and Problem of Time facets take in the Twistor Approach.



Chapter 37
Epilogue II.B. Global Validity and Global
Problems of Time

It would be preferable if all of the Background Independence aspects, resultant Prob-
lem of Time facets, and strategies to resolve these, were treated in a globally well-
defined manner. We are however far from this goal, which involves many—and
often distinct—uses of the word ‘global’, some of which have so far not even been
explained in the literature. See Appendix O.1 for an outline of uses of ‘global’ in
Classical Physics in general; on the other hand, the current Chapter develops these
for the classical Problem of Time specifically.

‘Global Problem of Time’ could for instance refer to the global status of a no-
tion of time itself. It could also refer to globality over space, such as the subset
of points t = const not being a complete 3-d submanifold of the spacetime [483].
Other possibilities are globality over q, T(q), Phase, spacetime, or some space
of spacetimes. Yet further possibilities concern constructs on—or maps between—
some of the preceding, for instance paths on q, embeddings, or foliations. ‘Global
Problem of Time’ could specifically affect a timefunction—Kuchař’s Embarrass-
ment of Poverty [586]—whether merely due to coordinate restrictions on manifolds
or due to more involved and not generally resolved locality of PDE solutions. How-
ever, some types of globality in the current section and Appendix O.1 can also affect
frames, transformations, PDE solutions playing a role other than timefunctions, va-
lidity of beables or observables, foliations, Spacetime Constructability, and more.
A further distinction is between the global breakdown of a mathematical entity
itself—e.g. a function blowing up, ceasing to be defined or going complex—and
the global breakdown of properties of that entity which are required for it to match
its proposed physical role. E.g. non-frozenness or monotonicity could be only local
for a candidate timefunction, likewise closure for a candidate algebraic structure of
constraints, or annihilation by constraints for candidate beables.

All in all, one should indeed use the plural ‘global Problems of Time’, for these
are legion. Many of the facets, strategies, denizens and facet interferences are af-
flicted by one or more of these. The above diversity of Global Problems of Time
makes it clear that ignoring global issues places Problem of Time approaches into
‘boxes of validity’ which are rather smaller than one might naïvely expect. See also
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Epilogue III.B for yet further global Problems of Time at the quantum level. Some
strategies for Global Problems of Time are as follows.

Strategy 1) Globalize by Extension. Some structures used locally may happen to
remain globally valid.

Strategy 2) Globalize by Replacement. Some structures used locally may not re-
main globally valid but can be replaced by ones which are.

Strategy 3) Globalize by Discarding. Some structures used locally may be globally
meaningless, and thus require discarding entirely in a global treatment. ‘Earman’s
Principle’ [273] can also apply as a distinct reason to discard. This involves qual-
itative changes in behaviour upon mathematically taking a limit being disregarded
if the effect does not occur as the limit is approached and the limit is not physically
attainable.

Globalizations by Extension include ‘patching together’ regions; some such con-
structs, from Manifold Geometry or Fibre Bundle Theory are standard. However,
some physical applications involve more general topological spaces than manifolds
(Appendix M), or more general compositions than fibre bundles (see e.g. Sects. 37.5
and 37.6, and Appendices F.4 and W). Patching together of PDE solutions is more-
over not in general a trivial matter (see Appendix O).

As regards the simpler model arenas’ capacities to model Global Problems of
Time, globality in time still has meaning in Minisuperspace [523].1 RPMs addition-
ally manifest some spatial globality issues due to possessing meaningful notions of
localization or clumping, and some more due to possessing nontrivial configuration
spaces and nontrivial timefunctions. A number of other types of globality span both
Finite and Field Theories, as we demonstrate below.

37.1 Classical Emergent Machian Time

Let us first consider this book’s main classical approach at the global level.

Problem 1) Representing motions by geodesics on configuration space q is prima
facie attractive. This works out locally (Chaps. 15 and 18) if one considers the
physical geometry d∂J . Moreover, this is only really available modulo conformal
transformations: a parageodesic principle in terms of the kinematical geometry d∂s.
This has the advantage of involving just the one geometry rather than a distinct
geometry per potential factor W . None the less, basic Differential Geometry gives
that such conformal transformations in general alter both the form of the geodesics
and of the curvature of q. One way global inequivalence can arise is that the inter-
relating conformal factor is only local in the sense of just applying to a finite region
on q. This possibility arises from conformal factors being required to be non-zero,

1It helps at this point to not confuse this use of ‘local’ with ‘local degrees of freedom’ in the field-
theoretic sense. In particular Minisuperspace models do not possess any of the latter while they do
possess some of the former.
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finite and sufficiently smooth, whereas physical W (Q) are certainly capable of de-
viating from these conditions, at least in some regions of q. The Author terms this
‘PoZIN’: Problem of Zeros, Infinities and Non-Smoothnesses; see also Fig. 37.1.a)
and b).

Moreover, zeros correspond to qualitatively different situations in each of Me-
chanics and GR. This is due to the positive-definite to indefinite difference in the
configuration space metrics.2 In the positive-definite case, such zeros are ‘halting
points’. This is by 0 = W = ‖P ‖2

N/2 ⇒ P = 0 for N positive-definite.

Example 1) To illustrate the physical relevance of PoZIN, consider the well-known
example of avoiding the zeros by staying within Hill’s regions [636] for the Earth–
Moon–Sun system (Fig. 37.1.e).

Example 2) On the other hand, in Minisuperspace’s indefinite case [659] such zeros
are ‘spurious’ rather than halting, since 0 = W = ‖P ‖2

N/2 �⇒ P = 0 for N indefi-
nite. So generically the motion continues through the zero along Riem(�)’s null
cone. In the case of Minisuperspace, this null cone consists of physically reason-
able Bianchi I Kasner universes [659]. It is worth commenting on how this may
at first be counter-intuitive given the differences between it and the much more
familiar use of indefinite manifolds as spacetimes. In the latter case, the causal
theory enforced by Relativity confines the paths followed by massive particles to
lie within null cones, and those followed by massless particles to lie on null cones.
However, Riem(�)’s own null cone does not carry connotations of causality, nor
of allotting distinct physical interpretation to ‘timelike, null and spacelike’ inter-
vals. Paths on Riem(�) represent evolving 3-metrics, regardless of whether these
paths are ‘timelike, null or spacelike’. Indeed, such paths here are furthermore free
to move between such types, so the preceding argument evoking a particular sub-
case of this—paths in minisuperspace going null—should raise no eyebrows.

Example 3) In favour of the physical relevance of PoZIN, the Bianchi IX space-
times go through an infinity of such zeros as one approaches their cosmological
singularity. These are a significant class of homogeneous anisotropic solutions due
to Belinskii–Khalatnikov–Lifshitz’s conjecture [125], by which they may be ex-
pected to be typical of GR solutions in this very same setting of ‘approaching the
cosmological singularity’. It has moreover been argued (see e.g. [183]) that such
zeros place stringent local limitations on the use of Jacobi-type actions (local in
space and local in configuration space). Such as [826] can in this light be inter-
preted as proposal for a geodesic patching (Fig. 37.6.a) approach to get around
this.

Problem 2) Ensuing emergent time notions (cf. Chap. 15, 18 and 23’s) are in gen-
eral only intended to hold locally in the sense of a finite region, as per Fig. 37.1.a).
One reason for this is that these emergent times are based on the relational action
principle

∫
d∂s

√
2W existing in the q region in which they are defined. However,

2To be clear, zeros in the potential factor correspond to zeros of the kinetic term due to the quadratic
constraint.
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Fig. 37.1 a) PoZIN type restriction to a region. The crosses denote points at which zeros, in-
finities or non-smoothnesses of W occur. b) PoZIN type restriction applying due to the domain
of definability of a function thereupon, e.g. for ψ a conformal transformation. c) With different
approximations used in general having different domains of validity, an intersection in which all
of them are valid is a smaller domain. d) Patching constructs extend from a region C in which
one set of approximations applies to a partly overlapping region D in which some other set of
approximations apply; see Sect. 59.2 for a well-known example of this. e) Equipotentials for the
Earth–Moon–Sun system, illustrating Hill’s regions, as an example of PoZIN being realized in a
physically relevant model. The Li here are the well-known Lagrange points. f) Closed recollapsing
FLRW universe scalefactor; g) is a relational version of this. h) Bianchi IX’s sequence of potential
zeros; the straight line segments correspond to Kasner solution ‘in’ and ‘out’ states being scattered
by the Bianchi IX potential

by immediate inspection, the formula (9.4) for the emergent Machian time candi-
date is itself directly disrupted by zeros in W (Q). Blow-ups in d∂s/

√
W —if suffi-

ciently benevolent to permit integration thereover—correspond to blow-ups in tem.
Furthermore, infinities in W (Q) or zeros in d∂s correspond to frozenness in the
emergent Machian time candidate.
Elsewise, if the tem candidate exists for (a given portion of) a particular motion,
it has the desirable property of its monotonicity being guaranteed: W > 0, so
d∂ tem > 0. Note that this is the Hamilton–Jacobi case of patching together PDE
solutions.

Problem 3) Chapter 23’s heavy–light split is also in general only local in the sense
of a finite region. In particular, consider passing from the familiar Celestial and
Molecular Physics domain’s use of a heavy–light approximation, with its flat mass
metric, to a curved q metric. In the latter case, what constitutes heavy and light
modes can become a merely local condition both in space and in configuration
space. The split’s validating approximation can indeed break down over the course
of a particular motion. One strategy here is to accept that this split is local and apply
it patchwise over each of space and configuration space (Fig. 37.1.d). Moreover,
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Chap. 23’s other concomitant approximations need not all hold in the same region
(Fig. 37.1.c).

Problem 4) Chap. 15’s STLRC and GLET notions’ locality is in the sense of a finite
region in all of time, space and configuration space. Next consider modelling two
quasi-isolated island subsystems within a universe. Here Chap. 23’s approxima-
tions applied to each ensure that the details of the other’s contents contribute neg-
ligibly. Each subsystem’s timestandard constructed as a GLET would then be in-
dependent of the other’s. Consequently, mechanical ephemeris time type construc-
tions do not in practice by themselves appear to provide a common timestandard.
Because of this, a further patching procedure is required. Moreover, the GLET con-
cept has a physically natural means of approximate patching: examination of those
changes in the Universe that can be observed by both of the patches’ observers.
Each has chosen a timestandard that works well for the STLRC they observe. Be-
cause of this, both GLETs work well to describe the mutually-observed change.
Consequently the two patches’ GLETs are reasonably attuned in their overlap.
Pulsars (Sect. 7.7 and Ex V.15) could well often furnish mutually observed sub-
systems. This may be the best practical answer as regards prescribing the time
of meeting in terms of pulsar information verifiable from other Solar Systems or
galaxies. Such a patching could also be based on each observer forming a simi-
lar notion of cosmic time, albeit this is a substantially less accurate one. Patching
together GLETs may become relevant to space programs requiring multiple refer-
ence frames over space.
Let us finally note that, whereas STLRC locality bears no logical relation to PoZIN
locality, it is closely related to heavy–light split locality.

37.2 Scale Times

Scale times cannot in general be used ‘globally in time’ in recollapsing universes,
since these clearly do not have scale behave monotonically: Fig. 37.1.f).

This monotonicity problem can in some cases be countered by passing to dila-
tional time candidates, though see Sects. 37.4–37.5 and 37.13 for global limitations
on these as well.

37.3 g Nontrivial. i. Monopoles in Configuration Space

Let us begin by considering the Dirac monopole [245] that is more familiar from
QFT (Fig. 37.2.a).

2-d triangleland with distinguishable mirror images turns out to exhibit the Dirac
monopole structure on configuration space, q = R

3. On the other hand, 3-d (or 2-d
with mirror images identified) triangleland—q = R

3+—exhibits the Iwai monopole
behaviour [513] of Fig. 37.2.b). Finally, a distinct monopole also due to Iwai [512]—
now in 3-d with L �= 0 acting as a vectorial analogue of the scalar monopole
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Fig. 37.2 a) Dirac monopole in R
3. One cannot go all the way around the point x without en-

countering the Dirac string that emanates from it, though there is complete freedom as regards
which direction this lies in. It can therefore be avoided by using a pair of local coordinate charts,
as indicated. This then also applies under the independent R3 = q for triangleland. b) The Iwai
monopole (named after physicist Toshihiro Iwai) on the 3-d triangleland problem’s configuration
space q = R

3+ (half-space), on the other hand, can get by with a single coordinate chart. This is
by taking the ‘Iwai string’ emanating from the origin 0 to lie outside of the physically relevant
half-space

Fig. 37.3 a) A global section (‘gauge choice’) � cuts each gauge orbit O precisely once. b) Ex-
tending a local section can on some occasions lead to the inevitable appearance of multiple Gribov
copies due to some gauge orbits being cut more than once. c) Extending a local section may in any
case not be possible outside of some ‘Gribov region’ R bounded by a ‘Gribov horizon’ ∂R

charge—occurs in Sect. 16.8’s modelling. All these cases are covered by standard
Fibre Bundles.

37.4 ii. Gribov Phenomena

The Gribov phenomenon [389, 446, 790] (named after physicist Vladimir Gribov)
is familiar from Gauge Theoretic QFT. This is, moreover, indeed a classical topo-
logical effect. It is an obstruction (Fig. 37.3) to there being a global section to a
non-Abelian Gauge Theory’s principal fibre bundles [490], which is further charac-
terized by de Rham cohomology. In its original setting, this is unrelated to time, but
that ceases to be the case in the applications below.

Problem 1) superspace(�) does not in general possess a global Diff (�) section
[482].

Problem 2) Candidate notions of ‘true dynamical degrees of freedom’ require
checking whether they are defined throughout both space and time. This can ad-
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Fig. 37.4 g-act, g-all is not in general globally well-defined, for reasons covered by standard
Fibre Bundle Theory

ditionally be phrased as whether the canonical transformation that separates these
out exists globally in Phase.

Example 1) There is a Global Problem of Time in the canonical transformation
separation into true and embedding (space frame and timefunction) variables in
the York time version of the Internal Time Approach. This is known as the Torre
Impasse [852]. Physicists Petr Hájíček and Jerzy Kijowski furthermore established
that such a map is not unique [406].

Problem 3) Best Matching is a case of Calculus of Variations extremization, a pro-
cedure which is known to be capable of producing no, or nonunique, answers. This
leads to Gribov ambiguities upon formulating its Best Matching subcase in terms
of fibre bundles. Finally, in cases for which the collection of objects o and the
group g are both topological manifolds, the Gribov ambiguity in Fig. 37.4 applies
quite generally.

Counter-example 2) Problem 3) does not occur for group averaging over a compact
group, since that operation is well-defined (using Appendix P.2’s Haar measure)
and produces a unique answer. In fact, this accounts for why fibre bundle presen-
tations do not enter conventional accounts of group averaging.

Problem 4) Suppose g-act g-all is applied to objects O, the space of which, o,
is not a topological manifold. In this case, a global account very likely remains
relevant but lies outside of the scope of standard Fibre Bundles. See the next two
Secs for geometrical reasons for this and for a more advanced approach to it.
Moreover, one can avoid the Torre impasse [852] (Fig. 37.6.c)—or Gribov-type
issues more generally – if one uses gauge-invariant quantities rather than working
with gauge-dependent quantities, as in e.g. Chap. 16’s r-formulation. On the other
hand, entering the r-formulation can itself be affected globally (in space or config-
uration space) e.g. by 1)–3) above; the r-formulation also has to contend with the
previous Sec’s monopoles.

Problem 5) The spatial diffeomorphisms admit an infinitesimal formulation in
terms of the Lie derivative, but not a finite one (contrast e.g. with the rotations).

37.5 iii. Stratification and Its Consequences

Stratified manifolds arise very generally from reduction procedures in Physics (see
for instance Chap. 16). Consequently configuration space q has issues with singu-



450 37 Epilogue II.B. Global Validity and Global Problems of Time

Fig. 37.5 a) This configuration space—a manifold with boundary—has three types of chart. On
the other hand, double collision (D) and other collinear (C) configurations have the same isotropy
group (defined in Appendix A.2), so the D’s do not constitute distinct strata. b) Conceptual depic-
tion of a general bundle or (the beginnings of) a sheaf structure

larities and edges between strata (Appendix M); one should take care not to confuse
these with singularities in the potential factor. Stratified examples include the fol-
lowing; see Appendices G and N for more detailed accounts.

Example 1) In 3-d N -body problems’ configuration spaces, collinear configura-
tions are represented by a non-principal stratum. This is geometrically distinct
because these configurations do not have an invertible inertia tensor.

Example 2) Maximal collisions in N -body problems are more severe than the pre-
ceding, both in physical space and at the level of q geometry.

Example 3) Gauge group orbit spaces O can also exhibit nontrivial stratification.
Example 4) Metrics which possess Killing vectors form non-principal strata within
superspace(�).

If one sets about studying stratified manifolds using the tools of Differential Geom-
etry, one requires multiple notions of types of chart, as illustrated by Fig. 37.5.a).
Three strategies for dealing with stratified manifolds are as follows. This distinc-
tion is already modelled by the 3-body problem (Fig. G.11). Our detailed treatment
of strategies is restricted to the Hausdorff second-countable case, which is habitual
in Mechanics and Geometrodynamics. The remaining issue is the lack of local Eu-
clideanness, with its associated variation in dimension from point to point (already
visible in Fig. G.11).

Strategy A) Excise Strata. This consists of discarding all bar the principal stratum.
While this simplifies the remaining mathematics to handle, it is a crude approxi-
mation and an unphysical manoeuvre. This strategy is e.g. often used in the context
of removing the collinearities from the 3-d N -body problem.

Strategy B) Unfold Strata. Here non-principal strata are unfolded so as to end up
possessing the same dimension as the principal stratum. This was considered e.g.
by mathematical physicist Arthur Fischer [302]. One may however then question
such an unfolding physically meaningful and mathematically unique?
The mathematical advantages of the excise and unfold strategies consist of remain-
ing within Manifold Geometry and Fibre Bundles.

Strategy C) Accept All Strata. Prima facie, this is the strategy which is accord with
Leibniz’s Identity of Indiscernibles. Moreover, this points to harder mathematics
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Fig. 37.6 For a geodesic γ running into another stratum, with a) traversing (e.g. by patching) and
b) reflecting possibilities exhibited. c) Schematic picture underpinning the Torre impasse [852]:
manifolds cannot be diffeomorphic to stratified manifolds

being required: Fibre Bundles do not suffice due to heterogeneity amongst what
might have elsewise been fibres. To handle this, one needs at least general bundles
[464, 490], and, for a wider range of applications, sheaves. The current book’s
relational program favours C); further quantum-level reasons for C) are outlined in
Sect. 59.5.

Application 1) The above includes a relational argument against Fischer’s unfold-
ing construct (Sect. 37.5) to mathematically compensate for metrics which possess
Killing vectors.

Application 2) The Bartnik–Fodor Thin Sandwich Theorem ([115] and Appen-
dix O.5) involves two locality (in space and in configuration space) conditions.
These involve avoiding

i) potential factor zeros and
ii) metrics with Killing vectors.

Note that ii) means that this theorem is an excision result, due to which it is rela-
tionally undesirable.
[In contrast, the conformal initial value problem equations are better behaved glob-
ally (in space), as per Appendix O.6.]

Application 3) Both for the Thin Sandwich and for Best Matching more gener-
ally, cases which can be solved can, moreover, usually just be solved locally. This
e.g. constitutes an argument against the excision of collinear configurations. On
the other hand, Best Matching of stratified manifold configurations themselves is,
more generally, a stratum by stratum process. The 3-particle model in 3-d , how-
ever, does not exhibit this: one can ‘spuriously rotate around the axis of collinear-
ity’, and so still perform the ‘Best Matching’ all in one go.

Application 4) Furthermore, the more general g-act, g-all method retains Best
Matching’s global contentiousness [i) above extends to the general Best Match-
ing problem].

Application 5) Stratified configuration spaces q readily admit stratum by stratum
affine and metric structures [713]. Consequently, it is straightforward to have a lo-
cal concept of (para)geodesics therein. In modelling Dynamics by a (para)geodesic
motion, moreover, one would additionally like to know what occurs to the mo-
tion upon its striking a boundary between strata. An early idea was to consider
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geodesic reflection (Fig. 37.6.b) at the interface between strata [240]. On the other
hand, Sect. 37.6 points to entirely distinct suggestions for this, now based on Sheaf
Methods.

Application 6) Stratification issues begin to feed into Dilational Time Approaches
upon attempting identification of true degrees of freedom. Indeed, the Gribov am-
biguity itself can be further understood in terms of the geometry and topology of
the principal stratum [759]. Strata also indeed play a key role in bringing about the
Torre impasse: the embedding side of (21.15) is a manifold while the configuration
space side is not. This is because in the latter case, Killing vectors exist in some
places. Finally note that because the Torre impasse is a stratification effect, there
is no counterpart of it for the stratification-free 1- and 2-d Metric RPMs.

We next point to the gap in the assumption made so far that unfolding is bereft
of physical content.

Strategy D) Unfold Strata Purely by Enhanced Physical Modelling.

For example, one could take the point particles are but modelling approximations
for more general bodies of finite extent. In this case, alignment of their centres of
mass does not alter the isotropy group in question. However, enhanced physical
modelling would not be expected to get round how quotienting in general does not
preserve local Euclideanness (or Hausdorffness or second-countability). I.e. there is
no guarantee that increasing modelling accuracy will be reflected by a successful
unfolding of the reduced configuration space stratified manifold into a manifold.

37.6 iv. Sheaf Methods

We now address the breakdown of the scope of Fibre Bundle Methods for global
results by considering more general Sheaf Methods. These are rather new within
the range of theories and model arenas considered in this book, so we provide a
conceptual outline below, and a brief technical outline in Appendix W. Sheaves
are tools for tracking locally defined entities by attachment to open sets within a
topological space. They generalize fibre bundles along the following lines.

1) Whereas the fibres attached to each base space point within a given fibre bundle
are all the same, sheaves allow for heterogeneous attached objects (Fig. 37.5.b).
Indeed, imagine a variety of shapes and sizes of ‘grain’ attached to a ‘stem’, in
analogy with a ‘sheaf of wheat’.

2) Sheaves admit a generalization of Fibre Bundles’ notion of section, which is
very useful in global considerations. In particular, obstructions to the existence
of global sections can be modelled cohomologically.

3) For some purposes, the simpler notion of presheaf suffices. These are based on a
mathematical reconceptualization in which restriction maps play a central role;
see Appendix W.2 for details.

4) Sheaves themselves offer further global methodology by possessing two addi-
tional notions: a ‘local to global’ gluing and a ‘global to local’ condition; these
are spelled out in Appendix W.3.
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Also note the intermediate Bundle Theory generalization of Fibre Bundles (Ap-
pendix F.4) which admits features 1) and 2) in the absence of reconceptualizations
3) and 4). 4) is furtherly advantageous in establishing a wide range of global appli-
cations.

If sheaves (rather than general bundles) are in use, the notion of cohomology
associated with 2) is sheaf cohomology, as per Appendix W.3. Assembly of local
information into global information can proceed via a sheaf cohomology functor.

The above notions can be applied to stratified configuration spaces q (Appen-
dices G, M and H) and to the corresponding stratified phase spaces as well [714].
One application is in meshing together the heterogeneous types of charts possessed
by a stratified manifold. Another is that sheaves can be used to define metric-level
geodesics within stratified manifolds (Appendix M.5). This points toward handling
paths that move into boundaries between strata, and thus e.g. to geodesic principles
upon stratified manifolds. Thirdly, Kreck’s stratifold [570] is the following pairing.

i) A particularly well-behaved type of stratified manifold.
ii) A sheaf construct thereover.

See Appendices M.6–M.7 and W.3 for more details, including for how these indeed
meet the features of some of this book’s configuration spaces. Page 28 of [713] gives
a further link between stratified manifolds and sheaves.

Tangent, cotangent, symplectic and Poisson spaces, in each case corresponding
to stratified configuration spaces can be studied using Sheaf Methods [714]. These
are implicit in the previous Sec’s Applications 2)–5), and 7) (see Appendix M.8).
Application of Sheaf Methods to gauge orbit spaces O has also begun [714].

Research Project 41) To what extent can Sheaf Methods advance our understanding
of N -body Problem configuration and phase spaces?

Research Project 42) What about for GR’s Thin Sandwich Problem?

Finally note that sheaves would not by themselves be expected to enforce isomor-
phisms between spaces shown to be inequivalent, such as in the Torre Impasse.

37.7 Brackets and Constraint Closure

Problem 1) The fundamental Poisson bracket’s constant right hand side term can
be interpreted as an obstruction 2-cocycle [475] whose presence necessitates a
central extension. This interpretation adds insight to the subsequent Quantization
procedure.

Problem 2) The depiction of the classical differential geometric commutator be-
tween two H’s (Fig. 24.5.c) is but in the small. I.e. it is infinitesimally thin in time,
and is usually extended (albeit finitely) in space, so that it is overall a local-in-time-
and-space slab.

Problem 3) Constraint type can be local in space or in Phase (see e.g. Sects. 1.1.8
and 19.2 of [446]).
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Problem 4) Different points within each of space and Phase can be associated with
distinct constraint algebraic structures [446].

Let us finally note that Problems 3) and 4) lie within the modelling scope of Sheaf
Methods.

37.8 Problem of Beables

Problem 1) Beables or observables are often presented as coordinate functions,
which are not defined globally on curved manifolds such as q or Phase but rather
just in coordinate patches.

Problem 2) Notions of types of beables themselves are themselves in general only
construed to hold locally. This is because they are defined by brackets, which—
paralleling the previous Section’s Problem 2)—in general only hold in a local-in-
time-and-space slab. Moreover, writing out the defining brackets now explicitly
gives δ∂DEs for the beables, which in general only carry local guarantees for solu-
tions. See Appendices O.3 and O.8 for a brief account of equations of this form.
All in all, patching beables is at the level of δ∂DE solutions rather than just of Dif-
ferential Geometry.

Let us term observables and beables that are local in time and space, respectively
Fashionables (as used by Bojowald et al.) [157, 158, 453] and degradables [37].
These are fitting nomenclature for local versions of these concepts: ‘fashionable in
Italy’, ‘fashionable in the 1960s’, ‘degradable within a year’ and ‘degradable outside
of the fridge’ all make sense. Additionally, fashion is in the eye of the beholder—
observer-tied, whereas degradability is a mere matter of being rather than of observ-
ing.

Example 1) Patching observables together is very well aligned with the Partial Ob-
servables Approach, where the patching is of unrestricted fashionables.

Example 2) Examples of Dirac beables, Kuchař beables and A-beables, for instance
in Chap. 24, are in fact mostly Dirac degradables, Kuchař degradables and A-
degradables respectively.

Example 3) Dittrich’s power series construct depends on the timefunction conju-
gate to the constraint being well-defined, which is in general only a local criterion.
Consequently, this construct does not produce formal Dirac observables or beables,
but, rather their local counterpart: formal Dirac fashionables or degradables.

Problem 3) A subset of Partial Observables Approaches are additionally interpreted
via internal times. These run into [483] additional global issues typical of Internal
Time Approaches.

Problem 4) Following up on Sect. 37.7, different points within each of space
and phase space can be associated with distinct algebraic structures of beables
(or degradables). This also lies within the modelling scope of Sheaf Methods
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(Fig. 37.5.b).3 An encouraging note here is that modelling observables by sheaves
has already occurred in the literature at the quantum level; see Epilogue III.B for
an outline.

37.9 Timeless Approaches

Global Problems of Time that correspond to timefunctions breaking down globally
can be avoided by adopting a timeless point of view. However, some other global
issues remain.

Problem 1) Elements of some Timeless Approaches can only be defined locally
(e.g. in space or in configuration space).

Problem 2) Some Timeless Approaches concern localized records: these are the-
oretically desirable entities, but do they cover all aspects of Physics? E.g. does
this perspective fail to encode topological information that is actually physically
realized?

Problem 3) Moreover, records are meant to be localized in space. Different ob-
servers have access to different records; a consistent formulation for this however
remains to be checked out.

Problem 4) There are furthermore some practical, physical and mathematical re-
strictions on questions of becoming. For instance, the problem need to be well-
posed, including the S1 region being extensive enough and set up to be the only
significant input to the process leading to S2. E.g. a sufficient piece S1 of a past
Cauchy surface �1 is needed to control some future piece S2 of Cauchy sur-
face �2. More precisely, that sufficiency is determined by S2 ⊂ D+(S1) ∪ �2,
for D+(S) the future domain of dependence of set S (Fig. 8.5.b).

Problem 5) Recollect also Fig. 4.4.d)’s indication that instants are a limited mod-
elling feature if one tries to go beyond small regions (of space or of spacetime).

Problem 6) The crucial semblance of dynamics or history may itself be a merely
local construct.

Sheaves are well-motivated as regards Records Theory through being tools for track-
ing locally defined entities by attachment to open sets within a topological space. If
all else fails, modelling Problem 3) should lie within the remit of Sheaf Methods.

37.10 Spacetime Relationalism

Issue 1) Since spacetimes are differentiable manifolds, some spacetimes cannot be
covered by a single chart.

3Indeed, the ‘Taking Function Spaces Thereover’ conceptualization of observables or beables is
phrased intentionally to carry Sheaf Theory connotations.
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Problem 2) The point that diffeomorphisms admit an infinitesimal representation in
terms of the Lie derivative—already made in the spatial case—clearly transcends
to the spacetime case as well. Unfortunately, the lack of understanding of diffeo-
morphisms globally over manifolds carries over as well.

Problem 3) Spaces of spacetimes such as PRiem(m) and superspacetime(m)
have further global and topological issues; see e.g. Research Project 118).

37.11 Histories Theory

Problem 1) Notions of ‘local in space’ histories, of ‘local in histories space Hist’
and of ‘local in histories phase space Hist-Phase’ abound.

Problem 2) Histories constraints and histories observables also have global issues
paralleling those in Sects. 37.7–37.8.

By building up histories as sequences of timeless records, they are also well-
modelled by sheaves. Modelling of constraint and beables algebraic structures also
carries over to their histories-theoretic counterparts.

37.12 Combined Approach

The Combined Approach has the following global issues in excess of the Machian
Emergent Time, Histories and Records Approaches’ individual global issues.

Problem 1) Its window function is assumed to fit on a single coordinate system,
which places its own limitations as regards locality. This is however fine for small
regions of q, such as ‘polar caps of approximate equilaterality’ on the triangle-
land S

2. The method in question also continues to work approximately for ex-
amples with compact relationalspaces (which include Metric Shape RPMs as per
Appendix G.1).

Problem 2) (29.12)—which ends up providing a formula for Dirac beables—
requires integration along the whole history (t = − ∞ to + ∞) rather than just
of segments of it. This is since the endpoints of segments contribute right hand
side terms to {H,A}. One doubt cast over this is that integrals over infinite time
intervals are not physically realized. Additionally, since this is not a physically re-
alized limiting case which behaves qualitatively differently, ‘Earman’s Principle’
reinforces this doubt.

Problem 3) Finally, it is clear from Sect. 37.1 that the tem in use in the Machian
version of the Combined Approach does not in general run over an infinite interval.
This produces further tension in Machian Combined Approaches. This globality in
time is also often incompatible in practice with the global nonexistence of e.g.
hidden and other emergent timefunctions.
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Fig. 37.7 a) For a space with handles, there is potentially a problem with handles leaving the do-
main of dependence (brown). However this book’s main specific example has � = S

3, so there are
no topological manifold nontrivialities, so this complication is avoided. b) The Cauchy evolution’s
spacetime volume may in fact be wiggly due to data on different parts of the initial piece of space
differing in how far in time they can be evolved. c) So even if D+(S1) is a wedge whose spatial
topological manifold remains S1, the capacity of the Cauchy evolution region (orange) to be wig-
gly can cause differences in the spatial topological manifold within the region that the evolution
applies. For the example depicted, this differs in the manner of the ‘trousers topology’ for a region
of spacetime

37.13 Space–Time Split, Foliations and Refoliation Invariance

Problem 1) � being a compact differentiable manifold means that more than one
set of coordinates is required in approaches involving internal spatial functions
[483].

Issue 2) The equations (8.4)–(8.5) are the starting point for Embedding Theorems
with codimension C = 1; knowledge of such equations is not complete.

Problem 3) As Chap. 32 alluded to, Kuchař’s version [577–579] of the ADM split
is more global than ADM’s original.

Problem 4) One is often furthermore interested in the piece of hypersurface S be-
ing reasonably regular, e.g. convex. This is a matter of efficiency: it is desirable
for the piece to commandeer a reasonable-sized domain of dependence, which it
would not if it had substantial concavities. One idea is to be able to locally define
constructs in the interior of S, e.g. local hab , Kab , α, βa , pab . Furthermore, local
PDE Theory—and construction of local solutions—are simpler and more widely
applicable than global counterparts. See Appendix O for standard and global GR
Cauchy Problem theorems.

Problems 5) and 6) are outlined in Fig. 37.7.a) and c).
Problem 7) Privileged foliation theories can suffer from shortcomings due to

nonexistence of the corresponding foliations, whether in general or in physically
significant situations. This problem can involve locality in one or both of space or
in the candidate time itself.

Problem 8) Approaches making use of a particular kind of foliations can also run
into global limitations. In the specific case of the York time candidate, there is no
global-in-space or global-in-time guarantee of existence of a single CMC slice, of
foliability of a region by such, or for the extension of this to globally cover the
spacetime. [114, 203, 488, 643, 733] provide some affirmative results, whereas
[114, 488, 733] contain some no-go results; see also the reviews [271, 467]. More-
over, if a global CMC foliation exists, it is unique [367]. One can also attempt to
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Patch one’s way out by passing to some other time variable near maximal expan-
sion.

Problem 9) Minisuperspace’s privileged foliation is global in space and almost
global in time. This is in the sense that it can be performed for almost the whole
history of the model universe but that any initial and final singularities need to be
excised.

Problem 10) Returning to Issue 2), and its repeated application in setting up foli-
ations, note that not all manifolds are embeddable with codimension C = 1. E.g.
RP

2 is not embeddable in R
3 [614]. Occasionally this can be resolved by increas-

ing C, or with greater generality in the higher-d space. Moreover, Global Embed-
ding Theorems such as those of mathematician John Nash and of Whitney involve
much harder mathematics and much larger lower bounds on C [387] than local
ones do.

Problem 11) Teitelboim’s demonstration (Fig. 10.3.b) of Refoliation Invariance is
limited to lie within the aforementioned type of local-in-time-and-space slab. Fur-
thermore, it depends on the uniqueness part of the thick sandwich conjecture.

Research Project 43) To what extent can Sheaf Methods advance our understanding
of foliations that arise in GR-like theories?

37.14 Spacetime Constructability

Problem 1) For the principal Lorentzian x = 1 branch of Spacetime Construction,
one is bounded to work within a localized sandcastle-shaped piece. This reflects the
archetype of how solutions to Cauchy problems are only guaranteed locally in each
of space and time [204, 874]. The sloping sides of this bounding region are dictated
by causality (Fig. 8.5); how tall the sandcastle is, including point-by-point in space,
is determined by GR’s evolutionary PDEs themselves. Moreover, the above two
matters are sequential: if S is a region of ill behaviour, there is limited scope for
checking its chronological future I+(S) (cf. GR Cauchy Problem considerations
in the preceding Sec). This case is further reinforced by suitable Analysis along
the lines of Appendix O.7.

Problem 2) In the Strong Gravity branch of Space-time Construction, a simpler
kind of Analysis suffices. This is because this case merely involves ODEs point-
wise in space [716, 717]; see Appendix O.2 for protective theorems. Another con-
sequence of this problem being pointwise in space is that the domain of depen-
dence wedge is replaced by a solid tube. This consists of the worldlines of the
points within a region of a slice S; each line within this is its own domain of de-
pendence. Moreover, some of these lines may extend further than others, so this
tube may in practice have a wiggly leading edge, much as Fig. 8.5.a)’s ‘sandcastle’
does.

Problem 3) Let us finally consider the Galileo–Riemann geometrostatics branch
of Spacetime Construction. Since this model has no dynamics of geometry, any
supporting Analysis involves equations containing only spatial derivatives. It is
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second-order in these, by which it is an elliptic-type problem. Note that this is un-
related to the space-time structure of the theory, which is just a stack of copies
of the same 3-space: a fixed foliation the leaves of which are all equal. Moreover,
given the global existence of the geometry that constitutes one copy of the leaf
in question, nothing stops this simple construct extending ad infinitum in the time
direction. Finally, infinite propagation speed renders the notion of domain of de-
pendence trivial in this context (a matter already considered in Fig. 4.4.f).

Research Project 44)† Further the understanding of global Cauchy Problems in GR
and in Gravitational Theory more generally. In the event of sufficiently mastering
this work, applications may include i) conferring globality to Spacetime Construc-
tion, and ii) obtaining further Global Embedding Theorems.



Chapter 38
Epilogue II.C. Background Independence and
Problem of Time at Deeper Levels of Structure

This is motivated [186] by Riemann’s classical declaration “Now it seems that the

empirical notions on which the metrical determinations of space are founded, the

notion of a solid body and of a ray of light, cease to be valid for the infinitely small.

We are therefore quite at liberty to suppose that the metric relations of space in the

infinitely small do not conform to the hypotheses of geometry; and we ought in fact

to suppose it, if we can there by obtain a simpler explanation of phenomena.” [735]
Isham [497] furthermore pointed out that Quantum Gravity is likely to require a
descent of this kind. “Nonwithstanding the current popularity of differential geom-

etry, my strong belief is that its days are numbered, at least so far as the subject

of quantum gravity is concerned. Smooth manifolds and local differential equations

belong primarily to the world of classical physics and we do not believe that these

are appropriate tools with which to probe the structure of spacetime (in so far as

this is a meaningful concept at all) near the Planck length. At best, they are likely to

be applicable in the semiclassical limit of the quantum theory of gravity (whatever

that may be) and a lot more thought needs to be given to the question of which math-

ematical structures are really relevant for discussing the concepts of space and/or

time in the “deep” quantum region.” Thereby, Isham is not just viewing Fig. 38.1’s
levels of structure as the mathematics underlying physical theories (corresponding
to the ‘Equipped Sets’ Foundational System of Mathematics) but furthermore as a
sequence of structures to quantize in turn. The idea is to descend along these lev-
els of structure; this includes making Chap. 10’s distinction between ‘single-floor’
and ‘tower’ schemes. The current Chapter itself provides a classical prequel [43] to
Isham’s pioneering quantum investigations of some of the deeper levels of mathe-
matical structure [260, 480–482, 491–494, 496–498, 508, 509] which we outline in
Epilogue III.C. In this way, one passes from Wheeler’s exhortation [899] to study
the Superspace of Geometrodynamics to a much wider range of studies of general-
ized configuration spaces.

© Springer International Publishing AG 2017
E. Anderson, The Problem of Time, Fundamental Theories of Physics 190,
DOI 10.1007/978-3-319-58848-3_38
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38.1 Time, Background Independence and Problem
of Time upon Descent. i. Persistent Features

First suppose that time is to be reparametrizable not only by t ′ = A + Bt but also
by any transformation that respects monotonicity. By use of continuous functions,
moreover, monotonicity remains a meaningful notion down to the topological space
level. Below that, monotonicity remains possible in the sense of the surviving or-
dering property of time.

Generalized notions of configuration Q, configuration space q and change of
configuration continue to make sense at all levels. The first and third of these suffice
for all levels to possess a notion of actions[Q,dQ]. However, sufficient continuity
and differentiability is required to define the usual kind of action’s integral and for
the standard Calculus of Variations to subsequently apply. These cease respectively
at the topological space level and somewhere around1 the differentiable manifold
level. This does not however stop actions from existing or from serving as the start-
ing point for physical calculations. For instance, defining an action sufficiently far
down the levels involves a discrete sum rather than a continuous integral. One also
requires a discrete counterpart of the definition of momentum and of the Calculus
of Variations in order to operate beyond the level at which differentiability ceases.
Subsequently, there are discrete analogues of the Euler–Lagrange equations and so
on. (As some indication of the plausibility of such schemes, see e.g. the treatment
by Dittrich alongside physicist Philipp Hoehn [253] for a carefully studied example
of discrete Calculus of Variations including treatment of constrained systems.)

Temporal Relationalism One can consider an absence of extraneous times or
time-like variables at all levels, and likewise as regards label times being meaning-
less. Pick an action that complies with this, and subsequently use one’s notion of
Calculus of Variations to procure a notion of generalized momentum. Alternatively,
in Isham’s categorical version [492–494, 498], generalized configurations are ob-
jects and generalized momenta the corresponding arrows alias morphisms. In such
settings, a notion of generalized constraint as a relation between momenta contin-
ues to make sense, and Dirac’s argument applied to Manifest Parametrization Irrel-
evance enforces at least one primary constraint continues to apply as well. In this
way, a generalized constraint Chronos arises.

Since change of configuration remains available at each level of mathematical
structure, a Mach’s Time Principle resolution of primary-level timelessness can be
based upon this, including more specifically as a STLRC implementation. Rear-
rangement of the generalized Chronos gives an expression for the emergent classical
Machian time.

1This is left imprecise due to, for instance, stratified differentiable manifolds retaining differentia-
bility in some neighbourhoods.
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Configurational Relationalism The notion of a group of physically irrelevant
transformations g also makes sense at all levels of mathematical structure. In par-
ticular this could be (some subgroup of) the automorphism group of the level in
question’s generalized notion of space, Aut(NoS). Next, one passes to the corre-
sponding quotient, e.g.

q̃ = q/Aut(NoS) (38.1)

in the case involving the full Aut(q); compare with Eq. (8.25). Many more exam-
ples can be read off Fig. 38.2. Note that while Isham stated that the Problem of
Time mostly concerns diffeomorphisms [483], this lies implicitly within the context
of metric to differentiable structure level. (38.1) can indeed also be taken to be a
generalization of the metric Shape Theory arising in the works of Kendall and of
Barbour, and of its GR analogue.

The indirect g-act g-all implementation also extends to all levels. Let us first
consider this in the single-floor context, as an extended use of the form of Sect. 14.4.
This generality is based, on the one hand, the that of group actions on spaces of ob-
jects, o. Moreover, this generality is contingent on compatibility not yet being an
issue; this awaits, rather, consideration of Constraint Closure. On the other hand,
whereas not all types of g-all prescription cover all cases, each is very extensive
in scope, and these cover at least all of the standard levels of mathematical struc-
ture used in Theoretical Physics. For instance, summing and scalar multiplication
operations work in linear spaces such as vector spaces and modules, integration in
measurable spaces, and inf and sup apply e.g. to normed spaces and metric spaces.
Averages work out e.g. if g is finite or a finite Lie group; these are ‘normalizability’
criteria, in the sense familiar from Probability Theory or Quantum Theory.

Secondly, in the case of towers, make use of

Sg1 ∈ g1Sg2 in each g2 corresponding to g1 ◦ Maps ◦ →
gg2

◦ Maps
→
gg1

O. (38.2)

See e.g. Sect. 38.3 for a more commonly encountered example of this.
As regards types of Sg∈g, as one descends the levels, one needs to restrict to dis-

crete versions: sum, discrete average, inf and sup. Principles of Dynamics actions
constructs give rise to Shuffle constraints in association with the Best Matching sub-
case of the preceding; in this way, Shuffle is in general associated with Aut(NoS).

Next allot corresponding generalized classical brackets. Moreover, it is even
more straightforward to envisage that, once at the quantum level, commutator brack-
ets persevere.

Constraint Closure thus ultimately transcend all the way down the levels as well,
based on a Dirac-type Algorithm and forming a constraint algebraic structure c.
Taking Function Spaces Thereover and constrained Assignment of Beables forming
zero brackets with constraints continue to make sense. These beables once again
form an algebraic structure b, as per Chap. 24.

The linear–quadratic (or more generally linear–nonlinear) constraint distinction
may however no longer apply, without which the intermediate notion of Kuchař
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beables ceases to make sense. In general, what a theory possesses is a lattice Lb

of notions of A-beables, corresponding to the lattice Lc of constraint algebraic
substructures.

The spacetime (plus matter fields defined upon it) versus spatial configuration
(plus field configurations) dilemma as regards distinct starting points prevails to all
levels. This is subject to the next Section’s caveats, whereby some (but not all) of the
features which distinguish spacetime from space are progressively lost at the deeper
levels. The distinct spacetime and space floors for each of the levels of structure are
laid out in Fig. 38.2.

Consequently, the notion of a group of physically irrelevant transformations
gS—Spacetime Relationalism—survives. Next one passes to the corresponding
quotient, e.g.—compare (27.2)—

ŝ = s/Aut(s) (38.3)

in the case of gS being the full Aut(s). Note that gS’s generators continue to require
closure and to have an associated notion of observables.

One can also imagine histories and timeless records for whatever level of math-
ematical structure assumed, including subjected to groups of physically irrelevant
transformations. Moreover, given a space of spaces, it is more conceptually straight-
forward to place a stochastic theory on it than a classical dynamics (which would
require that level of structure’s analogue of the Einstein Field Equations!).

‘2-way passage between’ spacetime and space carries through, as follows. Let us
use ‘slice’ to mean a collection of non-intersecting slices which fill a mathematical
space; the terms below thus generalize the uses of ‘foliation’ in Fig. 12.3 to arbitrary
levels of mathematical structure.

Slicing Independence is the level-independent extension of Foliation Independence.
In this setting, Chronos retains a type of generalized deformation interpretation, Def;
see Sect. 38.3 for an example. The Slice Dependence Problem occurs in its absence.

Reslicing Invariance is subsequently the level-independent generalization of Refo-
liation Invariance, which itself is only meaningful as far as the topological manifold
level. We do not however know if this holds for the general level (Fig. 38.4). This is
to be resolved by the form taken by the generalized self-bracket of Chronos = Def.

Spacetime Constructability remains a valid matter to investigate at each level to the
extent that each level has spacetime to construct. This applies both to construction by
a) increasing levels of structure and b) within each level from its notion of space to
its notion of spacetime. b) is conceptually an inverse procedure to slicing up a level’s
notion of spacetime into a sequence of spaces. This inverse is, however, harder to
handle since it assumes only the spatial structure, whereas the slicing move can
assume the entirety of the level in question’s spacetime structure.

All in all, let us use ‘space’, ‘time’, ‘spacetime’, ‘slice’, ‘foliate’, ‘surround’ and
‘construct’ as level-independent concepts (as per Fig. 38.3.b). This conceptualiza-
tion indeed points to many further versions of the Problem of Time facets at each of
these levels of structure.
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Fig. 38.3 The general level upgrade of Fig. 9.1.c)

Globally Validity and Operationally Meaningfulness Finally, these are desir-
able for timefunctions and all other steps involved in the above exposition, at any
level of structure.

Research Project 45) How far down the levels of mathematical structure do
fermions—or the more general anyons [813]—remain meaningful? This is, more-
over, less of an issue in tower schemes, since one can have the required fermions
upstairs and allow more than the usual levels to quantum-mechanically fluctuate.

38.2 ii. Losses in Earlier Stages of Descent

Loss 1) Newtonian Theory involves spatial and temporal metric Background De-
pendence, whereas SR involves spacetime metric Background Dependence.

Loss 2) Rot(d), the Euclidean group Eucl(d), the Lorentz group SO(d,1) and the
Poincaré group Poin(d) are metric-level structures since they are isometry mor-
phisms.

Loss 3) Geodesics are a metric—or affine-level structure. Consequently, the no-
tion of (para)geodesic principle entering formulations of Temporal Relationalism
is not expected to remain meaningful below these levels (or their conformal coun-
terparts).

Loss 4) The metric level’s motivation to keep actions at most quadratic may cease
to apply at the lower levels (though the means of passing to quadratic formulations
continue to exist withing discrete counterparts). This has the knock-on effect of
Chronos not necessarily retaining the GR H’s quadraticity.

Loss 5) Spacetime signature enters a number of aspects of SR and GR, including
allotting GR coordinate time. Differentiable and affine manifolds—without a met-
ric defined thereupon—do not carry space–time distinction or relativistic notions
of causality. The latter is required if one is to consider whichever of the following.

a) Time-orientability.
b) Closed timelike curves (including discarding spacetimes containing such).
c) Foliations with respect to spacelike surfaces that represent sequences of in-

stants of time as experienced by arbitrarily moving fleets of observers. In fact,
signature-dependent differences between spacetime and space are lost beneath
the level of conformal metric structure.
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However, some distinction remains. This is due firstly to overall dimension re-
maining a meaningful concept down to the level of topological manifolds (by their
local Euclideanness). Consequently, one has e.g. a 3-d entity and a 4-d entity of
the same type in the role of spacetime. Secondly, even beneath that level, there are
still distinct larger and smaller entities, e.g. a ‘space slice’ subset of a ‘spacetime’
set. See Sect. 38.5 for further examples. Moreover, codimension C = 1 becomes
meaningless with loss of dimension, leaving space as a strict subset of spacetime.

Loss 6) We already know from Chap. 27 that the three Relationalisms descend as
far as the differential-geometric level due to being based upon the Lie derivative.
In fact both the availability of a Lie derivative and this argument transcend to the
level of Conformal Differential Geometry, but no further. Beyond there, a different
type of implementation is required.

38.3 Topological Manifold Level

The range of model arenas in Sect. 10.10, and Chaps. 11, 14 and 19 is extensive
enough for the rest of this book, but requires complementing by the rest of the
current Chapter as regards probing deeper layers of mathematical structure.

In the topological manifold level variant of the cube of theories, the analogue of
QFT is Topological Field Theory (TFT). In particular, a metric-free version of this
is Chern–Simons Theory [916],

s∝
∫

m
Tr

(
A ∧ dA + 2

3
A ∧ A ∧ A

)
, (38.4)

where A is a 1-form field, d is an exterior derivative and m is a (2 + 1)-d manifold.
This has often been studied as a natural second variant following on from Conformal
Field Theory (CFT).

Extending GR by considering change of spatial topological manifold began
with Wheeler’s envisaging of spacetime foam [897–899]. Indeed, considering not
only the metric level but also topological manifold level Background Independence
originates in these works. This now involves questioning fixed spatial topological
manifolds as fixed background structures. In incorporating topology change into
Geometrodynamics, singular metrics need to be included and one considers the
Lorentzian-signature version of cobordisms (Appendix S.2) between spatial topolo-
gies. See e.g. [161] in this regard, and Appendix S.2 for simpler model arena ver-
sions of this (variable particle number RPM and 2-d geometry).

The distinction between single-floor topological manifold structures and the
topological-and-differentiable manifold structures is superbly covered by two of
mathematician John Lee’s books, [613] and [614] respectively. The latter include
e.g. de Rham cohomology (Appendix F.3): Algebraic Topology specific to differ-
entiable manifolds. The considerations of hypersurfaces, embeddings and foliations
in Chaps. 8 and 31 also come in purely topological manifold and tower versions.
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Finally, the Hodge-* (Appendix F.2) is an example of a structure with metric and
differentiable structure level inputs.

Some Background Independence issues at the topological manifold level are as
follows.

1) The fixed spatial topological manifold � that pervades Geometrodynamics and
Nododynamics looks to be an undesirable absolute structure.

2) Cobordisms—outlined in Appendix S.2—are a means of matching or com-
paring distinct topological manifolds; these involve ‘ripping’ operations rather
than just continuous maps. One can now consider cobordism in terms of a pa-
rameter as a Manifestly Reparametrization Invariant implementation of Tempo-
ral Relationalism, and pass furthermore to a Manifestly Parametrization Irrele-
vant formulation. The action is

∑
�

dS(�,d�)

for a single-floor theory of topological manifolds alone, or

∑
�

∫

m∈Riem(�) for each τ
dS(�,m,d�,dm)

for a tower thereupon;2 here the τ are variables at the topological manifolds
level and m are at the Metric Geometry level.

∑
� is a usually called a ‘sum

over all topologies’, though this really means ‘topological manifolds’, and it is
either a merely formal sum or a sum over a subset of topological manifolds. Re-
strictions in what is summed over are indeed commonplace, with Appendix S.2
listing five such.

3) Appendix S.2 also outlines what little is known about the single-floor configu-
ration spaces. The corresponding tower configuration spaces are of the form

BigRiem =
∏
�

Riem(�), (38.5)

usually subject to the fixed dimension restriction, and to further restrictions on
� as well. A major technical complication with considering multiple topolog-
ical manifolds dynamically is that transitions between them involve singular
spaces. Thereby, one would like to take BigRiem to be not only a collection
of the usual Riem(�) but also including less mathematically tractable spaces.

4) Returning to Temporal Relationalism, the τ (and m, if present) have opportu-
nity to enter the changes of relevance to an emergent timestandard.

5) Configurational Relationalism. The Best Matching implementation is restricted
to be differentiable manifold level construct due to its use of the Lie deriva-
tive. However, some of the concepts involved—such as the analogy between

2See [55] for limitations on tower versions of such formulations of Temporal Relationalism.
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sandwiches and quantum path integrals and the idea of Best Matching pairs of
configurations—continue to apply at the topological manifold level and below.

6) The g-act, g-all implementation, moreover, works at all levels of mathematical
structure. Use

Sτ∈gT
◦ Maps ◦ →

gT O (38.6)

for a single-floor theory of topological manifolds alone, or

Sτ∈gT
Sg∈g ◦ Maps ◦ →

g ◦ Maps
→
gT O (38.7)

for a tower. In each case, Sτ∈gT
could once again be a (perhaps formal) sum

over some topological manifolds, or an extremization or taking an inf or sup.
However, it is far from clear whether one can meaningfully assume that the
Universe has three holes were the action for a three-holed universe somewhat
larger than that for any other number of holes! None the less, Epilogue III.C
gives a standard quantum-level amelioration of this issue.

Moreover, in 2) and 6)’s indirect formulations, given each particular topo-
logical manifold, it is straightforward enough to consider metric structure—or
action by g—thereupon.

7) Let us next consider treating the single-floor case, now subject to its own non-
trivial g = Homeo(�), so that one is considering the topological manifolds up
to homeomorphism,

�/Homeo(�). (38.8)

This has its own ‘2-level formula’ in the sense that it is now topological mani-
folds up to homeomorphism class that are subjected to ‘rippings’.

8) Appendix S.2’s restriction iv)—restriction to � compact without boundary—
has Machian underpinnings of a traditional type going back to Einstein. On
the other hand, Fig. S.1.d-e) illustrates that there is no observational basis for
assuming that the Universe’s spatial topology to be open or closed. Background
Independence is, moreover, more widely suggestive of seeing what happens if
one lifts Appendix S.2’s five restrictions.

9) Spatial 3-topology � and spacetime 4-topology m are related by the topologi-
cal analogue of 3-metric manifolds embedding into 4-metric manifolds through
involving 3-topologies that are cobordant to 4-topologies. The specific case of
the tower involves an additional distinction between Euclidean and Lorentzian
cobordisms. This level of structure’s generalized deformation is a type of ‘rip-
ping’ operation. The parameter corresponding to a Lorentzian cobordism might
furthermore be interpreted as a time coordinate.

10) For the Morse spacetimes outlined in Appendix F.5, the Morse function f also
serves as a global timefunction. By possessing this, these spacetimes preclude
time non-orientability and the presence of closed timelike curves [161].

Research Project 46) Gain further understanding of time and Background Indepen-
dence at the topological manifold level of structure. For instance, consider in detail
which aspects of Background Independence transcend to Chern–Simons Theory.
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11) Records Theory. The following examples can be considered in terms of obtain-
ing topological information.

Example 1) Multiple images [597, 618]: if the Universe is small enough we would
see multiple copies of the same astrophysical objects, allowing for these images to
correspond to different times.

Example 2) Circles in the sky [219], allowing for the Universe to close up on a
scale bigger than Hubble radius and yet still imprint evidence of closing up within
the cosmological particle horizon.

Example 3) Mathematicians Partha Niyogi, Stephen Smale and Shmuel Weinberger
have considered sampling unknown topology in a more general setting [681], using
Čech cohomology techniques outlined in Appendices F.3 and T.3.

Moreover, in more detail, in practical terms, each of the above really concern the
‘large scale shape’ rather than the topology (a distinction made in Appendix S.2).
See Appendix T.3 for various ways of modelling Probability and Statistics on topo-
logical manifolds.

38.4 Metric Space and Topological Space Levels

The topological manifold (Appendix D.1) is both a particularly interesting case
among topological space structures (Appendix C.6) and also a very substantial re-
striction on the topological spaces’ diversity (Fig. S.2). Arguments for adopting this
package based on mathematical practicality are well-known. The question how is,
however, what are the relational and Background Independence grounds for doing
so.

We first consider which temporal properties and Background Independence as-
pects carry over to the metric and topological spaces levels of structure. The
position-dependence of most notions of time in Field Theories carries over to such
as spacetime lattice or space-continuum discrete-time models. This also applies to
evolution laws: such as difference-equation and stochastic versions of these exist in
the absence of enough structure to do ordinary Calculus. The notion of duration is
moreover a metric space concept but not a topological space one.

Reduced configuration spaces q̃ are generically stratified manifolds in reduced
formulations, and these occur ‘further down’ the levels of mathematical structure
than topological manifolds do. These arise since quotienting (here by g) does not
in general preserve a number of topological properties including the three that con-
stitute manifoldness: second-countability, Hausdorffness and local Euclideanness.
Thus Configurational Relationalism provides a second reason for considering more
than the usual range of mathematical structures to Isham’s first reason of ‘quantiz-
ing further down’ the levels of mathematical structure.

Since the standard notion of coordinates does not descend beyond the topologi-
cal manifolds level of structure, the GR feature that time is among the coordinates
ceases to apply. Stratified manifolds still possess a local notion of coordinates in
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some regions—within a given stratum—but charts more generally differ in dimen-
sion and can have multiple strata contributing to their structure (Fig. 37.5.b). Each
of the notions of orientability, curves and foliations do not descend beyond the level
of topological manifolds either (though to some extent these continue to be mean-
ingful, e.g. locally in the case of stratified manifolds). These considerations also
illustrate that dimension can vary beneath the topological manifold level of struc-
ture; indeed the ‘physically usual’ notion of dimension is in general meaningless
here.

Dispensing with basing Physics upon topological manifolds [480–482], frees one
to investigate whether topological manifold genesis occurs. [One might extend this
consideration to topological stratified-manifold genesis.] One could also consider
such questions piecemeal: ‘second-countability genesis’, ‘Hausdorffogenesis’ and
‘locally-Euclidean-genesis’. And which of connectedness, compactness, orientabil-
ity... are emergent phenomena?

So, are each of these topological properties actually conceptually desirable for
Background Independence Theoretical Physics? This is hitherto largely unexplored.
E.g. Topological manifolds’ second countability is a superset of ‘operationally phys-
ical’, since Physics in practice concerns only finite entities due to the nature of obser-
vations. Thus the second countability property may be open to weakening. Finally,
whereas Hausdorffness is a great enabler of Analysis, unfortunately Appendix M
outlines how some of the quotient spaces arising from Physics are not Hausdorff.

Research Project 47) The balance between spaces being ‘too large’ or ‘too small’
for doing Analysis is usually attained by considering spaces which are second-
countable and Hausdorff. Does Background Independence—or physical modelling
more generally—give any reason to shift this balance point? For instance, Haus-
dorffness is a notion of separation, and there are many other notions of separation
[672, 809], including some which are only slightly distinct concepts from Haus-
dorffness.
Isham’s choice of setting of the space of topological spaces on a fixed finite set X is
a first model arena for this. This space of topological spaces Top(X) is a lattice LT

(Appendix S.5). Moreover, since lattices can widespreadly be equipped so as to
be metric spaces, different topologies τ1 and τ2 in Top(X) can be compared in the
format of Dist(τ1, τ2). In this setting, g = Homeo is a particularly natural choice.
In this model arena, however, finiteness renders second countability inbuilt, pre-
cludes local Euclideaness, and trivializes the manner in which Hausdorffness is
distributed. I.e. on a finite set, the discrete topology alone is Hausdorff: Ex III.7.i).
On the other hand , this model remains suitable as regards investigating ‘sepa-
rogenesis’ for some of the least structured notions of separation [490, 809]: the
so-called Kolmogorov and symmetric separation properties.

Moreover, the fixed nature of the above set may itself be viewed as a background
structure.

As regards Timeless Records Theory, its locality criterion survives passage from
metric space level considerations to topological space ones (Sect. T.1). The Čech
cohomology technique mentioned in the previous Section also transcends to this
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level of structure, giving a ‘Čech Records Theory’. Furthermore, (W.2) points to
the further generalization of a Records Theory based on Sheaf Cohomology. Basing
Probability and Statistics on sheaves has the advantage of descending to the topolog-
ical space level as well. Kendall’s theory of random sets (Appendix T.4) can also be
viewed as a further example of a classical Records Theory; Isham already brought
this work to attention in the QG literature in a less specific manner in [476].

Research Project 48) A somewhat less radical version—also considered by Isham
at the quantum level [482]—involves forfeiting a fixed metric space. Under the
caution that this need not encapsulate stratified manifolds or lead to differentiable
structure and the higher levels of structure built thereupon, gain a further classical
understanding of time and Background Independence at this level of structure.
[One natural choice for g here are the metric space isometries Isom(X).] What if
one keeps only some of the axioms of distance?

38.5 Yet Deeper Levels of Structure

Research Project 49)† Consider topological-space-genesis: emergence from more
general collections of subsets within some space q = Collect(X). Do one or both
of dynamical or probabilistic considerations give collections of subsets a propen-
sity to be, more specifically, topological spaces? [See Research Project 122) for
further consideration of the latter.] Also gain further understanding of time and
Background Independence at the level of sets and of collections of subsets.

Within the QG literature [628, 685], quite a lot of the work done to date with such
structural sparsity is within Sorkin’s Causal Sets Approach [801, 802]. Here, in
contradistinction to much of this book, one chooses to keep the causal relation and
causal ordering aspects of SR and GR spacetime, albeit now also in the absence of
assuming manifoldness. Its quantum-level treatment is now in terms of path inte-
grals. This approach makes one further hypothesis: that spacetime is fundamentally
discrete [804] (so-called ‘spacetime atoms’). The first and third of these assump-
tions are already held to apply at the classical level, and are jointly modelled by
posets (Appendix A.1). These replace both the metric and the underlying topologi-
cal manifold structure all in one step. In this approach, label invariance and growth
order invariance take the place of coordinate invariance for causal sets. Here the
passage of time is an unceasing cascade of birth events [803]; physicist Fay Dowker
has furthermore argued for these to lie within Broad’s Worldview [263].

The Causal Sets Approach provides a further example of space as a slice within
spacetime retaining some meaningful identity in structurally sparse conditions. In
this setting, slices are maximal antichains.3

As regards Spacetime Constructability, at the current level this requires an entity
which becomes—or approximately resembles—a manifold in a suitable limit. See

3Antichains are subsets of a poset such that the elements within each of which bear no ordering
relations. Maximal antichains are the largest possible ones, in some ways analogous to global slices
or Cauchy surfaces in Geometrodynamics.
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Fig. 38.4 Reslicing Invariance posed. Consider the larger notion of mathematical space M in the
role of spacetime and the smaller notion of mathematical space S in the role of space. Is the solid
arrow’s transformation due to difference between passing from S(1) to S(2) via the red and purple
intermediate S’s always an automorphism of S(2)?

e.g. [734] by physicists David Rideout and Petros Wallden for some advances in
Spacetime Construction within the Causal Sets Approach.

Going yet another level down, one might let the cardinality of the set that
the topological spaces are based upon itself classically evolving and quantum-
mechanically fluctuating. Here the notion of slicing becomes a partition of a set
into a bunch of ‘equal-time’ sets, which can be tied to at least some notions of si-
multaneity [521]. Spacetime Construction (including in approaches assuming just a
discrete replacement for space) would be expected to be even less straightforward
in this case; the less structure is assumed, the harder such a scheme is.

We finally return to Isham’s quotation at the start of this Epilogue. He is in part
concerned that point-set theory is used even when points are held to be physically
meaningless. From this perspective he subsequently went on to ask [491] why Na-
ture should be modelled using R and physical probability values should belong to
the real interval [0,1]?

Research Project 50) Provide the Principles of Dynamics at each level of mathe-
matical structure. TFTs are a well-established arena to begin this study with. (See
e.g. Sect. 38.1 and [253].)

Research Project 51)† Amongst the topics of Research Projects 45–48), let us high-
light that the Reslicing Invariance generalization of Refoliation Invariance can be
posed, as per Fig. 38.4. Work out in which cases this is satisfied. I.e. is Teitelboim’s
resolution at the level of Differential Geometry a fortunate feature, or even a se-
lection principle on what level of structure to consider, or does it in fact reflect a
level-independent state of affairs?

In conclusion, the space of spaces construct kicks one out of the hierarchy of
mathematical structures that theoretical physicists are accustomed to. Also in mak-
ing a descent down the levels of mathematical structure, a few temporal concepts
cease to be meaningfully implemented, and a few Background Independence aspects
and consequent Problem of Time facets cease to exist or to be distinct. However,
most persevere. Finally, such a level by level descent also invites transcending from
a ‘differential geometric’ treatment of Background Independence and Problem of
Time—manifolds, Lie groups, fibre bundles—to a ‘categorical’ treatment.



Part III
Quantum Problem of Time

We now further explore the accounts of Quantum Gravity and Quantum Background
Independence in Chaps. 11 and 12. When aspects of Quantum Background Inde-
pendence are in contention—or fail to be realized by a proposed scheme—Quantum
Problem of Time facets ensue. Part III concentrates in particular on quantum-level
interferences between Problem of Time facets.



Chapter 39
Geometrical Quantization.
i. Kinematical Quantization

Let us begin by extending Part I’s outline of Canonical Quantization to more general
cases, so as to include GR and models encapsulating some features thereof.

The Deformation Quantization approach was initiated by Weyl [894]. ‘Deforma-
tion’ is meant here in an algebraic sense, as in the introduction of a new parameter.
This results in noncommutativity where there was none before; this accounts for the
progression from classical brackets to quantum commutators. Physicist Hilbrand
Groenewold [392] subsequently pointed to the significance in this scheme of the
following ‘star product’ on Phase:

F *G := F exp

(
i �

2
P KK′ ←

∂K

→
∂K′
)
G. (39.1)

This came to be known as the Moyal star product (after applied mathematician José
Enrique Moyal); see Appendix V.7 for a general outline of ‘star product’ opera-
tions.] P KK′

denotes the Poisson tensor outlined in Appendix J.12.
A further useful concept at this stage is polarization: the choice of a suitable

[919] half-set among the Hamiltonian variables Q, P . One suitability criterion here
is brackets closure, which is a type of integrability condition. I.e. if O1 and O2 are
part of a polarization, then so is |[O1,O2]|. A well-known example of polarization
is choosing the Q half of the variables: the configuration representation generaliza-
tion of the position representation. Another involves choosing the P half: the mo-
mentum representation. The complex representation in terms of Z = 1√

2
{P + iQ}

and Z∗ = 1√
2

{P − iQ} lends itself to further polarizations known as ‘Bargmann
polarizations’ after physicist Valentine Bargmann; see e.g. [75] for applications.

This book concentrates however on a subsequent development:1 Geometrical
Quantization [475, 919]. This is approached via choosing a polarization of q, in
which manner it naturally partners Part II’s q-geometry based Jacobi–Synge ap-
proach. Geometrical Quantization is general enough to embrace most of this book’s

1Both Deformation and Geometrical Quantization have continued to evolve since their inception;
see [605] for an excellent review by mathematical physicist Nicolaas Landsman.
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quantum treatment of its selection of model arenas and theories. This is outlined
in the next two Chapters using trivial-g Finite Theory concrete examples; these
restrictions are lifted in Chaps. 42–43.

39.1 Unconstrained Beables Come First
in Geometrical Quantization

Kinematical Quantization involves a notion of observables or beables: the simplest
unconstrained such, Û . Quantum Theory builds on this, by which this part of As-
signment of Beables is required at an earlier stage than in the classical develop-
ment. Indeed, in Geometrical Quantization, finding suitable Û is the first part of
Quantization: Kinematical Quantization. This means that U is the first stage of Q

in quantum-level Cubert facet orderings, with quantum-level considerations of con-
straints, reduction, and assignation of a time occurring after assigning Û . Some of
these subsequent quantum steps are then known as Dynamical Quantization, or as
Tempus Post Quantum assignation of a time.

The kinematical operators require a space of wavefunctions to act upon. This
is mathematically a Hilbert space, Hilb. However, it is not the particular physically
realized Hilbert space, due to dynamical (and, in the next Chapter, g) considerations
not having yet been taken into account. Let us denote Hilbert spaces in the former
role by Kin-Hilb for ‘kinematical Hilbert space’, and those in the latter role by
Dyn-Hilb for ‘dynamical Hilbert space’. The corresponding morphisms are unitary
transformations. Four more specific features are as follows.

I) The examples in Sect. 39.5 explain how each Kinematical Quantization opera-
tor obeys suitable global continuity conditions, which reflect Quantum Theory’s
sensitivity to the topology of q and Phase.

Before proceeding further, we recollect some classical trivialities. We can consider
all U = F(Q,P ) over a given phase space Phase of the Q and P are the classi-
cal level. These U furthermore form a Poisson brackets algebraic structure, u We
would expect the Û to form a brackets algebraic structure as well. The next two
sections consider maps between bracket structures in anticipation of this. Simple or
optimistic hopes that u = û shall be shown not to materialize; Sect. 39.4 explains
why Kinematical Quantum algebraic structures are much smaller than classical U

algebraic structures.

II) It is then a nontrivial issue that the selected set of Kinematical Quantization
operators is to contain all the relational information.

III) Kinematical Quantization operators are however allowed to have some classical
redundancy.2

IV) Kinematical Quantization operators close under the quantum commutation re-
lations, thus indeed forming an algebraic structure û.

2I.e. there are more relational functions than there are independent pieces of relational information;
this is not to be confused with including unphysical, gauge or nonrelational information.
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39.2 Brackets Map Between Spaces of Objects

We follow up on Sect. 24.1’s introduction of brackets algebraic structures, by now
considering maps between two such:

m : 〈o1, |[ , ]|1 〉 −→ 〈o2, |[ , ]|2 〉. (39.2)

This is not per se a quantum construct, though all applications of it in this book do
happen to be promotions of classical brackets to quantum commutators.

A priori and in the notation of Sect. 24.1, one might expect

|[O1v,O1v′ ]| = C1
v′ ′

vv′ O1v′ ′ (39.3)

to be induced upon the algebraic structure of the O2. This occurs if m is an isomor-
phism. It turns out to be insightful, however, to ask what other forms a brackets map
can take.

Outcome i) Inequivalent structure constants C2 �= C1 may arise.
Outcome ii) The O2 objects may pick up (24.1)’s � term.
Outcome iii) If prescribing m is ambiguous, different m would be expected to give

different outcomes.
Outcome iv) If m does not preserve dimension (as many homomorphisms do), per-

haps restriction to a proper subalgebra s1 < o1 would manage this, or even provide
an isomorphism.

Outcome v) The brackets map might be a functor between two categories (Ap-
pendix W). In general, however, Quantization itself is no such well-behaved func-
tor, as explained in Sect. 43.7.

39.3 Specifically Quantum Attributes of Brackets

1) Now m : 〈o, |[ , ]|〉 −→ 〈some space of operators ô, [ , ]〉.
2) The recipient space is more globally sensitive than the original space.
3) Quantization (classical to quantum) maps involve operator ordering. This is due

to one’s system’s quantum operators in general not commuting.
4) Moreover, consistency of another kind—

large enough sets of quantum versions of classical quantities
can be inconsistent with each other (39.4)

—pushes one into considering a subalgebraic structure s < o to be promoted,
rather than the whole of o. This is a specifically quantum-level issue. The
Groenewold–van Hove phenomenon (schematically in Fig. 12.2, with details and
examples in Epilogue III.A) is a result of this kind. Finally, choice of s is cer-
tainly capable of being nonunique, being the most prominent source of Multiple
Choice Problems.
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5) The form taken by Outcome i) is

|[SS,SS′ ]| = C1
S′ ′

SS′ SS′ ′ −→ [̂SS, ŜS′ ] = C2
S′ ′

SS′ ŜS′ ′ . (39.5)

This is in accord with attribute 2), by which ranges of validity can shape the
primed algebraic structure to a greater extent than the unprimed one. Also differ-
ent operator orderings often lead computationally to different right hand sides.

On the other hand, Outcome ii) gives

|[SS,SS′ ]| = C1
S′ ′

SS′ SS′ ′ −→ [̂SS, ŜS′ ] = C2
S′ ′

SS′ ŜS′ ′ +�SS′ . (39.6)

6) Consequently,

Classical Brackets Closure �⇒ Quantum Brackets Closure; (39.7)

this generalizes (12.15) from constraints to general entities.
7) If item 6) occurs, one strategy is to see whether this arose from the choices made

of operator ordering and of s. Can some operator ordering of some choice of s
at least maintain closure?

Subcase A) Insist on preserving 〈s, |[ , ]|〉.
Subcase B) Identify which ŜS cause� terms to appear, and excise these; this might

be used in arguing for a fixed view on how to operator-order.
Subcase C) Strong vanishing of the � terms may also occasionally be feasible.

Of course, since these subcases add restrictions, they are less likely to be solvable
than the general case; some programs moreover hinge upon the solvability of such
a subcase.

39.4 The Groenewold–Van Hove Phenomenon

The reason why we cannot promote whichever combination of—or all of—the U =
F(Q,P ) to quantum operators is that global obstruction by the Groenewold–van
Hove phenomenon applies. This gives one reason why a preferred set of F(Q,P )
is to be selected for promotion to quantum operators Û = F̂ [Q̂, P̂ ]. A fortiori, the
preferred set is to algebraically close under the classical Poisson bracket { , }, and
so form a subalgebraic structure. On the other hand, the latter are to algebraically
close under the commutator bracket [ , ]. The previous two Secs have outlined why
the passage between these is far from necessarily a straightforward matter. I.e. the
classical Poisson brackets subalgebraic structure leads to some commutator algebra,
Com-Al of F̂ [Q̂, P̂ ] that close under [ , ], which does not have to be isomorphic
to it. The latter is accompanied by commutator-preserving morphisms M in place
of the classical-level canonical transformations, Can, which preserve the Poisson
brackets. Because of the Groenewold–van Hove phenomenon, we add the following
to Sect. 39.1’s list of features.
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V) Excessive polynomiality is to be avoided if at all possible due to the threat of
the Groenewold–Van Hove phenomenon.

Note that cubic combinations are already afflicted by this, so one is left considering
quadratic polynomials. Another consideration—balancing II) and IV)—is that one
needs a large enough set of beables to express every other beable as a function(al)
of these, i.e. a set of ‘basis beables’. The corresponding irreps subsequently play a
significant role [482].

39.5 Examples of Kinematical Quantization

These illustrate how Quantum Theory has greater sensitivity to global structure. For
now, the first five of these examples are to be physically interpreted as absolutist
Quantizations.

Example 1) For a particle in R (interpreted to be q), the conventional selection
is just x, p. This followed by the promotion x −→ x̂, p −→ p̂, which can be
represented by

x̂ = x and p̂ = −i � ∂
∂x
. (39.8)

These are the objects K̂Z, which constitute the kinematical Quantization alge-
bra K.

Example 2) For a particle in R
2 = q, the Kinematical Quantization’s selection in-

volves not only xi and pi but angular momentum J as well. Upon promoting these
to quantum operators, they admit the representation

x̂i = xi, p̂i = −i � ∂

∂xi
and Ĵ = −i �

{
y
∂

∂x
− x

∂

∂y

}
= −i � ∂

∂φ
.

(39.9)
Example 3) For a particle in R

3 = q, the Kinematical Quantization’s selection now
involves xi , pi and Ji . These are promoted to quantum operators which can be
represented by

x̂i = xi, p̂i = −i � ∂

∂xi
and Ĵi = −i � εijkxj ∂

∂xk
. (39.10)

In each case,

Kin-Hilb = L2

(
R
p,

p∏
i=1

dxi
)
, (39.11)

i.e. the square-integrable functions on R
p with respect to the standard measure.

Specifying K also requires giving the bracket relations. The classical Poisson
brackets and quantum commutators are an isomorphic pair for each d . In 1-d , this
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is the Correspondence Principle

from {x,p} = 1 to [̂x, p̂] = i �, (39.12)

whereas in higher-d each of the pair has additional nontrivial brackets involving
angular momentum. E.g. in 3-d (39.12) is accompanied by passage from (2.24) to
(5.5). The 3-d angular momenta can also be cast in the dual form,

Ĵij = i �

{
xi
∂

∂xj
− xj

∂

∂xi

}
,

which presentation extends to n-d ; Poisson brackets and commutators in this form
are left as an Exercise. The resulting K in each of the above examples is a Heisen-
berg algebra, Heis(n). Moreover, at the classical level one might well consider Pois-
son brackets of classical quantities other than xi , pi and Ji , or not think to allot
co-primary status to the Ji .

The above examples are however misleadingly simple in some ways. They cor-
respond to problems for which Kinematical Quantization is resolved by the x̂i , p̂i ,
and Ĵi operators, which have come to be widely known and so are adopted with-
out second thought. Yet the applicability of these operators reflects the underlying
role of Rn spaces, which are all of flat, without boundary, topologically trivial, and
vector spaces. Geometrical Quantization, moreover, addresses what procedure one
is to adopt if a general manifold M enters at this stage instead. In fact, Geometrical
Quantization can deal with even more general possibilities than manifolds, such as
stratified manifolds. Some more general examples are as follows.

Example 4) [of I) and redundancy in III).] For a particle on S
1 = q, φ and pφ are

classically useful variables: the general coordinate q , p pair extension of the x, p
pair. This pφ can furthermore be interpreted as J : 2-d rotations’ sole component
of angular momentum. However, if we try to select φ and J for promotion to
quantum variables, this fails due to discontinuity of φ at the endpoints of its range
(cf. I) (this can be taken e.g. to be from 0 to 2π ). An obvious next attempt is to
select e.g. sinφ instead of φ so as to meet this continuity condition (and smoothly
so, from the sine function’s periodicity). However,

[sinφ, Ĵ ] = i � cosφ, (39.13)

so this choice does not close by itself as an algebraic structure. Thus cosφ—which
was also always a valid alternative choice due to its own periodic property—has to
be selected as well. This finalizes the closure, since the further nontrivial commu-
tator

[cosφ, Ĵ ] = −i � sinφ (39.14)

does not give any further right hand side terms. These operators are self-adjoint on

Kin-Hilb = L2(S1,dφ). (39.15)
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Fig. 39.1 A heuristic picture of a) unsuitable and b) suitable operator actions as regards represent-
ing momentum on the real half-line. c) Suitable operator actions as regards representing momentum
on the interval

Moreover, clearly a change in dim(K) is caused by passing from considering R to
S

1, which is topologically distinct: its fundamental group (cf. Appendix F)

π1(S
1) = Z �= id = π1(R). (39.16)

Furthermore, dim(K) has ceased to coincide with dim(Phase(S1)). This renders
it a more striking counter-example to quantum commutators being isomorphic to
underlying classical Poisson brackets.

Example 5) [of I) and of m not being an isomorphism.] For a particle in R+ = q
[475], suppose one were to try to represent x and p by

x̂ = x, p̂ = −i � ∂
∂x
. (39.17)

The latter, however, is not essentially self-adjoint since it does not respect the end-
point of the R+ by continuing to generate a translation past it (Fig. 39.1.a). To
avoid this, one uses instead

p̂ = −i �x ∂
∂x

(39.18)

(Fig. 39.1.b). This firstly illustrates that the familiar representation of momentum—
summarized by

P = −i � δ∂

δ∂Q
(39.19)

—is in fact not universally applicable.
Secondly, the quantum commutator takes the form

[̂x, p̂] = i � x̂: (39.20)

the affine commutation relation.3 Thus this example also illustrates a distinct al-
gebraic structure arising upon quantizing [the corresponding classical Poisson
bracket is still being (2.23)]. This change is due to Quantum Theory’s greater sensi-
tivity to topological structure; in particular, while R+ is contractible, it is however

3Exercise: show how this is indeed related to Appendix B’s notion of Affine Geometry.
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not a vector space [475]. These operators are self-adjoint on

Kin-Hilb = L2
(
R+,

dx

x

)
. (39.21)

Note in particular that the p̂ constructed here is self-adjoint with respect to this and
not with respect to ‘the usual’ dx.

Example 6) For a particle on an interval I = q there are two endpoints to respect.
Without loss of generality, place these at ±1. Moreover,

x,
√

1 − x2 and − i �
√

1 − x2 ∂

∂x
(39.22)

are self-adjoint on

Kin-Hilb = L2
(
R+,

dx√
1 − x2

)
. (39.23)

These can furthermore be recast as

sin θ, cos θ and − i �
∂

∂θ
, (39.24)

though the interpretation these receive here is different from that in Example 4),
due to −1 and 1 now not being identified.

Let us next consider a method which works for quite a wide range of examples in-
cluding some of this book’s more widely used ones. It is due to noted mathematician
George Mackey, and has been much used in Isham’s works [475, 482, 491, 497]. It
applies when q takes the form of a homogeneous space g1/g2 (g2 is a subgroup
of g1).

In this case, the corresponding kinematical quantum algebraic structure K can be
decomposed as semidirect products (Appendix A)

v∗(q)�gcan(q). (39.25)

Here, gcan(q) is the canonical group and v∗ is the dual of a linear space v. This is
natural due to carrying a linear representation of q such that there is a q group orbit
in v which is diffeomorphic to q/g [475]. Furthermore,

K = 〈v∗
�gcan(q), [ , ]〉. (39.26)

Also v∗ = v for finite examples, while gcan(q) = Isom(q) for many of the exam-
ples in this book. Semidirect product groups have the further good fortune that the
powerful techniques of Mackey Theory (Appendix V.1) are available to set up the
corresponding Representation Theory.

Let us now return to Examples 1) to 3), as regards a sense in which these are less
simple than Examples 4) and 5). This follows from the central extension already
observed at the classical level (Sect. 37.7) also affecting the form of K. By this e.g.
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the q = R case’s K picks up an extra R—the 1—in addition to the R of q in the v
and the R of p which forms gcan(R). In contrast, Example 5)’s

K = R�R+ = Aff (1)

involves no central extension term. Furthermore, this case does not involve
Isom(R+) either. This is because the 1-d isometry group is formed here by the
Killing vector ∂

∂x
. On the one hand, ∂

∂x
arises from locally solving the Killing equa-

tion, but on the other hand this expression does not comply with the required essen-
tial self-adjointness to be part of K. The first attempt at Example 4) above can be
interpreted as [475] K = R� SO(2) being obstructed by the nontrivial cohomology
group (Appendix F)

H 1(S1,R) = R. (39.27)

This is resolved by bringing in multiple coordinate charts; two will do, correspond-
ing to use of

K = R
2
� SO(2) = Eucl(2).

This K is moreover shared by Example 5) as well.

Example 7) On S
k = SO(k+ 1)/SO(k), gcan = Isom(Sk) = SO(k+ 1), acting upon

v = R
k+1. The R

k+1 objects here obey
∑k+1
i=1 u

2
i = 1, which can be represented

by the (hyper)spherical polar coordinate unit vectors. These are self-adjoint on

Kin-Hilb = L2

(
S
k, sinnd−1−AθA

A−1∏
i=1

sin2θi dθidθA

)
(39.28)

and form

K = R
k+1

� SO(k + 1) = Eucl(k + 1). (39.29)

Example 8) For N -particle 1-d Metric Shape and Scale RPM, q = R
n for n :=

N − 1. Thus this shares

Kin-Hilb = L2

(
R
n,

n∏
i=1

dxi
)

(39.30)

and

K = Heis(n) (39.31)

mathematics with the absolutist version of Rn. What differs now is the physical
interpretation of K’s objects. These are now relative separations ρi , their conjugate
momenta

π̂i = −i � ∂

∂ρi
(39.32)
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and relative dilational momenta

D̂ij = −i �
{
ρi
∂

∂ρj
− ρj

∂

∂ρi

}
. (39.33)

This is supported by

π1
(
s(N,1)

)= π1
(
S
N−2) being trivial (39.34)

for all the relationally nontrivial cases (N ≥ 4).
Example 9) For closed single scalar field Minisuperspace, working with Mis-

ner’s scale variable Ω exhibits Poin(2) as isometry group. The mathematical
outcome of Kinematical Quantization is thus fairly standard, albeit again with
non-standard physical interpretation due to occurring in a configuration space—
Minisuperspace—rather than in physical spacetime. This involves the isometry
group consisting of a single ‘boost’ K and a ‘translational’ 2-vector P = (pΩ,pφ)
associated with one Misner scale variable coordinate and one scalar field coordi-
nate. Moreover, this acts upon another Minisuperspace 2-vectorX = (Ω,φ). These
are all self-adjoint on

Kin-Hilb = L2(
M

2,dΩ dφ
)
, (39.35)

and form

K = M
2
� Poin(2): (39.36)

the indefinite 2 − d counterpart of the familiar Heisenberg group. Furthermore,
this lies within the v∗(q) � gcan(q) form. [The objects acted upon here obey
c2 − s2 = 1.] However, if one works with the scale variable a, a distinct algebra
with some R+ type affine features arises [50]. [a versus Ω amounts to a change
in the topology of the domain involved. This inequivalence is thus rooted in Quan-
tum Theory’s global sensitivity.] In this way, choice of scale variable leads to in-
equivalent Quantizations: a Multiple Choice Problem. This additionally becomes a
Multiple Choice Problem of Time if the scale variable chosen is to play a temporal
role.

Example 10) For vacuum diagonal Bianchi IX anisotropic Minisuperspace, work-
ing in Ω,β± variables exhibits Poin(3) as isometry group. This now consists of
a rotation J in ani, 2 boosts K mixing anisotropy and Misner scale variable,
and a ‘translational’ Minisuperspace 3-vector P = (pΩ,pβ+ ,pβ−). Moreover, this
group acts upon another Minisuperspace 3-vector X = (Ω,β+, β−). These objects
are all self-adjoint on

Kin-Hilb = L2(
M

3,dΩ dβ+dβ−
)
, (39.37)

and form

K = M
3
� Poin(3). (39.38)

Again, working with a instead of Ω gives a distinct Kinematical Quantization
algebra.
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39.6 ii. Further Global Nontriviality

Further global effects can stem from nontriviality of q’s Chern classes (outlined in
Appendix F.5). E.g. the first Chern class classifies the twisted representations [475],
a notion bearing close relation to fermions.

Example 1) For the action of SO(2) on Z, the cohomology groups are

Hp
(
S

1,Z
)= 0, (39.39)

by which these effects are trivialized.
Example 2) On the other hand,

for k > 1, Hp
(
S
k
)= 0 for p < k but not for p = k, (39.40)

so a few of the more subtle effects persevere. These k > 1 results are furthermore
directly relevant to Metric Shape RPMs since s(N,1) = S

N−2 for N ≥ 4.

39.7 Conceptual Outline of the Kochen–Specker Theorem

This [562] is a further nontriviality which can be considered to be part of subalge-
braic structure selection. Discussing this requires first considering valuation func-
tions. For a state S and a physical quantity A, a classical valuation function is just
VS(A) = fA(S), which allots the value of fA in the state S. fA is itself a function
from the state space to R [487]. On the other hand, a quantum valuation function
Vψ(A) is a more involved construct (for ψ the quantum wavefunction);

function
(
valuation(A)

)= valuation
(
function(A)

)
(39.41)

would appear to be a natural condition to impose on this, for any function: R −→ R.
However, (39.41) implies the following conditions [487].4

i) Vψ(O1 +O2) = Vψ(O1)+ Vψ(O2) (additivity).
ii) Vψ(O1O2) = Vψ(O1)Vψ(O2) (multiplicativity).

iii) Vψ(I) = 1, for I the physical quantity corresponding to the unit operator Î, holds
so long as there is at least one O such that Vψ(O) �= 0 (unit property).

iv) Vψ(0) = 0 (zero property).

4Furthermore, by using projectors P̂i to represent quantities playing the role of the Ai , and
the Proposition–Projector Association of Sect. 51.1, this becomes a matter of truth valuations.
Vψ(P̂i ) = 0 or 1 (projector truth valuation). Moreover,

∑n
i=1 Vψ(P̂i ) = 1 for a set of projectors

resolving the identity
(∑n

i=1 P̂i = 1 for P̂i P̂j = 0 if i �= j
)

is guaranteed by i) and iii), though the
preceding sentence forces this to be realized by a single 1 and n− 1 zeros. Proof of this footnote’s
statements is left as an Exercise.
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The Kochen–Specker Theorem, however, is that

there is an obstruction to function
(
valuation(O)

)
= valuation

(
function(O)

)
for Hilbert spaces of dimension > 2. (39.42)

See e.g. [708] for an updated simpler proof, complete with comments and references
to previous proofs.



Chapter 40
Geometrical Quantization.
ii. Dynamical Quantization

The next step is Dynamical Quantization. For GR (and a wider range of Background
Independent theories), Dynamical Quantization moreover reveals frozenness. We ar-
gued in Part I that this is already classically present and resolved at that level by time
being abstracted from change. The quantum level, however, requires a new resolu-
tion, as can be envisaged from quantum change in general differing from classical
change. That these two resolutions differ is particularly clear from the position that
‘all change is given the opportunity to contribute’. This approach, however, is to
await Chap. 46, so that we first map out the effects of generalization to nontrivial g,
Field Theory, GR, and Tempus Ante Quantum options.

Dynamical Quantization 1) Represent Quad by some Q̂uad functional of Kinemat-
ical Quantization operators. The outcome of this procedure is a quantum wave
equation. One nontriviality with this is that it entails a dynamical operator order-
ing ambiguity. Another is whether Quad is well-defined, on account of involving
compositions of operators which do not in general come with Functional Analysis
reasons to be well-behaved.

Dynamical Quantization 2) Solve Q̂uad� = 0 so as to pass from Kin-Hilb to
Dyn-Hilb itself: the Hilbert space therein which is annihilated by Q̂uad. One fi-
nally interprets the spectra of a sufficient set of self-adjoint operators acting on this.

40.1 Operator Ordering

We next need to pay attention to how Quad’s classical product combination,

NAB(Q)PAPB, (40.1)

gives rise to an operator ordering ambiguity upon quantizing.1 This has conse-
quences for the physical predictions of one’s theory. Moreover, there is no estab-

1We include field versions at no extra cost, though we postpone treating the full GR quantum wave
equations until Chap. 43, i.e. until after g has been introduced.
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lished way to prescribe the operator ordering in the case of (model arenas of) Quan-
tum Gravity. One approach which picks out certain operator orderings is based on
an extension of the General Covariance Principle to configuration space q: DeWitt’s
General Covariance Principle [234].

NAB(Q)PAPB −→ 1√
M

P̂A

{√
MNAB(Q)̂PB

}
(40.2)

is one notable implementation of this. This is working within the configuration rep-
resentation. Moreover, if P̂A is additionally representable by (39.19), this construct
is proportional to the Laplacian: −�

2 �M. Thereby, it is termed the Laplacian oper-
ator ordering. Nor is this a unique implementation of DeWitt’s General Covariance
Principle, for one can include a Ricci scalar curvature term so as to have the ξ -
operator ordering

�ξ
M := �M − ξRM (40.3)

[234, 409, 441], for any real number ξ , is a more general such.2 N.B. this gives
inequivalent physics for each value of ξ , though the following limitation applies in
Semiclassical Approaches.

Lemma 1 The physics for all ξ -orderings coincides to one loop, i.e. to O(�).
This was established by physicist Andrei Barvinksy in [117, 118, 120], so we term

it ‘Barvinsky’s first equivalence’.

Misner [659] furthermore pointed to a unique choice among the ξ -orderings:
conformal operator ordering

�c
M := �M − ξ cRM := �M − k − 2

4{k − 1} RM. (40.4)

This is the unique conformally-invariant choice for each configuration space dimen-
sion k > 1 (which also corresponds to the relationally-meaningful values) provided
that the � it acts upon itself transforms as [874]

� −→ � =  {2−k}/2�. (40.5)

Let us next pinpoint the nature of the conformal invariance referred to in conformal
operator ordering. This does not apply to space itself; Misner’s identification [659]
is that it applies, rather, to the Hamiltonian constraint under scaling transformations.

H = 0 −→ H = 0. (40.6)

This can be generalized to the invariance

Chronos = 0 −→ Chronos = 0. (40.7)

2An underlying simplicity here is the exclusion of no more complicated curvature scalars, i.e. no
higher-order derivatives or higher-degree polynomials in the derivatives.
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The nature of the conformal invariance was moreover taken once step further back
[22], to the level of actions. This reveals that Misner’s identification is underlied by
the PPSCT invariance (L.21) of the relational product-type parageodesic-type ac-
tion. In this way, it is clear that Misner’s conformal invariance applies to the kinetic
arc element ds alongside a compensatory conformal invariance in the potential fac-
tor W . This reflects that the combination which actually features in the action d̃s
is not physically meaningfully splittable into kinetic and potential factors, as per
Appendix L.11. PPSCTs are further appropriate in the whole-universe setting for
Quantum Cosmology. In this way, demanding conformal operator ordering can be
seen as choosing to retain this simple and natural invariance in passing to the quan-
tum level.

We end by pointing to some useful simpler cases of ξ -operator ordering.

Simplification 1) For models with 2-d configuration spaces the conformal value of
ξ c = {k − 2}/4{k − 1} collapses to zero. Now conformal and Laplacian operator
orderings coincide.

Simplification 2) For models with zero Ricci scalar, all of the ξ -orderings reduce to
the Laplacian one.

Simplification 3) Suppose a space has constant Ricci scalar. Then the effect of a
ξRM term, conformal or otherwise, can simply be absorbed into redefining the
mechanical energy or the GR cosmological constant.

40.2 Quantum Wave Equations

We next arrive at the crucial time-independent Schrödinger equation; if the above
family of ξ -operator orderings is used, this takes the form

̂Chronos� = 0 ⇒ �ξ
M� = 2{V − E}�/�2. (40.8)

Example 1) For scaled N -stop metroland,

�Rn� = �c
Rn
� = 2{V −E}�/�2. (40.9)

Example 2) For the generalized Klein–Gordon-type equation,

�M(Q,t)� = 2m(Q, t)�/�2. (40.10)

For now, this covers Minisuperspace examples, both the current Chapter’s and as
found in e.g. [149, 659, 760].

N.B. the first equality is due to Simplification 2); for N = 3 and for the isotropic
Minisuperspace example, dim(q) = 2, so Simplification 1) could also be evoked.
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40.3 Addendum: q-Primality at the Quantum Level

Quantum Theory unfolding on configuration space q has often been argued for,
though often in the context of also arguing for Quantum Theory unfolding equally
well on whichever polarization within Phase, of which q is but one.

A further argument for q primality is how Geometrical Quantization procedures
[475, 633] such as the above are centred around the structure of q. Therein, the
canonical group gcan arises from q, and v∗ is a space this acts upon. Additionally,
the point transformations Point remain relevant to Kin-Hilb, and for the operator
orderings of the constraints as well.

Of course, some other approaches involve the canonical transformations, Can.
That classical equivalence under canonical transformations is in general broken in
the passage to Quantum Theory due to the Groenewold–Van Hove phenomenon
provides a further reason to question the licitness of all canonical transformations.
Moreover, using just Point does not resolve out all aspects of unitary inequivalence.
A deeper question is which weakening of the Can’s or Point’s at the classical level
form up into classes that are preserved as unitary equivalence at the quantum level.
On the other hand, the solution of the currently posed problem is likely to involve a
rather larger proportion of the canonical transformations. Holding canonical trans-
formations in doubt affects, firstly, Internal Time and Histories Theory approaches
to the Problem of Time, and, secondly, Ashtekar variables approaches.

This points to use of positive operator-valued measures on Phase. These gen-
eralize both projection-valued measures on configuration space (in terms of which
Mackey’s results can be reformulated) and self-adjoint operators on Hilbert space
(while remaining physically meaningful in at least some contexts). See [605] for a
sharp outline of the above two terms in italics and for the reformulation in ques-
tion, which is based on a combination of Appendix P.3’s Borel subsets and Ap-
pendix V.7’s C∗ algebras.

Since the above comes out frozen, there is a need to finish Temporal Relational-
ism off at the quantum level, which we gradually address below.



Chapter 41
Further Detail of Time and Temporal
Relationalism in Quantum Theory

41.1 Time in Quantum Theory Revisited

Many of Part I’s basic considerations of time in QM remain to be revisited.1 We
return to some of these in the current Chapter; further such are covered in Chaps. 42
and 48.

Two lines of discourse concerning the limited validity of Pauli’s argument
[item 3) of Sect. 5.3] are as follows.

Firstly, there are well-documented technical limitations with this [327]. These
considerations are moreover consistent with entertaining more general notions of
quantum observables. In particular, positive operator-valued measures can also be
applied here, now in postulating dynamical time operators corresponding to a num-
ber of the notions of time in QM [178, 327, 328]. These match how some experi-
ments record types of quantum time.

Secondly, Sect. 39.4’s consideration of Kinematical Quantization points to a
further kind of limitation. This is due to Kinematical Quantization requiring a
greater diversity of commutation relations rather than the only—if most commonly
considered—one which enters Pauli’s argument. This follows from sensitivity to
the underlying topology, whereas the topology of time itself is an unsettled matter
(Fig. 1.2). Because of this, the time–Hamiltonian commutation relation does not
necessarily need to take the naïve form (5.16) that is involved in Pauli’s argument.
In particular, for quantum GR, the ‘standard’ commutation relations are supplanted
by affine-type ones. In cosmological models, if one or both of a Big Bang or Big
Crunch hold, time forms but a half-line or an interval.

1Contrast with how Part I’s considerations of time in QFT through the Wightman axioms—which
capture many of these points on time—were already argued in Chap. 11 to very largely breaks
down even at the level of QFTiCS. The exceptions to the ‘many’ are the evolution and inner prod-
uct postulates running up against the Frozen Formalism Problem and the Inner Product Problem
respectively in QG. These were revisited in Sect. 12.1, though the latter is further considered at the
end of the current Chapter as well.
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Such counter-arguments moreover affect items 1) and 2) of Sect. 5.4 as well, con-
cerning quantum clocks at the level of QG. Bearing in mind the above discrepancies,
the following complementary questions are of interest.

Research Project 52) Reassess the Salecker–Wigner clock inequalities within the
full QG setting.

Many of the conceptual types of time in Quantum Theory (Chap. 5 and [669, 670])
are moreover realized in QG, including further and nontrivially distinct variants of
these notions arising.

Research Project 53) Match up time operator proposals in Ordinary QM with the
roles ascribed to time in various Problem of Time approaches. Which time con-
cepts of significance in Quantum Theory (Background Reading 2 in Exercises II)
remain meaningful in Quantum Cosmology and in general QG?

Research Project 54) Moreover, Research Project 53)’s considerations in turn affect
how Energy–Time Uncertainty Principles are to be interpreted in the QG context.
GR furthermore begets many subtleties in conceptual meaning and technical re-
alization of notions of energy. Overall, ‘QG Energy–Time Uncertainty Principles’
remain very far from being understood. Treat this more comprehensively.

41.2 The Quantum Frozen Formalism Problem

This arises at the level of the quantum quadratic constraint—the Wheeler–DeWitt
equation in the case of GR—as per Chaps. 9 and 12. Chapters 9 and 15 to 18 argued
moreover that this has a classical precursor which is more readily handled. There are
Tempus Ante Quantum , Tempus Post Quantum and Tempus Nihil Est approaches to
this, which are expanded upon from Chap. 12’s outline in, respectively, Chap. 44,
Chaps. 45–47 and Chap. 51. On the other hand, Chaps. 52 and 53–54 bypass this
matter by use of Quantum Path Integrals and Histories Theory respectively. In this
way, all the main classical options of Part II (cf. Fig. 13.1) are further pursued in
Part III at the quantum level; a few further purely quantum variants arise as well.

Part II’s main approach at the classical level involves, firstly, adopting primary-
level timelessness. Secondly, abstracting time from change as Mach suggested, by
which we termed this output a classical Machian emergent time. In this way, there
is reconciliation with notions of time which do appear to play major roles in the
local physics familiar from experience. Thirdly, we extended TRi actions to a full
TRiPoD (Appendix L) and TRiFol (Chap. 34, by which Temporal Relationalism
remains implemented upon incorporating each of the other local classical aspects of
Background Independence.
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41.3 Temporal Relationalism Implementing Canonical Quantum
Theory (TRiCQT)

Part III then follows suit; a major quantum-level continuation of TRiPoD is TRiCQT
(Canonical Quantum Theory). This is entirely already-TRi; it is the Semiclassical
Approach and Path Integral Quantum Theory formulations that require supplanting
some entities by TRi versions. It consists of the following.

1) The kinematical quantum algebraic structure’s operators K̂ ∈ K—promoted from
classical objects selected from among the U . [So at the quantum level, one in
general starts with a subalgebraic structure of the 6)’s which are functions of the
1)’s, rather than with the 1)’s themselves.]

2) Quantum commutators |[ , ]|: descendents of the Poisson brackets or their mod-
ification to the Dirac brackets.

3) The quantum Hamiltonian operator Ĥ (K̂) and the time-independent wave equa-
tion Ĥ (K̂)� = E� (possibly = 0) formed from it. In theories with zero bare
Hamiltonian, this role can be taken to be adopted by a quadratic quantum con-
straint Q̂uad such as the quantum Hamiltonian constraint Ĥ of GR. This is under
the proviso that Quantum Theory for the whole Universe produces a timeless
wave equation of the Wheeler–DeWitt type. The wave equations here making no
reference to time, no time enters the wavefunctions of the Universe which solve
them. Nor would it be natural for a Hilbert space inner product associated with
these to refer to a time.

4) Any supplementary wave equations F̂linN(K̂)� = 0 resulting from quantum con-
straints F̂linN, as considered in Chaps. 42–43.

With the quantum constraints and the commutator both being change-scalar
objects, the standard forms of all of

5) the quantum constraint algebraic structure,
6) the quantum beables defining equations and
7) the quantum beables algebraic structures are a priori change-scalars.

See Chaps. 49 and 50 for more about 5) to 7).
Part III’s UQ scheme’s need for a quantum-level T step is subsequently contem-

plated in this and the next thirteen Chapters, including interplay with nontrivial g,
closure and beables as well as Timeless and Histories alternatives to T. Classical
Machian emergent time itself does not survive passage from the classical to the
quantum. However, as we shall see in detail in Chaps. 46 and 47, a semiclassical
Machian emergent time springs up to take its place. Indeed, the main approach pro-
posed in this book is a T . . . Q scheme with a semiclassical Machian emergent time.

41.4 Do Absolute and Relational Mechanics Give Distinct QM?

RPMs Versus Standard QM Models This follows on from the historical interest
in freeing Mechanics from absolute structure. Asking whether a different sort of
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QM (or generalization thereof) would have arisen if Mechanics had been cast in
relational form prior to the advent of QM, is of subsequent interest [37, 746, 793].
Note that this question is not rendered obsolete by passing to special-relativistic
QM or QFT on flat spacetime, by arguments such as Chaps. 6 and 11’s. In this
way, Minkowski spacetime M

n’s privileged timelike Killing vector that effectively
re-assumes Newtonian time’s absolute role.

So, have traditional absolutist Paradigms of Physics—whether Newtonian or
Minkowskian—been misleading us as regards the form taken by Quantum The-
ory? Or does a highly coincident theoretical framework arise from the Relational
Approach? At least for the RPMs considered in detail in this and the next Chapter—
Metric Shape RPMs with and without scale—it is the latter situation which largely
applies.

For now, we just consider the effect of incorporating Temporal Relationalism.
One advantage of similarities between Relational and Absolute QM is the ready
availability of methods of calculation. However, differences in interpretation of the
mathematical objects common to both cases is also pertinent. So, for instance, har-
monic oscillator and nonrelativistic hydrogen mathematics recur in RPMs [37], but
now the variables involved have relational whole-universe significance. In this man-
ner, RPMs are more useful than harmonic oscillators or hydrogen as model arenas
of whole-universe Quantum Cosmology. RPMs’ technical similarity to the former
is a large bonus since by it well-known types of calculation can be carried over to
a new setting which has whole-universe quantum cosmological significance. The
usefulnesses and limitations of Atomic and Molecular Physics methods and con-
cepts are exported in this way to Quantum Cosmology in [37]. Let us consider
scaled N -stop metroland [37] as a concrete g-free example. The free problem for
this gives Bessel functions (Fig. 41.1.b). Adding a harmonic oscillator to this gives
Laguerre functions (these arise in Ex II.1 and Fig. 41.1.b), which are indeed also
familiar from the radial equation for hydrogen and the isotropic harmonic oscilla-
tor.

RPM models can furthermore have potentials selected in accord with the
Cosmology–Mechanics analogy (Sect. 20.3). This focuses attention on cases with
further resemblances with standard cosmological models.

One source of differences between Absolute and Relational QM is in closed uni-
verse effects diminishing the extent of eigenspectra by collapse in the number of
admissible combinations of quantum numbers [237]. One example of this is energy
interlocking: suppose that the total energy of a model universe with two subsystems
is fixed to be EUni, and the first subsystem takes one of its energy eigenvalues E1.
The second subsystem must then have energy EUni − E1, which will often not be
an eigenvalue, in which case E1 ceases to be part of the first subsystem’s eigen-
spectrum. This is a type of closed-universe feature which was already known to
DeWitt [237]. These collapses indeed violate the Cluster Decomposition Principle
(Sect. 6.5). This occurs furthermore for a lucid reason: whole closed universes lie
outside of the conceptual remit of the flat spacetime QFT framework realm of this
principle. Finally note that such collapses need not apply in settings in which EUni
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Fig. 41.1 a) Pure-shape—or separated-out shape part of—some of the quantum wavefunctions
for 3-stop metroland in some particularly shape theoretically meaningful cases. These are clearly
the simpler 2-d analogue of the spherical harmonics orbitals. The solutions here are flowers of 2d
petals, for d the dilational quantum number. b) Bessel functions and c) Laguerre functions, as occur
in the ‘radial’ scale ρ part of this problem in the free and harmonic oscillator cases respectively.
For the latter,the corresponding confined probability density functions are sketched in d)

takes a range of values, which it could in some multiverse interpretations. [Yet fur-
ther differences are best discussed after increasing the repertoire of examples to
g-nontrivial theories, and so are deferred to the next Chapter.]

Interpreting Quantum Theory in Closed Universes The usual Copenhagen in-
terpretation of QM cannot apply to the whole-universe models. In Ordinary QM,
one presupposes that the quantum subsystem under study has an ambient classi-
cal world, crucial parts of which are the observers and the measuring apparatus.
In familiar situations, Newtonian Mechanics turns out to give an excellent approx-
imation for this classical world. However, there are notable conceptual flaws with
extending this ‘Copenhagen’ approach when applied to the whole Universe. This is
because observers and measuring apparatus are themselves made out of quantum-
mechanical matter, and are always coupled at some level to the quantum subsystem.
Treating them as such requires further observers or measuring apparatus so the sit-
uation repeats itself. But this clearly breaks down upon consideration of the whole
Universe.

The Many-Worlds Interpretation is an alternative, though we do not discuss it
further in this book (see e.g. [877] for some pros and [545] for some cons). A number
of further replacements are tied to various Problem of Time strategies such as the
Conditional Probabilities Interpretation, Histories Theory and Records Theory, as
covered in subsequent Chapters.

Solutions of Simple Minisuperspace Model Wave Equations These also have
tractable mathematics with some common ground with Ordinary QM [149, 433,
659, 760]. Equation (40.10) is elementary to solve for V (φ) = 0, and exp(6Ω)V (φ)
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can subsequently be treated as an interaction term to which one can apply a standard
form of time-independent perturbation theory.

41.5 Inner Product and Adjointness Issues

This Section is but a technical addendum of subsequent use in the book; it is based
on the Inner Product Problem being part of the Frozen Formalism Problem as argued
in Chap. 12.

Firstly, the definiteness-indefiniteness difference (Appendix O) causes the RPM
time-independent Schrödinger equation to be elliptic-type, as opposed to the
hyperbolic-type Wheeler–DeWitt equation of GR. In this way, the techniques re-
quired for RPMs concern solution of one or both of constrained and curved-space
elliptic-type equations.

Secondly, we know from Part I that a Schrödinger inner product suffices for
RPM. One might then hope that a Klein–Gordon inner product would suffice for
Minisuperspace. However, Klein–Gordon type equations with non-constant mass
terms in general give rise to further significant complications; see Sect. 12.2 and
Ex VI.11.vi)

Thirdly, Minisuperspace models are on some occasions also presented in terms
of a first-order square-rooted equation in place of a second-order Klein–Gordon
equation. Moreover, the latter is inequivalent in the general time-dependent case.
This is due to the first square-root operator Ŝ in general acting nontrivially upon the
second in ŜŜ� = 0 [149]. Consequently

ŜŜ� = 0 is not equivalent to Ŝ� = 0 . (41.1)

Fourthly, consider sending ̂Chronos� = E� to the conformally related
Chronos� = E� = {E/ 2 }� . In this case, the eigenvalue problem has a weight
function  −2 which features in the inner product:

∫

q
�1

∗�2 
−2
√

M dkx. (41.2)

In the RPM case, 〈q,M〉 denotes the relationalspace portmanteau at the level of
Riemannian Geometry. This inner product additionally succeeds in attaining PPSCT
invariance. It is equal to

∫

q
�∗

1 
{2−k}/2�2 

{2−k}/2 −2
√

M kdkx =
∫

q
�∗

1�2
√

M dkx (41.3)

in the PPSCT representation which is mechanically natural in the sense that E
comes with the trivial weight function, 1. (Cf. [659] for the Minisuperspace case.)
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Let us finally introduce the Rieffel induced inner product [434] (after mathemat-
ical physicist Marc Rieffel)

∫

q
dx�∗

1�2 = δ(0)(�∗
1 ◦I �2), (41.4)

for ◦I an induced product [603]. (41.4) can additionally be thought of as a renormal-
ized inner product. This is an alternative to the Klein–Gordon-type inner product
as regards Minisuperspace calculations, and a useful means of handling quantum
Hamiltonians which have continuous spectra.



Chapter 42
Geometrical Quantization with Nontrivial g.
i. Finite Theories

42.1 Configurational Relationalism at the Quantum Level

We next bring in a third Problem of Time facet, choosing Configurational Relation-
alism since at the classical level this complements Temporal Relationalism as the
other Constraint Provider. In particular, Configurational Relationalism at the clas-
sical level produces Shuffle constraints, to Temporal Relationalism’s Chronos con-
straint. The former are subsequently checked to be of the form Flin at the classical
level, by means of a Dirac-type Algorithm.

On the one hand, Dirac Quantization [250] involves tackling these constraints
at the quantum level: Q . . . R. On the other hand, Reduced Quantization, involves
solving the Flin classically prior to initiating Quantization R . . . Q. We follow [483,
586] here in terming procedures in which Chronos is also solved at the classical level
‘Tempus Ante Quantum ’ rather than a further type of reduction; T . . . Q is a briefer
summary name. Finally, the direct approach to Configurational Relationalism gives

a reduced ˜Chronos without passing through an elimination of any Flin.
In the direct approach—or in simple modelling for which g = id so the Flin are

absent in the first place such as in the previous Chapter—the notions of Dirac and
Reduced Quantization coincide. On the other hand, when the Flin are present, the
outcomes of Dirac and Reduced Quantization are quite generally distinct [76, 117,
118, 740], since

reduce and quantize operations are not expected to commute. (42.1)

At least on some occasions, however, operator orderings can be chosen by which
these do match up.

In the reduced approach, one hopes that classically resolved Configurational Re-
lationalism remains resolved at the quantum level, or, more generally, that a clas-
sically consistent 〈q,g,s〉 triple produces a consistent quantum theory for the
same g. This can readily be arranged for the RPMs considered, but can arise more
generally as some of the of the Quantum Constraint Closure Problems postponed to
Chap. 49.
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If one is considering an r-formulation, one can use the standard notions for each
quantum-level structure in turn. If not, one can at least formally consider a g-act
g-all approach at the quantum level. E.g. given a quantum operator Ô that is not
g-independent,

Ôg-free :=
∫

g ∈g
Dg exp

(
i
∑

g ∈g

→
gg

)
Ô exp

(
−i
∑

g ∈g

→
gg

)
(42.2)

for
→
gg a Configurationally Relational counterpart. This particular g-act, g-all pro-

cedure is now based on the exponentiated adjoint group action followed by integra-
tion over the group (see also [641]). One can similarly pass from kets |� 〉 that are
not g-independent to

which are not Configurationally Relational to ones which are:

|�g-free 〉 :=
∫

g ∈g
Dg exp

(
i
∑
g ∈g

→
gg

)
|�〉. (42.3)

[A further possibility is that the averaging might also be attempted at a subsequent
level of structure such as the actually physically meaningful expectations.] Other
applications of operators and wavefunctions such as finding operator eigenvalues or
constructing a wavefunction basis have enough partial meaning to on occasion be
considered for individual g-act g-all moves.

Such Group-averaging Quantizations are—at least conceptually—variants on
Dirac Quantization, and are valid quantum implementations of Configurational Re-
lationalism.

In passing to the quantum level, the Relational Approach has, furthermore, shed
most of its distinctive TRi features, as per Sect. 41.3.

42.2 Dirac Quantization of Finite Models

For g-nontrivial cases, one quite often solves the F̂lin� = 0 prior to handling the

Q̂uad� = 0. This amounts to passing from Kin-Hilb to Dyn-Hilb via a g-Hilb of
quantum wavefunctions that solve just F̂lin� = 0. I.e. the space of those Kin-Hilb
states which are annihilated by F̂lin but not necessarily by Q̂uad. Another alternative
is to solve F̂lin� = 0 and Q̂uad� = 0 together as a package. One way in which
this is relevant is via not all theories’ constraints being tractable as split up into
independent Flin and Quad packages, due to the presence of integrability conditions
(Chap. 24).

Promoting Flin to F̂lin can on some occasions entail operator-ordering ambigu-
ities. The following result is useful on some occasions.

Lemma Suppose that one is in the configuration representation in cases in which
the momenta can additionally be represented by (39.19). Then if the Flin are
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operator-ordered with P to the right, � = �[Kc alone], where the Kc are classi-
cal configurational Kuchař beables.

Proof With this momentum representation and operator ordering, the classical ex-
pression (24.6) for the Flin becomes

F̂lin = �

i
F A

N
δ∂

δ∂QA
� = 0. (42.4)

This furthermore imposes an equation on � which coincides (up to proportionality)
with the classical configurational Kuchař beables equation (25.12). �

For RPMs, the unreduced q = R
nd , for which

K = v�gcan = R
nd

� Eucl(nd) = Heis(nd). (42.5)

The selected objects are now ρ̂A, p̂
A

and the shape conserved quantities S�	, which
together obey the obvious standard commutation relations.

Example 1) For Metric Shape and Scale RPM,

L̂� = �

i

n∑
A=1

ρA ×
∂�

∂ρA
= 0 (42.6)

holds [746, 793]. This means that � = �(− · −) (in Fig. E.4’s notation). Then
finally

Ê� = −�
2

2
�Rnd� + V (− · −)� = E�. (42.7)

Example 2) Metric Shape RPM has the linear constraints (42.6) and [37]

D̂� = �

i

n∑
A=1

ρA · ∂�
∂ρA

= 0. (42.8)

Together, these enforce � = �(− · −/− ·−). Furthermore,

Ê� = −�
2

2
�Rnd� + V (− · −/− ·−)� = E�. (42.9)

Example 3) 3-d Conformal Shape RPM has [36]

K̂i� = �

i

N∑
I=1

{|qI |2δi
j − 2qi

I qjI
} ∂�
∂qjI

= 0, (42.10)

which in conjunction with

P̂� = �

i

N∑
I=1

∂�

∂qI
(42.11)
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and the q-versions of (42.6) and (42.8) signify that � = �(∠). Finally,

Ê� = −�
2

2
I �RNd� + V (∠)� = E�. (42.12)

Example 4) 2-d Affine Shape RPM has [36] linear constraints

Ĝ� = �

i

n∑
A=1

ρAG
∂�

∂ρA
= 0. (42.13)

Thus � = �(− × − / − × −). There is moreover a further constraint E , which, in
the case of 4-particle Affine Shape RPM, takes the form

Ê� = −�
2

2

3∑
cycles C,D=1

(
ρC ×ρD

)
3

3∑
cycles A,B=1

(
∂

∂ρA
×
∂

∂ρB

)

3
�

+ V (− × − / − × −)� = E�. (42.14)

Example 5) As a simple case of quantum-level g-averaging, for the Dirac Quan-
tization approach to triangleland, SO(2) = U(1), rotation-averaged operators are
given by

Sg∈g =
∫

g∈g
Dg× =

∫

ζ∈S1
Dζ× =

∫ 2π

ζ=0
dζ×. (42.15)

Here,
→
gg is the infinitesimal 2-d rotation by the matrix R

ζ
acting on the vectors of

the model, where ζ here denotes angle of absolute rotation.

42.3 Reduced Quantization of Finite Models

RPM Examples: Kinematical Quantization

Example 1) For Metric Shape RPMs in 1-d , qr = S
n−1, so the mathematics of Ex-

ample 7) of Sect. 39.5 carries over as regards Kinematical Quantization.
Example 2) In 2-d ,

qr = CP
n−1 ∼= SU(n)

SU(n− 1)× U(1)
,

so this also lies within the remit of Sec’s 39.5 general method. In this case, evoking
the homogeneous polynomials of degree 2 in C

n [61],

K = HomPoly
(
C
n,2
)
� SU(n). (42.16)

Note moreover that these succeed in complying with the opposing restrictions im-
posed by Sect. 39.1’s criterion II) and Sect. 39.4’s criterion V).
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Example 3) The special triangleland subcase of this yields

K = R
3
� SO(3) = Eucl(3) (42.17)

by some well-known maps (Exercise!). The Kinematical Quantization operators
here are 1) the Dragt coordinates Dra� , and 2) the Ŝ� , which are relative angular
momenta and mixed relative dilational and relative angular momenta [28].

Example 4) See [61] for a detailed account of the more typical case of the quadrilat-
eral, for which qr = CP

2. The above results are supported by how the fundamental
groups

π1
(
s(N,2)

)= π1
(
CP

k
)

being all trivial. (42.18)

Example 5) For Metric Shape and Scale RPMs, the 1-d case requires no reduction,
and so was already covered in Sect. 39.5.

Example 6) The 2-d case has qr be the cones C(CPn−1), which are rather less
thoroughly explored spaces.

Example 7) The special triangleland case has

K = R
3
� Eucl(3) = Heis(3). (42.19)

The Kinematical Quantization operators here are the Dra� , their conjugates the
PDra
� , and the shape conserved SO(3) quantities Ŝ� . This example also exhibits

low-order polynomiality and trivial second Chern classes.

Laplacians I denote the general shape space Laplacian by �s(N,d).

Example 1) For Metric Shape RPM in 1-d ,

�Sn−1 = 1

sinnd−1−AθA
∏A−1
i=1 sin2θi

∂

∂θA

{
sinnd−1−AθA

∂

∂θA

}
. (42.20)

Example 2) In 2-d ,

�
CP

n−1 = {1 + ‖R‖2 }2n−2

∏n−1
p=1Rp

{
∂

∂Rp

{ ∏n−1
p=1Rp

{1 + ‖R‖2 }2n−3

{
δpq + RpRq

} ∂
∂Rq

}

+ ∂

∂Θp̃

{ ∏n−1
p=1Rp

{1 + ‖R‖2 }2n−3

{
δp̃p̃

R2
p

+ I
p̃p̃
}
∂

∂Θp̃

}}
. (42.21)

This expression makes use of the multipolar form for the inhomogeneous coordi-
nates Zq =: Rq exp(iΘq).

Example 3) The special triangleland case of the above can furthermore be cast as a
the standard spherical Laplacian time-independent Schrödinger equation, albeit in
the relational Θ , Φ coordinates (Appendix G.3).
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Examples 4) to 6) Metric Shape and Scale RPMs, using the scale–shape split form
and (G.5),

�R(N,d) = �C(s(N,d)) = ρk(N,d)∂ρ
{
ρ−k(N,d)∂ρ

}+ ρ−2 �s(N,d). (42.22)

Building the scaled RPM Laplacians corresponding to all the above pure-shape
ones is straightforward.

Conformal Laplacians By the configuration space dimension being 2 in each
case, �c

M = �M for pure-shape 4-stop metroland and triangleland, and for scaled
3-stop metroland. Simplification 3) applies to pure-shape N -stop metrolands and
N -a-gonlands. As regards specific values of the constants (Exercise!) for pure-shape
N -stop metroland,

�c
Sn−1 = �Sn−1 − {n− 1}{n− 3}/4. (42.23)

Pure-shape N -a-gonland has instead

�c
CP

n−1 = �
CP

n−1 − 2n{n− 1}{n− 2}/{2n− 3}. (42.24)

Finally, for scaled N -a-gonland,

�c
C(CPn−1)

= �C(CPn−1) − 3n{2n− 3}/4{n− 1}ρ2. (42.25)

We subsequently use the following notation for the numerical coefficient of this
subtracted-off term:

c(N,d) := 0 for d = 1 and 3n{2n− 3}/4{n− 1} for d = 2. (42.26)

Time-Independent Schrödinger Equations and Simple Solutions For Metric
Shape RPM,

�c
s(N,d)� = 2{V − E}�/�2, (42.27)

whereas for Metric Shape and Scale RPM,

�c
R(N,d)� = 2{V − E}�/�2. (42.28)

The classically-reducible scaled-RPM series’ time-independent Schrödinger equa-
tions are therefore encapsulated by the d = 1,2 [61] cases of

−�
2 {∂2

ρ + k(N,d)ρ−1∂ρ + ρ−2{�S(N,d) − c(N,d)
}
� = 2

{
EUni − V

(
ρ,Sa
)}
�.

(42.29)
Equation (42.29) furthermore separates into scale and shape parts for a number
of suitable V . The scale part of this has been solved for the general free and
isotropic harmonic oscillator potential cases [37, 61], giving Bessel and Laguerre
functions (Fig. 41.1.b–d). On the other hand, some case of the shape part of this
have been solved in [37, 59, 61]. This gives spherical harmonics mathematics for
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Fig. 42.1 a) Wavefunctions for triangleland for the bases with ordered axes EDS and DES (de-
fined in Appendix G). The solutions here are spherical harmonics, corresponding to total shape
momentum s with MD direction (‘z’) component j. b) The corresponding harmonic oscillators
have quantum wavefunctions confined in Fig. 16.2’s well. See [37] for sketches of the types of
function involved in the ‘radial’ scale factor of the wavefunction

4-stop metroland and triangleland (Fig. 42.1), hyperspherical harmonics for N -
stop metroland more generally, and products of Jacobi polynomial and Wigner D-
function terms [1] for quadrilateralland [61].

RPMs Versus Ordinary QM Revisited Following on from Sects. 41.4 and 42.3,
mathematics familiar from Absolute QM clearly persists in g-nontrivial RPMs as
well [37]. One underlying reason for close analogies between simple Absolute and
Relational QM is that both involve SO(n) mathematics. For while RPMs have zero
total (absolute) angular momentum, they still possess relative angular momentum
in d ≥ 2. Even in 1 − d they still possess relative dilational momentum which has
the same mathematics as angular momentum. Many aspects of the quantum theory
of SO(n) are moreover independent of the physical interpretation. E.g. addition of
angular momentum applies just as well to relative angular momentum as it does to
absolute angular momentum, and indeed also to relative dilational momentum and
to mixtures of relative angular and dilational momenta.

Energy interlocking is now accompanied by angular momentum counter-
balancing [37]. I.e. so as to comply with L = 0, the relative angular momenta
of the constituent parts of a system must have angular momentum quantum num-
bers which cancel out. Furthermore, effects solely arising from the inclusion of the
entirety of an infinite system are to be doubted by ‘Earman’s Principle’, whereas
inclusion of the entirety of a finite system is a non-issue. As such, there is no prob-
lem with finite model whole-universe effects along these lines, but there may be
problems with them in Field Theory models, including SIC.
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Tight analogies with Atomic and Molecular Physics moreover break down be-
yond the quadrilateral in 2-d . This case produces a mixture of Periodic Table and
Eightfold Way features [61], with some further features in common with QCD
‘colour’ since Isom(CP2) is, in more detail, SU(3)/Z3.

The v∗ acted upon in the Kinematical Quantization scheme is capable of being
restricted by its needing to admit a relational interpretation. This runs against e.g.
considering

K = C
2
� SU(2)/Z2 (42.30)

for pure-shape triangleland [61], since this problem’s natural C2 is that of relative
coordinates which still carry nonrelational content.

Finally Problem 1) of Sect. 42.4 provides a further distinction between RPMs
and Ordinary QM at the level of operator ordering.

The Reduced SIC Example’s Modewise Problem The Kinematical Quantiza-
tion for this involves M

4. Unlike Sect. 39.4’s Minisuperspace examples, however,
one is now restricted to a local-in-‘time’ slab R

3 × T (for T a time interval), and
this feature is known to impinge on the outcome of Kinematical Quantization as per
Example 6) of Sect. 39.5. Kinematical Quantization operators are now1

vin, ζn,

√
1 − ζ 2

n ,
∂

∂vin
,

√
1 − ζ 2

n
∂

∂ζn

,

vjn
∂

∂vin
− vin

∂

∂vin
,

√
1 − ζ 2

n
∂

∂vin
, ζn

∂

∂vin
.

(42.31)

These are self-adjoint on

Kin-Hilb = L2
(
R

3 × T, dsnddon dden
dζn√

1 − ζ 2
n

)
. (42.32)

The corresponding quantum wave equation additionally lies within the remit of
(40.10), albeit now for a somewhat more complicated form of the Laplacian due
to its being built out of a less straightforward explicit form for p̂ζn :

−�
2
{

−
√

1 − ζ 2
n
∂

∂ζn

√
1 − ζ 2

n
∂

∂ζn
+ �vn

}
� + V (ζn, vin)� = 0. (42.33)

This amounts to a further correction on [34]’s sketch of a wave equation. Both this
and Halliwell and Hawking’s earlier quantum wave equation—based on supposing
that the SVT split pieces of the classical constraints remain first-class constraints,
which they do not by Chap. 30—are of this schematic form as well. The latter is

1This ζn is linearly scaled relative to the originally introduced ζn, so that the two ends of the slab are
set to ±1. This just amounts to use of the freedom of tick-duration and of calendar year zero, and
is helpful as regards casting subsequently encountered mathematical entities into standard form.
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clearly additionally supplemented by a number of linear quantum constraints as
befits a Dirac Quantization. In this manner, study of (40.10) covers SIC in addition to
Sect. 40.2’s variable mass Klein–Gordon and Minisuperspace applications, making
it a particularly worthwhile family of models to study (Chaps. 43–46).

N.B. that (42.33) continues SIC schemes’ feature of splitting into scalar S (i.e.
now scalar sum) and tensor T parts; each of these is coupled to the scale variable
but not directly to the other).

42.4 Three More Operator Ordering Problems

1) Discrepancy Between Quantum Cosmology and Molecular Physics This is
between the ‘relational portion’ of Newtonian Mechanics and that of r-approaches.
The former possesses a chain of transformations as conventionally used in Molecu-
lar Physics [624]. I.e. from particle positions to relative Jacobi coordinates to spher-
ical coordinates to Dragt-type coordinates, in each case plus absolute angles [513].
This scheme consequently has an absolute block in its configuration space metric.
This participates in the formation of the overall volume element

√
Mabs-rel, which

subsequently enters the relational block’s part of the Laplacian. For, since
√
Mabs-rel

sits inside the ∂/∂Qrel derivative, by this means, if absolute space is assumed, it
leaves an imprint on the ‘relational portion’. This mechanism is however absent if
one considers a relationally-motivated Lagrangian as in r-approaches.

In any case, it is reasonable from the relational perspective that modelling a
molecule in a universe differs from modelling particles as a whole-universe model
arena. This is because the first of these possesses an inertial frame concept due to
the rest of the model universe. Suppose that one takes the RPM–Geometrodynamics
analogy as primary rather than trying to describe reality in terms of a few (or even
very many) non-relativistic particles. This gives serious reason not to use Molecular
Physics’ quantum equations in the whole-universe model context. This mathemati-
cal analogy ends with the Classical Dynamics and the quantum kinematics.

In more detail [37], this difference is a consequence of the nontriviality of the
rotations. In the case of triangleland,

∂2
I + g I−1∂I. (42.34)

arises in each context, but with g = 2 in a purely relational formulation, g = 3 within
2-d absolute space, and g = 5 within 3-d absolute space. These correspond to SO(2)
imprinting an extra 1, and SO(3) an extra 3, on top of the natural spherical polar
coordinates’ 2 that occurs within each of these cases. The quantum cosmologically
inspired conformal operator ordering’s curvature term is also a further source of
discrepancies between such formulations.

2) Dirac–Reduced Inequivalence Laplacians do not in general map to Laplacians
under reduction, due to extra hypersurface geometry terms appearing [37]. Confor-
mal operators do not in general map to conformal operators both for this reason and
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because the reduction diminishes the dimension, so it moves between cases with dif-
ferent conformal correction coefficients. By these geometrical effects, reducing and
selecting a Laplacian or conformal operator ordering are not in general commuting
operations.

Because of this facet interference, specifying Laplacian or conformal operator
ordering is by itself unsatisfactory. Such a statement needs to be supplemented by
whether it is to be carried out before or after reduction. The suggested way out
follows from DeWitt’s General Covariance of q argument making best sense in the
case involving solely true degrees of freedom, rather than these mixed with gauge
ones. Such an operator ordering prescription should be applied to the most reduced
configuration space. [Unfortunately, this leaves one stuck in the general case, since
this has no explicit form for the most reduced configuration space.]

There is however a modicum of approximate protection from this noncommuta-
tion of procedures, this is due to the following result.

Lemma (Barvinsky’s [117, 118] second approximate equivalence). To 1 loop—
i.e. to O(�)—the Laplacian operator ordering coincides for reduced and Dirac
schemes.

Furthermore, to this order, all ξ -operator orderings coincide by Barvinsky’s first
equivalence. In particular Barvinsky’s second equivalence additionally applies to
conformal operator orderings.

3) Breakdown of Conformal Operator Ordering in Descent of Level of Struc-
ture E.g. in Affine Shape RPM, the form of (42.14) does not produce a Laplacian
(or ξ - or conformal modification thereof) upon Quantization. So there is an addi-
tional level of mathematical structure limitation on adopting Laplacian and confor-
mal operator orderings.



Chapter 43
Geometrical Quantization with Nontrivial g.
ii. Field Theories and GR

43.1 Further QFT Subtleties

This expands on Chap. 6 as regards further Background (In)dependence issues. QFT
techniques usually do not carry over to Background Independent settings, yet there
is still value in learning why.

Subtlety 1) The S-matrix is a Background Dependent notion. This is a significant
point to make due to the S-matrix playing a very major role in QFT and perturbative
String Theory.

Subtlety 2) Regularization is also a Background Dependent notion. The mathemat-
ical meaningfulness of QG FDEs is subject to (O.11) to be resolved by regulariza-
tion (O.12). Different methods for this exist; end results are moreover required to
be method-independent.

Example 1) Pauli–Villars regularization involves

T phys = lim
M→∞

(
T (m) − T (M)

)
, (43.1)

where M is a ‘regulator mass and T denoting the transition amplitude.
Example 2) In dimensional regularization, if one’s intent is to calculate in dimen-

sion 4, one works with dimension n > 4 and then takes limn→4.
Example 3) In point-splitting regularization, products of operators at a coincident

point are resolved according to

Ŝ(x)Ô(x) → Ŝ(x + ε/2)Ô(x − ε/2) (43.2)

with limε→0 taken at the end of the calculation (cf. ‘coincidence limit’ in
Sect. 11.3).

Example 4) The more modern ζ -function and heat kernel regularizations [438] are
more widely applicable, e.g. for de Sitter QFTiCS, black hole event horizons, as
well as in CFT and consequently in perturbative String Theory.
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Subtlety 3) The so-called BRST Quantization1 method is successful for the flat
spacetime Yang–Mills Gauge Theories used to model Particle Physics; see [446]
for an excellent introductory account. However, neither the BRST procedure nor
subsequent generalizations such as the Batalin–Vilkovisky approach [446, 886]
succeed in the case of GR; non-renormalizability and diffeomorphism invariance
underlie some of the problems here.

Subtlety 4) In Gauge Theoretic QFTs, there is a further θ -sector [473] global sub-
tlety. This is based on a θ -vacuum featuring a real-valued parameter θ , which fea-
tures as a phase angle. This is classified by the homotopy group π0(g) for g the
Yang–Mills gauge group.

Subtlety 5) Some more mathematically conscientious approaches set out to model
quantum operators using C∗-algebras or similar; see Appendix V.7 for an outline
of the technicalities.

43.2 Unconstrained Examples

Example 1) QFT correlators 〈O1 . . . On 〉 are observables in the context of QFT,
but do not extend to Diff (�)-invariant expressions. [Perhaps one could work in-
stead with boundary observables.]

Example 2) C∗- and W∗-algebras are used furthermore in modelling local observ-
ables in Ordinary QM, QFT and QFTiCS [401, 473, 603]. This incorporates at
least the SR notion of causality; it is furthermore an approach which in part makes
pioneering use of presheaf mathematics [401].

Example 3) More general operators can also be contemplated here, by once again
evoking positive operator-valued measures.

See also Chap. 52 for further QFT subtleties, now within the context of path integral
formulations.

43.3 Dirac Quantization of Geometrodynamics.
i. Kinematical Quantization

Let us begin with a fully general pointwise treatment, as befits Minisuperspace or
Strong Gravity. For full Minisuperspace, q = sym+(3,R), which takes the math-
ematical form (H.2). In this case, a simple candidate for Kinematical Quantization
is

K = sym(3,R)� sym+(3,R), (43.3)

1These techniques are named after physicists Carlo Becchi, Alain Rouet, Raymond Stora and Igor
Tyutin, and Igor Batalin and Grigori Vilkovisky, respectively.



43.3 Dirac Quantization of Geometrodynamics. i. Kinematical Quantization 513

formed by adjoining the conjugate momenta pij : densitized 3 × 3 symmetric matri-
ces which form the space sym(3,R). Moreover, naïve commutation relations

[̂
hij , p̂

kl
] = 2 i � δ(i

kδj)
l . (43.4)

fail to incorporate the positive definiteness condition, deth > 0. Isham and physicist
A.C. Kakas’ affine commutation relations are required instead [499, 500]:

[̂
hij , p̂k

l
] = 2 i � ĥk(j δi)

k. (43.5)

The resemblance with the previous Chapter’s Quantization of R+ is more than
just superficial since R+ can be viewed as GL+(1,R). (43.3)’s candidate K is fur-
thermore likely to be too small due to GL+(3,R) possessing isometries which are
not yet incorporated into this selection; due to this, we consider this candidate with
a pinch of salt. Note moreover that this candidate and the previous Chapter’s exam-
ples of diagonal Minisuperspace K do not form a consistent whole. The simplest
way of viewing the two together involves recasting the general case’s diagonal as
a new vector of quantities. Additionally, the current chapter uses a rather than Ω
for scale variable; on the other hand, the previous Chapter does find and incorporate
the simpler examples’ extra isometries. Finally, the above generalizes working with
a ≥ 0 rather than theΩ ∈ R version of the Quantization of diagonal Minisuperspace
in Sect. 39.5.

Isham [475] went on to propose

K = c∞(�,sym(3,R)
)
� c∞(�,sym+(3,R)

)
(43.6)

as a model for the full GR case. The second factor corresponds to the space of the h,
Riem(�): the collection over � of the sym+(3,R). The first factor corresponds to
the space of the p: the collection over � of the sym(3,R).

Problem 0) Equal-time commutation relations depend on there being a background
manifold �.
Once again, naïvely Geometrodynamics’ hij and pij might be expected to resemble
(39.12), in being promoted to ĥij and p̂ij which obey

[̂
hij (x), p̂kl

(
x′)] = 2 i � δ(i

kδj)
lδ(3)
(
x, x′). (43.7)

Problem 1) There is however a classical-level inequality on the determinant

det h> 0 (nondegeneracy condition). (43.8)

The Affine Geometrodynamics [476, 479, 499, 500, 559] commutation relations
which take (43.8) into account are, rather,

[̂
hij (x), p̂k

l
(
x′)] = 2 i � ĥk(j δi)

k(x)δ(3)
(
x, x′). (43.9)

N.B. that this point postcedes some of the literature and has very largely been
overlooked or ignored since.
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RPMs moreover provide modes for Affine Quantization of intermediate complexity
between R+ = GL+(1,R) corresponding to length > 0 and (full Minisuperspace)
= GL+(3,R) corresponding to volume> 0. I.e. two of the variants of triangleland
involve area> 0, whereas the same with the zero edge of collinearities included cor-
responding to area ≥ 0.2 In all of these models, an underlying issue is that since in-
equality constraints are a subcase of nonholonomic constraints, they are not covered
by the Dirac Algorithm. Because of this, a separate procedure—Affine Quantiza-
tion’s well-defined kinematical quantum operator selection—is required in addition
to the Dirac Algorithm.

Problem 2) GR’s purely configurational commutator
[̂
hij (x), ĥkl

(
x′)] = 0 (43.10)

is entangled in a further conceptual issue. In QFT, the commutator of two config-
uration variables being zero means that these can be measured simultaneously at
two points x, x′ in the notion of space they are defined upon. But in the case of
GR’s metric field, there is not an a priori notion of simultaneity. This moreover
interferes with extending the C∗-algebra approach to QFT to the case of QG [483].

Problem 3) Given that doubts were already raised as regards the complete charac-
terization of the pointwise version (43.3) of (43.6), we take (43.6) itself with two
pinches of salt.

Problem 4) The model (43.6) points to GR requiring a large step-up in difficulty of
the ensuing Representation Theory [475]. Geometrodynamical approaches indeed
remain gridlocked around this point.

43.4 ii. Dynamical Quantization

GR as Geometrodynamics additionally has quantum constraints to [501, 502]. Equa-
tion (11.7) is a commonly used form for GR’s quantum linear momentum constraint,
which involves the operator ordering with P to the right [662].

Additionally, GR’s Hamiltonian constraint becomes the Wheeler–DeWitt equa-
tion (11.6).

Problem 5) The Wheeler–DeWitt equation is additionally a second-order FDE.
While, prima facie, this is a type of equation which is well-known in QFT, therein
regularization methods for such equations are unfortunately based on fixed back-
grounds. For instance, the regulator mass is a background structure, whereas the
point-splitting vector also relies on the background structure. Thus none of these
methods are applicable in the Wheeler–DeWitt equation’s own Background Inde-
pendent context, for which it remains unclear how to proceed with regularization.
Since regularization is specifically a FDE issue, moreover, both Minisuperspace
and RPMs are free of it through merely being PDE problems.

2This is mass-weighted area, so this is as yet another analogy between I and
√

h.
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Example 7) The special triangleland case has

K = Eucl(3)× Aff (1). (43.11)

The Kinematical Quantization operators here are the dra� , the shape conserved
SO(3) quantities Ŝ� , the hyperradius ρ and its conjugate p̂ρ = ρ∂/∂ρ. This exam-
ple also exhibits low-order polynomiality.

While we have argued for a conformal operator ordering resolution of this, there
are various further obstacles to using this resolution for full GR. A preliminary
minor snag is that k is now infinite so the conformally-transformed quantum wave-
function becomes ill-defined. None the less, the k’s in the working (41.3) continue
to formally cancel, and it is the outcome of this working, rather than � itself, that
has physical meaning. This gives the conformal-ordered Wheeler–DeWitt equation
[22]

�
2‘

{
1√
M

δ
δhij

{√
MNijkl

δ
δhkl

}
− 1

4
RM(x; h]

}
’�+ √

h{R− 2Λ}� = 0. (43.12)

Three greater snags with this are given as the next three Problems.

Problem 7) While (43.12) manifests conformal operator ordering, this equation is
but at the level of a pre-regularization nicety.

Problem 8) Sect. 42.4’s Problem 2)—that conformal operator ordering should in
any case apply to the reduced version of Quad—continues to apply here. Further-
more, a reduced H is unfortunately unavailable for Geometrodynamics.

Problem 9) The usual form in which Ĥ and M̂i are presented, however, amounts
to not taking on board the affine representation of pij . This affects the form of
the Wheeler–DeWitt equation. Furthermore, it is not even clear whether affinely
representing momenta and building Laplacians are mathematically compatible. In-
serting the affine representation for the momentum operator into the Isham–Kakas
[499, 500] formulation gives

H� = −“
�

2

4e

{
eA
P eB

QeL
DeM

F δLMδPQ + eA
P eP

F eB
QeQ

D − eA
P eP

DeB
QeQ

F
}

× eR
A δ

δeRD
eS
B δ

δeSF
”� + e

{
2Λ− R(x; e]}� = 0. (43.13)

This is in triad notation and with no attempt made for now as regards regulariza-
tion or picking a particularly significant operator ordering. Affine Quantization ad-
ditionally interferes with the benevolent properties imparted upon first-class linear
constraints by operator ordering with P to the right.

Problem 10) In approaches to Quantum GR which set out to use g-averaging,
in general well-definedness issues appear as regards the measure Dg over the
group g. In particular, it is not clear how Diff (�) would be treated explicitly in
this manner.
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Closure of quantum equations is for now being assumed in discussing the above
schemes; this is checked in Chap. 49.

See also [475] for details of the counterparts of Sect. 39.6’s global issues in the
case of GR as Geometrodynamics. N.B. that for a theory like GR, the involvement of
π0(q) is unlikely to bear much relation to one’s final quantum theory. Another is that
the configuration spaces in question being homogeneous spaces carries the further
implication of there being a unique group orbit, i.e. the group action is transitive.
This has the good fortune of guaranteeing the straightforward applicability of Group
Quantization techniques.

In the full GR setting, reduction down to superspace(�) is usually taken to be
the same procedure as removing the linear constraints. Some works consider Quan-
tization after reduction down to superspace [472]. On the other hand, Chaps. 24 and
30 illustrate how these two procedures are capable of being distinct.

For e.g. the spatially S
3 case of Geometrodynamics considered in the current

book, Isham [475] has shown that GR’s counterpart of the θ -sector is trivial, via

π1
(
superspace

(
S

3))∼= π0
(
Diff F

(
S

3)). (43.14)

43.5 Dirac-Type Quantization of Nododynamics Alias LQG

This follows on from Sect. 11.9’s briefer outline. It uses methods along the lines
of Geometrical Quantization [254, 844]; more specifically Group-averaging Quan-
tization, in particular Refined Algebraic Quantization. In this sense, Nododynamics
implements Configurational Relationalism at the quantum level.

Quantum Nododynamics [75, 80, 154, 752, 845] usually evokes either 1) Dirac
Quantization. Or 2) a method lying between this and Reduced Quantization. In 2),
on the one hand, the SU(2) Yang–Mills–Gauss constraint (8.35) is handled at the
classical level by introducing holonomy variables (closely related to Wilson loop
variables: Appendix N.2). On the other hand, the momentum constraint (8.36) is
promoted to a quantum equation. Such variables clearly also arise in a natural way
within Yang–Mills Theory itself, though their use in QFT has been very largely
discontinued due to loop states being too numerous and too singular. Loop Quan-
tum Gravity (LQG) adherents suggest however that Wilson loops be reintroduced
in cases for which a conventional Gauge Theory’s scope is augmented by the inclu-
sion of the Diff (�).3 In this situation, the physical irrelevance of Diff (�) greatly
cuts down on the number of loop states [752].

3See e.g. physicists Rodolfo Gambini and Jorge Pullin’s book [330] for a conceptually if not tech-
nically detailed account of the loop transformation underlying the loop representation. This in turn
rests on loop space mathematics (outlined in Appendix N.12). See also e.g. Ashtekar and physicist
Jerzy Lewandowski’s account [77] for a more rigorous treatment. It has also been determined that
the loop representation works just as well for whichever value of the Barbero–Immirzi parameter β .
Thus, in particular, it works for both complex-variables and real-variables forms of Nododynamics.
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Fig. 43.1 Outline LQG figures of a) a spin network, with vertices v, and edges e labelled by
spins j. b) The spin network’s punctures at the intersection points i with a surface S under con-
sideration build up the associated area spectrum. c) Finally the preceding is considered for an
event horizon—which is a flat surface other than where quantized deficit angle is induced by punc-
tures—in building up the LQG black hole entropy result

We are now left with i) a quantum momentum constraint

FIij
δ�
δAIj

= 0, (43.15)

which has a useful and geometrically clear-cut meaning via Sect. 42.2’s Lemma.
ii) A quantum Hamiltonian constraint, the precise form of which remains disputed
[679, 793, 842, 845]. This is due to functional well-definedness, Barbero–Immirzi
β and operator-ordering ambiguities, regularization, of the physical significance of
the interaction terms therein and their mathematical realizability. Two strategies for
dealing with this momentum constraint are as follows.

Strategy A) Use Knots. i) can be taken into account, at least formally, by use of
knot states [330, 757]. See Appendix N.13 for a mathematical outline of knots.
One furthermore needs to pass from formal to practically useable knot states4

Strategy B) Use Nets. This makes use of a version of spin networks. These are,
more generally, a combinatorial approach which was originally pioneered by Pen-
rose on its own merits. See Fig. 43.1 for general [533] and Nododynamics-specific
[758] outlines. In Nododynamics, spin networks form an orthonormal basis for
the quantum states; the additional ‘overcompleteness’ connotation in loops states
being a priori too numerous is sorted out for Diff [�)-invariant theories.

Let us next update Part I’s list of issues with Nododynamics alias LQG.

1) The classical inclusion of degenerate triads at the very least raises questions
at the quantum level. Some of these arise from having seen the difference be-
tween Plain and Affine Quantum Geometrodynamics due to an imposition of an
inequality in the latter case. Others arise due to physical distinctions between

4For instance, one might use a framing by which loops become ribbons—a further type of regular-
ization that is possibly more amenable to theories with metric Background Independence. This is
illustrative of a main approach in freeing oneself from the consequences of loops themselves being
too singular.
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models which include or excise lower-d strata. Distinctions of these kinds are
likely to affect the content of the corresponding Quantum Theory, and whether
to include degenerate triads is an ambiguity of this kind.

2) Introducing loops and holonomy variables is bringing in periodicity which
causes topological distinction from the geometrodynamical variables. We then
know from basic examples of Kinematical Quantization that such a difference
can produce substantial differences in one’s resulting quantum theory.

3) By the Multiple Choice Problem, canonically equivalent classical theories need
not lead to unitarily equivalent quantum theories. So even if Nododynamics can
be regarded as classically canonically equivalent by (19.9) to Geometrodynamics
in all senses—which 1) and 2) may preclude—Quantum Nododynamics may still
differ from Quantum Geometrodynamics. Consequently, telling which of these,
if any at all, is realized by Nature would likely be impossible in the absence of
experiments.

4) Recollect Kuchař’s [587] well-known point that the imaginary-β version ulti-
mately has to face reality conditions which are around as mathematically for-
bidding as the procedural obstructions to quantizing Geometrodynamics are.
We have seen that this observation in part led to real-variables formulations of
Nododynamics taking root in the 1990’s. Moreover, Samuel’s point about the
complexified version alone having spacetime connections (Sect. 27.8) feeds into
Giulini’s point that this version alone also meets the classical Refoliation Invari-
ance criterion (Sect. 31.11). As an aspect of Background Independence, this ap-
plying can furthermore be used as a filter on Background Independent Theories.
In this way, just complex-variables Nododynamics gets by, and this is precisely
the subset of Nododynamics to which Kuchař’s quantum-level point applies.

5) A second well-known issue with Nododynamics are whether it has suitable clas-
sical and semiclassical limits. Does it support a limiting regime sufficiently like
M

4 as regards performing Standard Model calculations, and do this and a suit-
able Semiclassical Quantum Cosmology arena emerge from a full Quantum
Nododynamics? We return to the latter in Sect. 56.1.

Finally, in the much more specific, if somewhat more heuristic LQC regime, the
quantum Hamiltonian constraint now takes the form of a higher-order difference
equation; see [152] for examples.

43.6 Dirac Quantization of Super-RPM and Supergravity

See [232, 868] for an account of the general case. A few simple models are as
follows.

For quantum superTr(1),

Ŝ = −�

i

N∑
I=1

{
∂

∂θI
+ i θ̄ I

∂

∂qI

}
� = 0, (43.16)
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Ŝ† = �

i

N∑
I=1

{
∂

∂θ̄ I
+ i θI

∂

∂qI

}
� = 0, (43.17)

P̂susy� = �

i

N∑
I=1

{
∂

∂qI
+ ∂

∂θI
− ∂

∂θ̄ I

}
� = 0, (43.18)

Ê� − �
2

2
D2

RN� + V
(
qI , θI , θ̄ I

)
� = E�. (43.19)

with V within the form allowed by (19.18).
Supersymmetric Minisuperspace models have been substantially reviewed in

[232, 868].
Supergravity is, moreover, a counter-example to Reduced Quantization—taken

to mean reducing out Flin but not Quad—not making sense for all theories, due to
Flin not forming a subalgebraic structure in this case.

Research Project 55)† Consider Background Independence and the Problem of
Time for Canonical Quantum Supergravity in comparable detail to the current
book’s account of GR as Geometrodynamics.

Research Project 56) What happens in detail if a Dirac-type time-dependent wave
equation is taken to model the whole Universe? This could e.g. correspond to the
wavefunction of the Universe actually being a fermionic entity rather than a scalar.
One might in particular pursue using a Dirac-type inner product approach to the
Problem of Time in the case of Supergravity, due to first-order equations—the
supersymmetry constraints—having been argued to play a more primary role in
this case. . . .

Research Project 57) Consider basing Quantum Cosmology on a density matrix of
the Universe, i.e. with a mixed-state entity taking the place of the ‘wavefunction
of the Universe’.

43.7 Is Quantization Is a Functorial Prescription?

Categories—pairings of a type of mathematical objects with corresponding mor-
phisms as outlined in Appendix W.1—can be useful in Mathematics, and some of
this usefulness transcends to Mathematical Physics. Functors are maps between cat-
egories. It would be very helpful if Quantization could be viewed as a functor. This
would be a map from something like (Poisson brackets algebras on phase space
Phase as paired with canonical transformations Can) to some kind of (operator
algebra on Hilbert space with corresponding unitary transformations Uni). Unfortu-
nately, Quantization in general defies such a description [604].

It is not clear whether one can always quantize a given classical system. The lack
of physical fundamentality of the classical world may, moreover, render the notion
of Quantization—passage from classical to quantum—ultimately meaningless. I.e.
a ‘bottom-up’ approach—such as formulating quantum theory from first principles
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followed by considering a suitable classical limit—may well be more desirable in
the long run than the ‘top-down’ approach that is Quantization. This is reflected by
QG programs often taking the following form.

A) Start by considering a classical system and a Quantization procedure.
B) One subsequently seeks for quantum first principles which lead to a Quantum

Theory of the kind arrived at by A).
C) Finally consider whether a (semi)classical description of the world can be re-

covered in a suitable limit.

A functorial prescription is available in some cases, such as model arenas and par-
ticular instances of CFTs and TFTs. More generally, however, category-theoretic
thinking does not point to a particular prescription for Quantization, much less one
that is established to match Nature. It helps in seeing this to tease apart the various
procedures that Quantization involves, e.g. the split into Kinematical and Dynam-
ical Quantization, and the further split due to incorporating g nontriviality. These
more basic pieces already manifest individual difficulties—or at least ambiguities—
as regards there being some kind of ‘universal Quantization functor prescription’.

1) A preferred subalgebra choice is required (and this is nontrivial e.g. due to the
Groenewold–Van Hove phenomenon [374]). However, this renders any functo-
rial prescription ambiguous.

2) Global sensitivities have to be met at the quantum level, despite playing a rather
lesser role at the classical level. Moreover, one could pre-emptively pass to glob-
ally careful classical modelling, so that non-functoriality would not be induced
on such grounds.

3) For Geometrodynamics, promoting the constraints to the quantum level also
brings in well-definedness issues.

4) In addition to these individual difficulties, the order in which some of these pro-
cedures are performed affects the outcome. E.g. following reduction by confor-
mal operator ordering does not match up with vice versa, by Sect. 42.4 There
might however be reasons to order some particular way, which one might at-
tempt to turn into a functorial prescription.

Let us end by noting that Landsman’s arguments [604] on whether Quantization is
a functor extend to whether more subtle choices of categories could help toward
attaining this, though this lies beyond the scope of the current book.



Chapter 44
Tempus Ante Quantum

We have found a frozen quantum wave equation and the classical approach’s
Machian emergent time does not unfreeze this. The classical resolution is of the
form TRi . . . T whereas the quantum resolution is of the form TRi . . . Q . . . T. In both
cases, we set up TRi over a sufficient width of formalism to accommodate the other
local facets, and we then finish off Temporal Relationalism by much more summar-
ily abstracting time from change. This works out differently before and after Quan-
tization, since these involve distinct classical and quantum changes respectively. We
consider various TRi . . . Q . . . T schemes in more detail over the next four chapters.

It has often been suggested that [101, 412, 483, 586] successors to the Wheeler–
DeWitt equation arising by supplanting GR by an alternative theory would likely
persist in having a Frozen Formalism Problem. This is largely the case, for
all that Sect. 20.6 points to a rare counter-example of unhidden-time-dependent
Schrödinger equation.

44.1 Finite g-Free Models

Kinematical Quantization The argument about the time–Hamiltonian version of
time–energy commutation relations in Sect. 39.5 involves interpreting time as an
adjoined configurational variable. In the Internal Time Approach, however, time
arises from within the system itself, accompanied by a ‘true Hamiltonian’. This
may alter the status and form of the corresponding commutation relations.

Dynamical Quantization After casting a formerly purely-quadratic constraint
Quad in the general classical parabolic form (20.6), one obtains a time-dependent
Schrödinger equation of the form

i �
∂�

∂tante
= ĤTrue

(
tante,Q

O, P̂O

)
�. (44.1)

The O index here runs over the other variables. One can follow up this unfreezing
with the following considerations.
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1) Evoke the obvious Schrödinger inner product (at least formally) associated with
(44.1).

2) A relatively standard interpretation of QM ensues [586], leaning upon the clas-
sical hidden time candidate in parallel to Ordinary QM being propped up by
Newtonian time (Chap. 5).

A particular formal example of note is the York-time-dependent Schrödinger equa-
tion for Minisuperspace,

i �
∂�

∂tYork
= ĤTrue

(
tYork,True, P̂

True)
�. (44.2)

A first caveat with taking a classical time for dynamical QM use, moreover, is ap-
parent upon examining physicist Paul Busch’s [185] trichotomy of notions of time
in Ordinary QM (Sect. 5.3). In particular, Quantum Theory’s notion of dynamical
time is itself quantum-mechanical, and, as such, is subject to quantum fluctuations
[517].

44.2 Nontrivial g Models

An argument for the reduced facet ordering R somewhere prior to Q being the physi-
cal ordering is as follows. One would not expect that appending unphysical fields to
the reduced description should change any of the physics of the true dynamical de-
grees of freedom. So in cases for which these two approaches do differ, one should
adhere to the reduced version.

Let us next consider various specific strategies for nontrivial-g models. In RTQ

schemes, the general classical parabolic form (20.6) yields the time-dependent
Schrödinger equation for the reduced configuration space evolution,

i �
δ∂�

δ∂ tante
= ĤTrue

⌊
tante, Q̃

O
,̂̃PO

⌋
�. (44.3)

A particular example of such is provided by the reduced York time dependent
Schrödinger equation

i �
δ�

δtYork
= ĤTrue

(
x̃; tYork,True,̂̃PTrue]

�. (44.4)

This is contingent on having classically solved the accompanying Mi as part of
ensuring that True are the true gravitational degrees of freedom.

On the other hand, in classical internal or matter time-and-frame finding TQR

schemes, the generic spacetime-vector time-and-frame-dependent Schrödinger
equation is

i�
δ�

δXμ = ĤTrueμ

⌊
X ν,QO, P̂O

⌋
�. (44.5)
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The York time candidate case of this is

i �
δ�

δtYork
= ĤTrue

(
x; tYork,Xi,True, P̂True,ζi

]
, (44.6)

i �
δ�

δxiYork

= !̂True
i

(
x; tYork,Xi,True, P̂True

]
. (44.7)

Let us end by noting that Reference Matter Approaches usually also end up with a
quantum equation of the general form (44.5).

44.3 Problems with These Approaches

For full GR, moreover, the functional dependence of HTrue on the other variables
is either unknown, or just known implicitly through the solution of such a partial
differential equation (Chap. 21). Thereby, the quantum ‘true Hamiltonian’ ĤTrue

cannot be explicitly defined as an operator. Even if it could be, it would be fraught
with severe operator-ordering ambiguities and well-definedness issues. The ex-
plicit elimination of Mi is just formal as well (if not so technically hard, as per
Sect. 21.6).

Furthermore, simpler models such as RPMs [37] and Minisuperspaces1—which
avoid the implicit dependence impasse by having a solvable algebraic equation
in place of the Lichnerowicz–York quasilinear elliptic PDE—run into further im-
passes. For instance, their quantum equations still have major operator ordering
ambiguities, well-definedness issues, and, additionally, look very little like stan-
dard formulations of QM in the case of models for which these are also available.
Because of this, the ‘Tempus Ante Quantum ’ insertion of a T assignment procedure
prior to a Quantization Q results in mathematics is highly unlike the rest of Part III’s.
Even in cases where approximations yield familiar equations, these equations do not
resemble the standard quantum equations for the system in question.

Let us comment further on the well-definedness issues which transcend the model
arenas. Most of these candidate true Hamiltonians involve multiple layers of roots;
recollect e.g. (21.21). Moreover, many of the radicands in question contain mixed-
sign terms. Consequently nice guarantees of being able to promote such to an oper-
ator do not apply. (Occasionally, protection is offered by a Spectral Theorem [729]
for the well-definedness of positive combinations under square root signs.)

On the other hand (21.17)’s candidate true Hamiltonian corresponding to the
Euler time candidate for RPM involves the logarithm of a combination of quantum
operators. This gives a ‘logarithmic impasse’ as regards the following.

1Section 4.2.3 of Isham’s [483] can also be taken as the starting point for a Minisuperspace model
analysis similar to the current Section’s.
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1) Ensuring a rigorous Functional Analysis underpinning for the corresponding
candidate true Hamiltonian quantum operator.

2) A hefty and unusual operator-ordering ambiguity is incurred.

Moreover, logarithmic candidate true Hamiltonians are fortunately rare, and can be
avoided by making other choices of candidate dilational time.

Both simple and subtle Multiple Choice Problems can already arise in such
model arenas; see Epilogue III.A for more.

Let us end with more details about the above-mentioned approximation schemes.
One method for these is to approximate in a series at the classical level, and only
subsequently promote the outcome of that to quantum operators. These are rather
better-defined and less ambiguous equations, with some parallels to approximate
treatments of relativistic wave equations [143, 552]. Scaled 3-stop metroland exam-
ples suffice to illustrate these points.

Example 1) Using the conjugate to reciprocal radius υ as a candidate time, (21.21)
is promoted to the υ-time-dependent Schrödinger equation

i �
∂�

∂tυ
= −
√
�2∂2/∂ϕ2 +√�4∂4/∂ϕ4 + 8Et2υ

2t2υ
�. (44.8)

Example 2) On the other hand, working with the Euler time candidate, (21.19) is
promoted to the Euler-time-dependent Schrödinger equation

i �
∂�

∂tEuler
= 1

2
ln

(
tEuler 2 − �

2∂2/∂ϕ2

2E

)
�. (44.9)

Examples 1) and 2) already demonstrate unusual quantum wave equations arising,
as well as the presence of nested root and logarithms which lead to well-definedness
issues. Also giving this pair of examples for different choices of candidate dilational
time for the same underlying classical model illustrates nontrivial multiplicity. Both
examples, moreover, have unambiguous operator ordering. This is because the rad-
icands contain mutually commuting variables alone (pϕ and tυ ), whereas the same
can be said for the argument of the logarithm (pϕ and tEuler). Furthermore, neither
of these equations looks anything like the ulteriorly exactly solvable scaled 3-stop
metroland free problem. We next reconsider these models under application of clas-
sical expansion in powers of the momenta prior to attempting Quantization; each
example is now up to O(�4)× ∂4�/∂ϕ4 corrections.

Example 1) gives

i �
∂�

∂tυ
= − �

2

4{2E}1/4t
3/2
υ

∂2�

∂ϕ2
− {2E}1/4

t
1/2
υ

� (44.10)
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The rectifying transformation2 tRec = −1/{2E}1/4t
1/2
υ sends this to an ordinary

time-dependent Schrödinger equation with a particular (rectified) time-dependent
potential,

i �
∂�

∂tRec
= −�

2

2

∂2�

∂ϕ2
− 2

tRec 2
�. (44.11)

This admits a straightforward solution under separation of variables, which, recast-
ing in terms of tυ and making use of Sect. 41.4)’s dilational quantum number, is of
the form

� ∝ exp
(
i
{± dϕ + {2{2E}1/4√

tυ/� + �d2/2{2E}1/4√
tυ
}})
. (44.12)

Example 2), on the other hand, gives

i �
∂�

∂tEuler
= − �

2

2 tEuler 2

∂�2

∂ϕ2
+ ln

(
tEuler

√
2E

)
�. (44.13)

Picking tRec = −1/tEuler gives a an ordinary time-dependent Schrödinger equation,
now with potential −{tRec }−2ln(

√
2EtRec), which can be solved to give

� ∝ exp

(
i

{
±dϕ + �d2

2 tEuler
+ tEuler

�

{
1 − ln

(
tEuler

√
2E

)}})
. (44.14)

Moreover, neither of the above solutions look like free waves.

2This is a redefinition under which the time-dependent Schrödinger equation takes on a simplified
form by the timefunction absorbing prefactors of the configuration variables’ derivatives.



Chapter 45
Tempus Post Quantum. i. Paralleling QFT

Post Postulate In strategies in which time does not always feature at the funda-
mental level, it is none the less capable of emerging in the quantum regime: Q . . . T

schemes.
By such an emergence, the Hilbert space structure of one’s final Quantum Theory

can be largely unrelated to that of one’s incipient Wheeler–DeWitt equation-type
Quantum Theory. Emergent strategies for the latter include the following.

45.1 Attempting a Schrödinger Inner Product

For GR, approaches based on a Schrödinger-type inner product fail due to the
indefiniteness of the supermetric underlying the Wheeler–DeWitt equation (Exer-
cise VI.11.vi). Model arenas which tractably exhibit these features include Minisu-
perspace and SIC. On the other hand, there is (mostly) no Inner Product Problem
for RPMs, since these come with positive-definite kinetic metrics. So in this case,
the corresponding natural Schrödinger inner product suffices.

45.2 Attempting a Klein-Gordon Inner Product Based
on Riem Time

Next consider the Wheeler–DeWitt equation not as a time-independent Schrödinger
equation, but rather as an analogue of the Klein–Gordon time-dependent wave equa-
tion (12.9) with a corresponding Klein–Gordon type inner product. Such approaches
carry QFT—and thus spacetime primality—undertones.

Problem 1) Superspace null cones are not respected by superspace trajectories,
which limits the analogy.
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Problem 2) Attempting a Klein-Gordon inner product based on Riem time fails re-
gardless of whether the scheme is Q . . . T or T . . . Q. This is because the scheme’s
candidate inner product (6.4)1 comes with an Inner Product Problem.

Problem 3) The positive–negative modes split of states in the usual Klein–Gordon
Theory arises from the presence of a privileged time. Since there is no such priv-
ileged time in the case of full GR, however, Quantization schemes for this do not
exhibit this familiar and useful feature.

Moreover, from the parallel with Klein–Gordon failing as a ‘first Quantization’ lead-
ing to its reinterpretation as a second-quantized QFT, one might next try the follow-
ing.

45.3 ‘Third Quantization’ Generalized and Renamed

A further suggestion is that the quantum wavefunctions �[h] which solve the
Wheeler–DeWitt equation might be elevated to operators, by which we now have
an equation

Ĥ �̂ ψ = 0. (45.1)

This has usually been termed Third Quantization, in analogy with ‘Second Quanti-
zation’ (an older name for QFT).

The ‘Second Quantization’ name is however questionable [885]. This is because
it is a map between (Hilb, Uni) type structures, rather than being a map from (phase,
Can) to (Hilb, Uni) one like (‘first’) Quantization is. This argument extends to
‘Third Quantization’ being questionable nomenclature.

It is useful to consider RPMs as well at this point; for these, the analogue of
‘Third Quantization’ is, rather, a type of ‘Second Quantization’,

Ê �̂ψ = 0. (45.2)

This occurs because RPM is finite rather than field-theoretic. While this bears some
technical resemblance to QFT,2 interpretationally the quantum wavefunction of the
finite model Universe has once again been elevated to a quantum operator. This
further renders it clear that ‘Third Quantization’ is a Field Theory specific term.

1Isham [483] further asserted that d�ab needs to be spacelike with respect to the GR kinetic met-
ric Mabcd , and that making this inner product rigorous is difficult. It is certainly only intended
as a formal expression which has yet to take Mi into account. For instance, this could be for-
mally attained by projecting the inner product down to superspace(�). This matter is absent in
the Minisuperspace examples which are used widely in such an approach. The conceptual core,
however, is clear: the expression is “invariant under deformations of the ‘spatial’ hypersurface in
Riem(�)” [483]. This is (paraphrasing) the Quantum GR analogue of the normal Klein–Gordon
inner product’s time-independence property.
2However, relativistic QFT’s motivation in terms of finding a satisfactory inner product is absent
here, since the first Quantization’s Schrödinger inner product works just fine for RPMs.
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All in all, we prefer to term the approach that this Section concerns ‘Operator-
Valued Wavefunction of the Universe’, since this covers both sides of the finite field-
theoretic portmanteau as well as getting around the above nomenclatural issue.

Moreover, whereas this Sec’s approach is of interest as regards various technical
issues, it was not held to provide a satisfactory approach to the Problem of Time up
to the early 1990s [483, 586], and, at the point of writing this book, the Author is
not aware of any subsequent advances in this regard.

45.4 Problem of Time Strategies in Affine Geometrodynamics

In Affine Geometrodynamics [499, 500, 559], one has a distinct form for the unre-
duced Hilbert space and for the detailed structure of the Wheeler–DeWitt equation.

Tempus Ante Quantum approaches have no plain–affine distinction at the clas-
sical level at which the timefunctions are found. However, different commutation
relations and operator orderings can subsequently arise at the quantum level.

The affine approach still has an analogue of Riem time, since the signature of
the wave equation is unaltered by passing to the affine approach. Because the sub-
sequent inner product issue involving the potential not respecting the conformal
Killing vector can be traced back to the classical level, that a Klein–Gordon inner
product cannot be used carries through to the affine case as well. The Author is
not aware of ‘Third Quantization’—alias the Operator-valued Wavefunction of the
Universe Approach—having been tried in the affine case. However, a number of the
reasons for this not appearing to be very promising as a Problem of Time resolution
carry over to the affine case.



Chapter 46
Tempus Post Quantum.
ii. Semiclassical Machian Emergent Time

We next turn to the semiclassical version of the Emergent Machian Time program
that we argued substantially in favour of in Chaps. 14 to 19 and 23. As we shall
see below, this shares some but not all features with the more well known case of
Semiclassical Ordinary QM [165, 603, 605, 652].

We consider in particular the approximations, equations and regimes [23, 29, 37,
93, 119, 174, 237, 419, 483, 550–552, 554, 586, 607, 696] for the more general
heavy–light split problem

−�
2{q(h)∂2

h� + r(h)∂h� + s(h)�l�
}= w(h, l)�. (46.1)

This embraces the following cases.1

Model q r s w

1- and 2-d scaled RPMs
[23, 29, 37, 61]

1 k(N,d)
ρ

1
ρ2 2{E − V } − �

2c(N,d)

ρ−2

Isotropic Minisuperspace with
minimally-coupled scalar field [31]

−1 0 1 exp(6Ω){exp(−2Ω) − V(φ)− 2Λ}

Bianchi IX anisotropic
Minisuperspace vacuum

−1 0 1 exp(3Ω) × (I.5)

n-modewise vacuum SIC [34] ζ 2
n − 1 ζn 1 ˜(30.22)

k(N,d) is here the shape space dimension, and c(N,d) is the conformal operator
ordering coefficient given by (42.26). The table also rests upon 1) the Laplacian part
of this operator ordering giving q(h) = Nhh and r(h) = {√

MNhh},h/
√

M for this
range of examples, for which the blockwise split M = Mhh(h) ⊕ M′

l applies. 2) M′
l

takes either the ‘Cartesian split’ form Ml (l) or the ‘polar split’ form h2Ml (l) for this

1Some other earlier models—such as [93, 170, 228, 689, 690], which consider particles in absolute
space as semiclassical model arenas—also fall within this ansatz.
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range of examples. We have also split the ‘potential’2 v into vh, vl and jhl pieces:
heavy, light and interacting.

46.1 Born–Oppenheimer Scheme

For Semiclassical Quantum Theory, this consists of ansatz (12.1) alongside the fol-
lowing approximations.

Firstly, let Ĉ denote the complement of the heavy kinetic term, Ĥ − T̂h. The
|χ〉-wavefunction expectation value (integrated over the l degrees of freedom, i.e.
‘l-averaged’) is

c(h) := 〈χ |Ĉ|χ〉 =
∫

L

DLχ∗(h, la) Ĉ(h, la,pla
)
χ
(
h, la
)
. (46.2)

Here, the associated integration is over the configuration space L of the l degrees of
freedom. In particular, for RPMs it is over shape space s(N,d), whereas for vacuum
anisotropic minisuperpace it is over anisotropyspace, ani, and for modewise SIC, it
is over Modespace. In each case, DL is the measure thereover: DS, Dβ and Dvn

respectively. Since

Ĉ
(
h, la,pla

)∣∣χ(h, la)〉= c(h)
∣∣χ(h, la)〉, (46.3)

(46.2) may also be regarded as an ‘h-parameter-dependent eigenvalue’.
For some purposes, |χ〉 requires explicit suffixing by its quantum numbers,

which we denote by a single straight Latin letter multi-index k. Thus the above
c is, strictly, ckk and there is an obvious off-diagonal equivalent

ckk′ := 〈χk |Ĉ|χk′ 〉. (46.4)

The Born–Oppenheimer approximation alias ‘diagonal dominance condition’ is that

for k �= k′, |ckk′/ckk | =: εBO � 1. (46.5)

This is the first of various limitations on dimensional analysis in approximation-
making in Semiclassical Quantum Cosmology. Assuming that (46.5) holds, we
consider 〈χ | × {the time-independent Schrödinger equation} with the Born–Oppen-
heimer ansatz substituted in.

Secondly, the h-derivatives acting upon the Born–Oppenheimer wavefunction
product ansatz produces multiple terms by the product rule, schematically

|χ〉∂2
hψ, ∂hψ ∂h|χ〉, ψ ∂2

h |χ〉. (46.6)

2These are not potentials per se, due to, firstly, overall factors of 2 and that some of the original
equations having an Nhh(h) function prefactor being divided out. Secondly, due to terms going
like �

2 originating from the conformal operator ordering being packaged into v, by which (46.1)
does not necessarily display all � dependence.
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The first term is always kept. In Born–Oppenheimer’s own application of this
ansatz—to Atomic and Molecular Physics—the other two terms are discarded due
to being far smaller than the first. However, as detailed in Sect. 46.6, the Emergent
Semiclassical Time Approach to the Problem of Time and Quantum Cosmology re-
quires the second term to be kept, due to the qualitative effect of doing so overriding
its smallness.

Equation (46.1) also in general contains a linear derivative term; both curvilinear
coordinates and curved spaces are conducive toward this (Exercise!) In this case,
the product rule produces two terms, schematically

|χ〉∂hψ, ψ ∂h|χ〉. (46.7)

The second of these is often also discarded as small.

46.2 Discussion of Adiabatic Approximations

We next consider quantum-level adiabatic approximations [652]. We distinguish be-
tween the following two ‘pure’ types of these. Some quantities are small through
|χ〉 being far less sensitive to changes in h-subsystem physics than to changes in l-
subsystem physics. On the other hand, some quantities are small through |χ〉 being
far less sensitive to changes in l-subsystem physics than ψ is sensitive to changes in
h-subsystem physics. Let us name these two types of adiabaticity as, respectively,
‘internal to the l-subsystem’—labelled by a(l)—and ‘mutual between the h and l
subsystems’—labelled by a(m). In dimensional analysis terms, classical adiabatic-
ity’s ωh/ωl ∼ l/h ∼ ∂h/∂l accounts for both a(l) and a(m). Moreover, that these
three types of adiabaticity condition need not imply each other is the second ex-
ample of limitation on dimensional analysis. Some wavefunctions can attain this by
being very steep or wiggly even for slow processes; consider for instance the 1000th
Hermite function. High wiggliness is furthermore related to high occupation num-
ber. This is due to quantum states increasing in number of nodes as one increases
the corresponding quantum numbers. In turn, high occupation number is itself a
characterization of semiclassicality.

A third type of quantity involves |χ〉 being far less sensitive to changes in h-
subsystem physics than ψ is. Of course, since three quantities only support two
independent ratios, this case’s smallness is the ratio of the previous two smallnesses,
which can itself be small if the a(l) smallness is much smaller than the a(m) one. So
whereas the above discards can be made by comparison with |χ〉’s l-change, any
justification of making these discards while not discarding the first of each set of
terms is of the third type. Let us end by pointing out that a(l)/a(m) need not be of
order 1; indeed, the Born–Oppenheimer approach to Ordinary QM conventionally
regards this ratio itself as small.
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46.3 WKB Scheme

This next step consists of the ansatz (12.2) for the h-wavefunction alongside the
approximations below; see Sect. 46.8 for quantum cosmological caveats with this.
For ease of physical interpretation, let us rewrite the principal function S by isolating
a heavy massM , S(h) = M (h). [For 1 h degree of freedom, this is trivial; for more
than 1, it still makes sense if the sharply-peaked mass hierarchy condition (23.1)
holds.] The associated WKB approximation [165, 652] is the negligibility of second
derivatives,

∣∣∣∣
�

M

∂2
hF

|∂hF|2

∣∣∣∣=: εWKB � 1. (46.8)

The associated dimensional analysis expression is �/M F = : εWKB′ � 1. This is to
be interpreted as (quantum of action) � (classical action) by reinterpreting S as
classical action (see e.g. [598]), which has clear semiclassical connotations.

One incentive for using 1 h degree of freedom is that this trivially gets round
having to explicitly solve nonseparable Hamilton–Jacobi equations. This practical
problem generally plagues the case of > 1 h degrees of freedom [371].

46.4 Scale–Shape Split h- and l-Equations

In Semiclassical Quantum Cosmology, the h-equation is 〈χ |× {time-independent
Schrödinger equation (42.29)}, with the Born–Oppenheimer and WKB ansätze sub-
stituted in:

q
{{∂hS}2 − i � ∂2

hS − 2 i � ∂hS〈∂h〉 − �
2{〈∂2

h

〉}}− r
{
i � ∂h + �

2 〈∂h〉}− �
2 s〈�l〉

= wh + 〈wl〉 + 〈jhl〉. (46.9)

Also, the l-equation is {1 − Pχ } × {time-independent Schrödinger equation (42.29)}.
For now, this takes the form of a fluctuation equation

{1 − Pχ }{q{2 i � ∂hS ∂h + �
2∂2
h

}+ r�2 ∂h + s �l + wl + jhl
}|χ〉 = 0; (46.10)

Pχ is here the projector |χ〉〈χ |.

46.5 Semiclassical WKB Emergent Time

In the Semiclassical Approach to the Problem of Time and Quantum Cosmology,
it is standard to assume that ∂2

hS is negligible by the WKB approximation so as
to remove the second term from the h-equation. Furthermore, by identifying S as
Hamilton’s function and by using the momentum–velocity relation

∂hS = ph = √
hMhh∗h, where ∗ := d/dt sem. (46.11)
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Classical–Semiclassical Machian Emergent Time Alignment Lemma To ze-
roth approximation (denoted by 0 indices) t sem

0 = tem
0 , so the notation can be simpli-

fied to a new notion of tem
0 meaning ‘classical or semiclassical zeroth order’.

This observation points to emergent WKB time furthermore being interpretable
as an emergent Machian time; Chap. 23’s properties and critiques extend to approx-
imate emergent WKB time as well. This can moreover be combined with Chap. 23
to give that the approximate emergent WKB time is aligned with Newtonian, proper
and cosmic times in various contexts.

Proceed by rearranging the chain rule expression ∗ = ∗h∂h + ∗l ∂l to isolate

∂h = { ∗ − ∗l ∂l}/∗h := - ∗h := ♥, (46.12)

where the ♥ and - operators are to act upon F(t sem, l). The full—bar ∂2
hS term

neglected by the WKB approximation—Machian h-equation is [29]

q−1{∗̄h− i �
{
r + 2 q〈 ♥ 〉}}∗̄h− �

2{q〈♥2〉+ r〈 ♥ 〉 + s〈�l〉}= wh + 〈wl〉 + 〈jhl〉.
(46.13)

If one now neglects the second, third, fourth, fifth, sixth and eighth terms and
the ∗l ∂l contributions—for which Sect. 47.1 provides various justifications—then
this h-equation collapses to the standard semiclassical approach’s Hamilton–Jacobi
equation,

{∂hS}2 = w/q, or ∗̄h2 = C0. (46.14)

The second form, with C0 := qw, arises from use of (46.11), which is particularly
justified in the current context due to S being a standard Hamilton–Jacobi func-
tion. The more general case entails assuming that the quantum-corrected Hamilton–
Jacobi equation has a solution which still has properties akin to those of a standard
Hamilton–Jacobi function. A reformulation of the latter in the RPM cases is of use
in further discussions in this book is the ‘analogue Friedmann equation’—similar to
(20.5)—

{∗h
h

}2

= 2E

h2
− 2Vh
h2
. (46.15)

(46.14) is furthermore solved by the emergent time expression

t em
0 =
∫

dh
√

h/C0. (46.16)

Since the densitization cancels out therein, this indeed returns (9.15), (17.2) and
(30.27) for the two Minisuperspace examples and for SIC respectively. Moreover,
this first approximation is rather un-Machian (in the sense of STLRC) due to deriv-
ing its change just from the scale variable.

This is to be contrasted with the account at the end of Chap. 44. Finally, the first
approximation is such that the classical and semiclassical Machian emergent times
coincide to zeroth order in this cosmological setting.
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46.6 l-Time-Dependent Schrödinger Equation

The core of Semiclassical Quantum Cosmology’s passage from a fluctuation equa-
tion to a semiclassical emergent time-dependent quantum wave equation is the
Machian emergent time rearrangement

Nhhi �
∂S

∂h

∂|χ〉
∂h

= i �Nhhph
∂|χ〉
∂h

= i �NhhMhh∗h∂|χ〉
∂h

= i�
√
h
∂h

∂t sem

∂|χ〉
∂h

� i �
√
h
∂|χ〉
∂t sem

. (46.17)

This uses (46.11) and the chain rule in reverse.
Moreover, the full semiclassical emergent time-dependent wave equation is

i �{1 − Pχ }√
h - |χ〉 = {1 − Pχ }

{
−�

2

2

{
s �l + r ♥ + q ♥2}− {wl + jhl}/2

}
|χ〉.

(46.18)
This case is making use of one of Eqs. (46.14)–(46.16) to express h as an explicit
function of t sem.

Equation (46.18) is furthermore usually approximated by a core semiclassical
emergent time-dependent Schrödinger equation, such as

i �
∂|χ〉
∂t sem

= Hl |χ〉 = − �
2

2
�S(N,d)|χ〉
h2(tem)

+ Vl |χ〉 (46.19)

for RPMs. (46.19) is, modulo the h–l coupling term, ‘ordinary relational l-physics’.
Thus the approximate core situation has ‘the scene set’ by the h-subsystem for the
l-subsystem to possess dynamics. I.e. the fluctuation l-equation (46.10) can be rear-
ranged to obtain a time-dependent Schrödinger equation with respect to an emergent
time as ‘provided by the h-subsystem’. This corresponds to considering (46.9) and
(46.10) as a pair of equations to solve for the unknowns tem and |χ〉.

The standard and Machian formulations of semiclassical Geometrodynamics,
moreover, continue to realize the Broad worldview.

46.7 Rectified Time and Its Relation to Shape Space

The general time-dependent Schrödinger equation core simplifies under passing to
a rectified emergent time according to

* := ∂/∂t rem := √
hs−1∂/∂t sem = √

hs−1 ∗, (46.20)

since this converts the relative coefficient of ‘i � ∂t ’ and − �
2

2 �l to 1. This is the rela-
tive coefficient that one is accustomed to from basic QM. Additionally, in the current
context, this is suggestive of t rem being a simplifying and more geometrically natural
timefunction to work with in quantum shape physics, given that �l = �shape space for



46.8 The WKB Assumption Is Crucial but Unjustified 537

all of this Chapter’s examples. In the RPM case, t sem in contrast amounts to working
with the restriction to the shape part of the relationalspace cone over shape space.
Furthermore, t rem is as Machian and as t sem is, and in a matching GLET manner
through all changes also having an opportunity to contribute to it. In fact, the two
are related by a conformal transformation, which is a relationally-motivated PPSCT
freedom. Moreover, if the ‘calendar year zero adjusted’ t sem is monotonic, then t rem

is as well; this is elementarily true for all of this Chapter’s examples. Finally, all of
this Chapter’s examples have nontrivial rectification, for RPMs have trivial

√
h but

nontrivial polar s, whereas the other three examples have nontrivial cosmological√
h but trivial Cartesian s.
To proceed, let us expand equation (46.12) to the useful 4-suit summary

♥ := -
∗h := ∗ − ∗l ∂l∗h = ∂h = *− *l ∂l

*h
= : ♣

∗h = : ♠, (46.21)

noting that the new ♠ and ♣ operators are to be used to act on F(t rem, l). Introduce
also w̃h + w̃l + j̃hl := wh/2s + wl/2s + jhl/2s. Clearly the split into h, l and hl
parts is not in general preserved, though the corresponding ratios are. The rectified
l-equation is now

i �{1 − Pχ }√
h ♣ |χ〉 = {1 − Pχ }

{
−�

2

2

{�l + rs−1 ♠ + qs−1 ♥2}− w̃l − j̃hl

}
|χ〉.

(46.22)
It now also makes sense to introduce the rectified h-equation

q−1{s*h− i �
{
r + 2 q〈♥〉}}*h

= �
2{〈�l〉 + rs−1 〈♠〉 + qs−1〈♠2〉}+ 2w̃h + 〈w̃l〉 + 〈̃jhl〉, (46.23)

so that coupled treatments are in terms of a common set of variables.
In summary, in the Machian Emergent Time Approach, the Wheeler–DeWitt

equation’s Quantum Frozen Formalism Problem still occurs rather than being un-
frozen by the classical tem. However, t sem or t rem can subsequently be abstracted
from suitably semiclassical quantum change. This amounts to starting afresh as re-
gards obtaining an emergent time. Moreover, this distinction is itself well founded
on Machian grounds, due to requiring that quantum change be given the opportunity
to contribute to the time being abstracted from change.

46.8 The WKB Assumption Is Crucial but Unjustified

Let us first present the form taken by more general quantum wavefunctions, so one
can see how the WKB ansatz is a specialized rather than general form for a wave-
function. The S-function arises from solving an h-equation that is (at least approx-
imately) a Hamilton–Jacobi equation. However, Hamilton–Jacobi equations have 2
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solutions S±.3 Thus one would not in general expect exp(i S/�), but rather a super-
position [97, 366, 483, 586, 930, 931]

ψ(h) = A+exp
(
i S+(h)/�

)+ A−exp
(
i S−(h)/�

)
. (46.24)

Moreover, while the WKB regime is familiar from Ordinary QM, the circum-
stances of its applicability there unfortunately do not carry over to the quantum
cosmological context. Namely, the assumption of the WKB ansatz rests on the pre-
existence of a surrounding classical large system [599]. This is part of the Copen-
hagen Interpretation of QM, and is no longer tenable when the whole-universe mod-
els are under consideration.

Another common argument is that the WKB ansatz encountered in Ordinary QM
often corresponds to the laboratory set-up being a ‘pure incoming wave’. However,
laboratory preparation of a convenient quantum state has no analogue in Quantum
Cosmology. Furthermore, suppose one adopts an analogue of the pure incoming
wave a priori in an entirely theoretical Quantum Cosmology calculation. Since
its wavefronts pick out a direction by orthogonality which serves as timefunction,
this amounts to ‘supposing time’ rather than a ‘bona fide emergence of time’ as a
Machian Problem of Time resolution would require.4

Moreover, this is a major issue for Semiclassical Quantum Cosmology, includ-
ing as regards how time is to be interpreted therein. This is because the calcula-
tion (46.17)—by which an emergent semiclassical time-dependent wave equation
(46.18) is extracted from a cross-term in the fluctuation equation (46.10)—ceases
to work [97, 99, 101, 483, 586, 929–931] in the absence of the WKB ansatz. For
instance, this extraction of an emergent time has no working counterpart (Exercise!)
for the generalized wavefunction solution (46.24).

Finally, as we shall lay out in Chaps. 51 to 54, attempts to prop the WKB ansatz
up often involve elements from additional Problem of Time strategies.

3For the case in which the velocities feature solely homogeneous quadratically in the kinetic term,
these are ± the same expression. However, more generally, the 2 solutions are ± in the sense of
being a complex conjugate pair.
4A further argument involves constructive interference underlying classicality [897, 899]. How-
ever this amounts to imposing, rather than deducing (semi)classicality. This also applies to us-
ing (semi)classicality as a ‘final condition’ restriction on quantum-cosmological solutions. In this
manner, LQC can also be argued to not address this point either, and with further issue due to the
proportion of solutions rejected on such grounds being larger than is elsewise usual in Quantum
Cosmology (see Sect. 43.5). Such a restriction is also akin to how Griffiths and Omnès remove by
hand the superposition states which they term “grotesque universes” [390] due to their behaviour
being very unlike that we experience today.



Chapter 47
Tempus Post Quantum. iii. Semiclassical
Quantum Cosmological Modelling

Section 23.4’s classical considerations already revealed difficulties with some de-
tails with approximations made in Quantum Cosmology’s status quo. These were
envisaged by analogy with hitherto much more thoroughly studied areas of Classi-
cal Dynamics. We now extend this discussion to quantum (or at least semiclassical)
approximations hitherto made in Quantum Cosmology.

47.1 Back-Reaction, Higher Derivative, and Expectation Terms

Many Approximations Problem Whereas a classical such already featured in
Chap. 23, the number of approximations increases further at the quantum level.
In concomitant uses of approximations, it is harder to meaningfully isolate testing
whether any specific one applies; in particular, this affects testing Quantum Cos-
mology’s crucial WKB assumption.

The rest of this Chapter provides an outline of the terms involved and of some
of the simpler regimes that arise from keeping small numbers of them. Some of
the first papers in this area [119, 554, 555] involved expansions in one param-
eter. Semiclassical Quantum Cosmology is, however, a multiple parameter prob-
lem [689]; the current Chapter lists independent small quantities involved. See e.g.
[23, 29, 37] for a conceptual outline of Semiclassical Quantum Cosmology with
multiple independently-small quantities.

Back-Reaction Terms The full Semiclassical Quantum Cosmology equations
have the particularly interesting feature that the l-subsystem can back-react on the
h-subsystem, rather than just receiving a timestandard from it. This was pioneered
in [174] and briefly reviewed within [552]. See Sect. 47.3 for an outline of the
qualitative difference that including back-reactions has on Semiclassical Quantum
Cosmology’s system of equations.
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Motivation 1) Back-reaction terms give the l-subsystem the opportunity to con-
tribute to the final more accurate estimate of the emergent timefunction. This is
a further part of implementing Mach’s Time Principle in a STLRC manner.

Motivation 2) Including these terms mean that the h-equation ceases to take the
form of a decoupled conservative system’s Hamilton–Jacobi equation. Now in-
stead, h-system energy can be interchanged with l-system energy, so the l-system
can take a range of energies rather than being frozen at one particular energy. In this
way, the l-system can transition between energy levels. Note that this is not only
‘book-keeping, but also an essential feature for such an l-subsystem to possess if
it is to describe the standard observed Quantum Theory.

Motivation 3) Back-reaction is moreover conceptually central to GR. The Einstein
field equations (7.5) permit matter to back-react on geometry. Furthermore, noth-
ing can be shielded from gravity. Finally, back-reaction is also commensurate with
GR’s gestalt aspect as supplanter of absolute structure.

Higher Derivative Terms Particular caution is required in neglecting higher
derivatives in modelling PDEs. For instance, higher derivative terms are well-known
to be qualitatively dangerous in Fluid Dynamics [600]. The Navier–Stokes equation
is qualitatively very different from the Euler equation both in boundary layers and
in some adjacent regions which are influenced by these. That e.g. x−1∂x and ∂xx
are none the less dimensionally identical alludes, moreover, to a third limitation on
dimensional analysis.

Quite clearly (46.9)–(46.18) contain higher time derivatives than the i � ∂em
t term

that is conventionally kept in Semiclassical Quantum Cosmology. This could well
cause difficulties with the behaviour of the PDE in some regions of space and of
configuration space q. In the quantum setting, furthermore, inclusion of such terms
marks passage from a time-independent Schrödinger-type equation to a Klein–
Gordon-type one. Even in the simplest models, this is known to require a differ-
ent type of inner product and of interpretation of the associated Quantum Theory.
It is worth reiterating here that ‘Klein–Gordon-type’ equations are prone to sub-
stantial extra impasses arising from their differences from actual (constant-mass)
Klein–Gordon Theory [581]. All in all, keeping higher derivative terms sends the
Semiclassical Quantum Cosmology time-dependent Schrödinger equation to a more
general time-dependent quantum wave equation. Finally, such approximations are
also made in some Internal Time Approaches; see e.g. (44.10).

Expectation or Average-Type Terms Averaged and unaveraged terms are clearly
dimensionally identical, by which neglecting averaged terms is a fourth limitation
on dimensional analysis. This assumption is moreover usually made in the Quantum
Cosmology literature. The reason given for making it, at the physical level, is de-
structive interference; in turn, this is supported by the mathematics of the Riemann–
Lebesgue Theorem [184].

Motivation 1) However, the analogous assumption fails to hold in Atomic and
Molecular Physics. Here, neglecting such terms leads to a considerable error in
predicting observed spectra. This was a major issue in the early 1930s, which
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was resolved by keeping such terms and proceeding via the Hartree–Fock method
[81, 324] outlined in Sect. 47.6. The effect of dropping these averaged terms on the
mathematical form of the system of equations is drastic, turning coupled integro-
differential equations into much simpler differential equations. Thus, while making
this assumption greatly increases the chances of dealing with familiar mathematics
and analytic solutions, Atomic and Molecular Physics has taught us to be cautious
about discarding such terms, alongside providing means of handling such terms if
they are kept.

For now, let us provide simple examples of expectation terms which cannot be dis-
missed as smaller. In 3-stop metroland’s analogue of the central problem, 〈∂2

ϕ〉|χ〉
and ∂2

ϕ |χ〉 are of the same size since the wavefunctions in question are eigenfunc-
tions of this operator. This type of example clearly generalizes more widely due to
being based on the eigenfunctions of the Laplacian operator, which is common in
both laboratory and quantum cosmological models.

Classification of the h- and l-Equations’ Terms Let us finally display the qual-
itative types of the 14 often-neglected terms which arise in the book’s Semiclassical
Quantum Cosmology model system of equations (Fig. 47.1).

47.2 Solving the h-Equation for Emergent Machian Time

We now parallel Chap. 23’s procedure of correcting the h-system’s approximate
emergent time by the leading-order corrections of an expansion. let us first consider
the simple case of expanding in powers of �:

t rem ∝
∫

2 dh/
{
P ±
√
P2 − 4Q

}
, (47.1)

P := i � s−1{r + 2 q〈♠〉},
Q := qs−1{2{w̃h + 〈w̃l〉 + 〈̃j〉}+ �

2{rs−1 〈♠〉 + qs−1〈♠2〉+ 〈�l〉}}. (47.2)

Equation (47.1) suffices to establish that now indeed the quantum l-subsystem
change has an opportunity to contribute:

t rem = F
[
h, l,dh, |χ(h, l)〉]. (47.3)

Perturbative investigations benefit from binomially expanding t rem to obtain the
leading-order effects of the various terms. Using Q = Q0 + Q1, this produces

t rem = t rem
0 − 1

2

{∫ P
Q0

dh+
∫ Q1 + P2/4

Q3/2
0

dh

}
+O
(Q2

1

Q2
0

+ Q1P2

Q2
0

+ P4

Q2
0

)
. (47.4)
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Regime 1) Even if one assumes that the expectation terms are negligibly small,
there is a novel operator-ordering term i � s−1r within P [37]. Moreover, incorpo-
rating this does not require coupling the Machian emergent time procedure to the
quantum l-equation. I.e. it is a quantum correction to the h-physics itself rather
than a Machian l-subsystem change contribution.

Regime 2) Keep P’s other term 2 i � s−1q〈 ♠ 〉, which is both an expectation and a
back-reaction.
Furthermore, suppose that one or both of P’s terms are kept; one reason for keep-
ing both is their jointly beingO(�). What were hitherto pairs of solutions differing
only by sign at the classical level become furtherly distinct pairs. Moreover, any of
these terms gives t rem a complex correction (see Sect. 59.2 for further discussion).
Finally, comparison with the classical counterpart (23.18) reveals that the P terms
are in place of a distinct classical l-change term.

Regime 3) It also makes good sense [37] to keep 〈̃j〉, which is the expectation of
an interaction potential mediated back-reaction. This has a classical counterpart,
involving keeping the interaction term rather than its expectation.

47.3 Some l-Time-Dependent Schrödinger Equation Regimes

Basic and Back-Reacting Regimes This follows on both Sects. 46.6 and 47.2.

Regime A) Decoupled time-dependent Schrödinger equation. This makes sense in
conjunction with the classical or Regime 1) treatments of the h-equation, which act
solely as time provider. Such a decoupled time-dependent Schrödinger equation is
furthermore analytically tractable for a range of RPMs [37], and for the SIC case
[52], for which it is additionally a free such.

Regime B) Interaction potential kept. For instance, this can often be treated as a
time-dependent perturbation about the previous [37], which is a well-established
type of problem in basic QM [651]. This amounts to letting the h-system act upon
the l-system. To some extent, this can still be paired with the classical or Regime 1)
treatments of the h-equation. However, this only makes full sense—as regards
book-keeping and Relationalism both—if the l-system back-reacts on the h sys-
tem, noting in particular Regime 3)’s matching means of interaction. Some RPM
models of this, for instance, are mathematically tractable by use of Green’s func-
tions [23, 37]. Other back-reaction mechanisms are not precluded, but remain to be
investigated. One scheme involves obtaining tem

0 from the classical or Regime 1)
Hamilton–Jacobi equation, place it in the l-equation of Regime A or B to solve for
|χ0 〉, and next use this in a less approximate form of the h-equation to produce a
corrected t sem

1 and keeping on iterating in this manner.

Diabatic Regimes Physicists Serge Massar and Renaud Parentani considered in-
cluding diabatic terms [646] in Minisuperspace modelling. They found expand-
ing universe–contracting universe matter state couplings. They also observed a



544 47 Tempus Post Quantum. iii. Semiclassical Quantum Cosmological Modelling

quantum-cosmological version of the Klein paradox, i.e. backward-travelling waves
being generated from an initially forward-travelling wave.

Higher Derivative Term Regime Kiefer and physicist Tejinder Singh’s expan-
sion [554] treats higher derivative terms along the lines of the next-order correction
(6.3) to the time-dependent Schrödinger equation from the Klein–Gordon equation.
Look up ‘Foldy–Wouthuysen transformation’ in e.g. [144] for the underlying tech-
nique used.

Unitarity is moreover not exact in the Semiclassical Approach, due to the approx-
imations made. Furthermore, the type of inner product that is appropriate can differ
with the order of approximation. Finally note that the use of higher-order WKB ap-
proximations remains to be considered in Semiclassical Quantum Cosmology (see
also Research Project 58).

47.4 Dirac-Quantized Semiclassical Schemes

We have so far incorporated Configurational Relationalism by working within Re-
duced Quantization. We now consider the Dirac Quantization alternative to this (see
also Fig. 47.2 for a figure summarizing this and outlining how it fits in with various
other Problem of Time facets). Both of these feature in the end-summary Fig. 47.2.
One motivation for this is that how to carry out Reduced Quantization for full GR
is not known, whereas the full Mi and H are first-class, by which Dirac Quantiza-
tion remains open. Another is that this is a very natural facet ordering to consider in
comparing various approaches’ facet interferences.

This consideration leads to the Gauge constraints contributing their own h- and
l-split equations [37, 552] to the Emergent Semiclassical Approach’s system of
equations. These further equations do not immediately enter the specification of
the emergent time,1 which arises from Quad rather. However, there is facet interfer-
ence through the auxiliary variable d∂gG entering the linear constraints in Lagrangian
form. Additionally, via the properly auxiliary-corrected version of the momentum–
velocity relation, the Gauge also enter the l-time-dependent Schrödinger equation:

i �

{
δ∂

δ∂ tem
− ĜaugeG

δ∂gG

δ∂ tem

}
|χ〉 = Ĥl |χ〉. (47.5)

This is a semiclassical analogue of the classical Best Matching corrections. A par-
ticular case of this is [607] the GR version of the Tomonaga–Schwinger equation,

i �

{
δ

δtem
− Mi

δFi

δtem

}
|χ〉 = ĤGR

l |χ〉. (47.6)

1This is rectified where suitable.
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Fig. 47.2 End-summary of the TRi Semiclassical Approach

If one has succeeded in freeing oneself from the above complication, a reduced
version is obtained. The corresponding time-dependent Schrödinger equation is, for-
mally,

i �
δ∂|χ〉
δ∂ tem

= ̂̃H l |χ〉. (47.7)

A further form of l-time-dependent Schrödinger equation is

i �

{
δ∂

δ∂t rem − ĜaugeG

δ∂gG

δ∂t rem

}
|χ〉 ∝ −�

2

2
�c

Preshape |χ〉 + · · · . (47.8)

This is accompanied by 1)

CR
(
t rem)∝ E′

g ∈g
(∫

‖δ∂gQ‖/{−P ±
√
P2 − 4Q

}
h2
)
, (47.9)

where the semiclassical meaning of the extremization symbol is postponed to
Sect. 49.6. This extremization is moreover unnecessary in scale–shape split RPMs
and Minisuperspace but now involving an object ssemi whose detailed form re-
mains to be specified in the next update of [37]. This unknown object reduces to the
relational action srel in the classical limit but presumably contains quantum cor-
rections. P and Q are generalizations of the previous specific example of forms for
these.

2) h- and l-Gauge equations,

〈Ĝauge〉 = 0, {1 − Pχ}Ĝauge|χ〉 = 0. (47.10)
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The particular form of (47.8) specifically for Metric Shape and Scale RPM is

i �

{
∂

∂t rem − L̂ · ∂B

∂t rem

}
|χ〉 = −�

2

2
�c
p(N,d)|χ〉 + · · · = −�

2

2
�c

Snd−1 |χ〉 + · · · ,
(47.11)

for preshape space p(N,d) as described in Appendix G.1. On the other hand, in the
case of GR, (47.8) can be further expressed as

i �

{
δ

δt rem − M̂i

δFi

δt rem

}
|χ〉 = −�

2 �c
CRiem(�)|χ〉 + · · · = −�

2 �c
U |χ〉 + · · · , (47.12)

for U given by (H.5). t rec now bears a slightly different relation to t sem [31]; this is
due to the nonuniqueness in radial variables encapsulated by taking, in place of r ,
some f (r) that is monotonic over a suitable range.

Dirac-type wave equations were considered in [419, 549]. This is modulo
Chap. 30’s observation that the SVT-split constraints are not first-class, though nei-
ther this nor using a reduced approach affect the harmonic oscillator type output
to this (SVT uncoupled modes) level of accuracy. Wada [789, 872] also provided
various partial reductions at the level of solving quantum-level constraint equations.

47.5 Extension Including Fermions

Proceed as per the classical counterpart. Now the zeroth-order l-time-dependent
Schrödinger equation contains only fermionic potential Vf, so � can be sepa-
rated into bosonic �(b, t0) and fermionic �(f) factors. However, the separated-out
fermion part reads (for C the constant of separation)

{Vf − C}�f = 0, (47.13)

which at most has algebraic polynomial roots for solutions. Thus fermion-l-
nontriviality does not feed into the first-order system. So there is a breakdown of
‘giving an opportunity to all species’. However, the interest in Nature of linear the-
ories of fermionic species is field-theoretic. In this case, (47.13) is a PDE due to
the potential containing spatial derivatives. Therefore � does pick up nontrivial l-
fermion dependence at zeroth order, so one continues to reside within the GLET is
to be abstracted from STLRC interpretation that this book expounds.

47.6 Variational Methods for Quantum Cosmology

Variational Principles Suitable such are part of the standard textbook knowledge
of QM (see e.g. [652]). Variational principles for time-independent QM are the most
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commonly encountered. Firstly, the Ritz Principle (after physicist Walther Ritz) is

E
[
ψ,ψ∗]= 〈ψ|H |ψ〉/〈ψ|ψ〉. (47.14)

Varying this with respect to ψ∗ returns the time-independent Schrödinger equation.
Secondly,

J
[
ψ,ψ∗]= 〈ψ|H |ψ〉 −E‖ψ‖2, (47.15)

for E a Lagrange multiplier encoding the normalization condition ‖ψ‖2 = 1. We
now require a combination of four extensions in order to model various Semiclassi-
cal Quantum Cosmology regimes.

Extension 1) is to one or both of curved and indefinite configuration spaces. This is
unproblematic; see e.g. [27] for examples.

Extension 2) is to models with Gauge constraints. This is again unproblematic.
Extension 3) is to time-dependent quantum variational principles. Atomic and

Molecular Physics is also a source for some aspects of this. The time-dependent
successors of the Ritz and multiplier principles are moreover distinct [146], and it
is the latter that is more suitable to our purposes. I.e.

I
[
ψ,ψ∗]= 〈ψ|{i � ∂t −H − $}|ψ〉, (47.16)

where $ now corresponds both to normalization and to freedom to change phase
factor.

Extension 4) is to Hartree–Fock type variational principles (named after Fock and
physicist Douglas Hartree). These are also familiar from Atomic and Molecular
Physics, where they are used to incorporate electron–electron interaction terms,
which are a type of expectation term. This is usually approached by an extended
version of (47.14) including these expectation terms. Furthermore, iterative (‘self-
consistent’) methods—for handling the nonlinear dependence on the wavefunc-
tions entailed by the presence of averaged terms—have been developed. In a nut-
shell, one iterates by substituting approximate solutions to equations into more ac-
curate versions of those equations; this is a numerical rather than analytic method.
Averaged alias expectation terms in Semiclassical Quantum Cosmology can be
included in a directly analogous manner.

These extensions can furthermore be combined with each other. Time-dependent
Hartree–Fock theory in the context of Atomic and Molecular Physics has been con-
sidered in e.g. [146, 244, 546]. A variant of (47.16) which encodes the semiclassical
l-equation by itself is

I
[
χ,χ∗]= 〈χ |

{
i �♣ − N̂l − 1

2

{
i �〈 ♣ 〉 − 〈N̂l〉}− {$− 〈$〉}

}
|χ〉, (47.17)

using for now the t-derivative-free N̂l := −�
2 �l/2 +V rec

l +J rec as an approximand
for Ĥl . Here, variation with respect to χ∗ encodes the l-equation.
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Variational principles similar to (47.16) are moreover known for other time-
dependent quantum wave equations. So including −�

2 { ♠2 + ♠ }/2 corrections into
the variational scheme is not a problem either. Just add −�

2 {{ ♠2 + ♠ }/2 − 〈 ♠2 +
♠ 〉/4} into the innermost factor of (47.17). As regards modelling Quantum Cos-
mology, one benefits from the Hartree–Fock method having been set up for Field
Theories (see e.g. [546]). [This is mentioned in anticipation of applying such meth-
ods to inhomogeneous GR models.]

Note furthermore that variational approaches often begin by entering zeroth order
trial wavefunctions. For Atomic and Molecular Physics, these could for instance
be an antisymmetrized product of a simple hydrogenic model’s orbitals. A notable
feature in the SIC case is that one can split the quantum wavefunction up, firstly
as an n-modewise product, and secondly via the wavefunction for each mode itself
being a product of S, V and T parts:

� = �1 · · · �n−1�n�n+1, �n = �S
n �

V
n �

T
n . (47.18)

This ‘plain product’ can furthermore be interpreted as a zeroth approximation vari-
ational trial wavefunction. Moreover, there is no problem in applying a plain prod-
uct within Hartree–Fock type methods. Indeed, the very first works on these meth-
ods (by Hartree and Slater) used the simple product, prior to Slater introducing the
antisymmetrized product. The plain product ansatz is probably more suitable for
Quantum Cosmology within a Hartree–Fock type scheme. So the idea is to treat
inhomogeneous modes independently to zeroth approximation prior to consider-
ing interactions between them, in analogy to making use of hydrogenic orbitals
prior to considering electron-electron interactions within multi-electron atoms and
molecules. Furthermore, both Minisuperspace and RPMs fall short of having the
requisite features to be useful model arenas for this approach.

We next meet Sect. 15.7’s promise, by pointing out that if the quantum wave-
function factorizes exactly, then the Machian emergent time working (46.17) ceases
to function. This requires a subsequent non-factorized level of approximation.

Straightforward classical-type variational principles modified to include expec-
tation corrections can also straightforwardly be construed [27], e.g.

s=
∫

dt rem{T − V − 〈Ô〉}. (47.19)

Finally, variational principles encoding the coupled h-l system of Semiclassical
Quantum Cosmology are more involved; for these [27] only provides more tentative
suggestions. On the one hand, in the regime in which t rem

0 is satisfactory, a Hartree–
Fock type procedure can be applied on the l-equation with average terms kept. On
the other hand, variationally encoding a coupled system which includes a Machian
emergent time procedure presents further complications. One is now dealing with
a hitherto mathematically unfamiliar type of mixed classical–quantum system of
equations of the form
{

(expectation-corrected Hamilton–Jacobi equation for emergent time)

(emergent-time-dependent Hartree–Fock scheme).
(47.20)
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47.7 Perturbative Schemes

Whether one is to include the Machian emergent time determination step in the
evaluation loop affects purely perturbative approaches as well as part-variational
formulations. On the one hand, if this is not included, perturbation schemes are
technically standard. On the other hand, if this is included, these schemes become
more complicated and less standard [37] due to being quantum perturbation schemes
that are coupled to classical perturbation schemes.

See [29, 37] for this perturbation scheme’s equations. Including the � correc-
tion from operator-ordering can be combined with all the other considerations in
Chap. 23, at least at the conceptual level.

47.8 Problems

Problem 1) with the Semiclassical Approach is that having invoked a Wheeler–
DeWitt equation results in inheriting some of its problems [483, 586]. The RPM
case of this is less severe: there is no Inner Product Problem, no functional deriva-
tives or need for regularization.

Problem 2) How to relate the probability interpretation of the approximation with
that for the underlying Wheeler–DeWitt equation itself remains unclear [483, 586].
The imprecision due to omitted terms means deviation from exact unitarity. This
gives problems with the probability interpretation that is to be accorded to Quan-
tum Theory [483, 586]. How is one to make sense of the sequence of these corre-
sponding to increasingly accurate modelling? This is up to and including their re-
lation with the probability interpretation for the unapproximated Wheeler–DeWitt
equation itself. E.g. some of these involve other than Schrödinger equations and
thus require new inner products and new probability interpretations based there-
upon.] Thereby, the Hilbert space structure of the final theory may be related only
very indirectly (if at all) to that of the Quantum Theory with which the construction
starts.

Research Project 58) Moreover, it is in the above setting that higher-order WKB
techniques are expected to become relevant [554] to Quantum Cosmology. Does
the Semiclassical Approach to emergent time survive such upgrades?

Let us next compare the Semiclassical Approach with the Internal Time Approach.
In the Semiclassical Approach, scale is not taken to be a time, but is rather consid-
ered to be part of some set of heavy, slow, set of variables. These go into providing
an approximate time rather than into the fast, light set of variables that deal with
actually-observed subsystem physics. This furthermore possesses a positive-definite
kinetic term, which is far more familiar, and conceptually more satisfactory. The
scale physics is moreover not heavy and slow in all regions of all models, though
this is fortunately the case in Early-Universe Cosmology.

An additional difference is that these Tempus Ante schemes prevail at the quan-
tum level, whereas emergent Machian time needs to start afresh at the quantum level.
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In this way, classical Machian emergent time is identified as the precursor of semi-
classical emergent time, which can indeed be interpreted in parallel as a Machian
construct. Finally, the reason for having to start afresh is clear from a Machian per-
spective: quantum changes are different from classical ones and so differ in how
they contribute to the emergent time.

Research Project 59) Provide a Mathematical Physics treatment of the equations
of Semiclassical Quantum Cosmology. I.e. build up an analogue of Mathemati-
cal Relativity’s treatment of classical GR for Semiclassical Quantum Cosmology’s
own system of equations.
This has the following suite of open problems.

1) Can the quantum-corrected h-equation be taken to comprise a semiclassical
quantum equivalent of ‘the Hamilton–Jacobi equation encodes all informa-
tion about the h-system’? I.e. precisely how can semiclassical-corrected coun-
terparts of equations of motion be obtained from a semiclassically corrected
Hamilton–Jacobi equation? We anticipate that this is surmountable, though how
uniquely is unclear and may well depend on the detailed sense in which ‘semi-
classical’ is to be mathematically implemented [603, 605].

2) What happens at the quantum level to the role of the forces determining which
approximations to make in the ‘GLET is to be abstracted from STLRC’ pro-
cedure advocated in Chap. 23? [Force equations are far less common at the
quantum level; which formalism is one to use for these?]

3) Can Eq. (47.20) be anchored on a variational principle?

Note furthermore the expectation that not only GR, but also a wide range of differ-
ent Quantum Gravity Theories as well, would have a common Semiclassical Quan-
tum Cosmology treatment. However, Supergravity lies outside of these [555], thus
meriting further treatment as a source of both conceptual and technical variety.

While emergent semiclassical time t sem is accompanied by an ‘l-Hamiltonian’, it is
not a priori clear whether these two quantities are to be expected to be conjugate.
Firstly, these are semiclassical constructs that may not meaningfully correspond to a
classical phase space extension, such as the one by which time and energy are canon-
ically conjugate in ordinary Mechanics. Secondly, the ‘l-Hamiltonian’ in general de-
pending upon t sem; for time-dependent Hamiltonians even the classical conjugacy
argument breaks down. Thirdly, commutation relations and uncertainties between
time and energy are a delicate matter in QM, as per Sects. 5.3 and 41.1. That emer-
gent time is not a background parameter helps in this regard. This time is, rather,
internal to the QM, in the sense of the quantum time classification of Sect. 5.3.

We finally point to Isham’s argument [482] that spacetime and differential geo-
metric modelling at most applies at the semiclassical level.



Chapter 48
Semiclassicality and Quantum Cosmology:
Interpretative Issues

This Chapter serves to introduce a number of further useful notions and tools for
handling and understanding semiclassical regimes.

48.1 Coherent States

Schrödinger’s wavepacket concept (Sect. 5.1) matured into the notion of coher-
ent states. The theory of coherent states has been well developed for harmonic
oscillators. Coherent states are significant through having a number of similari-
ties with classical point-particle states and further semiclassical attributes. For in-
stance, they realize minimal entropy production and minimal uncertainty [932].
Also, ψc(t) ≈ ψc(t) for c a classical parameter evolving according to c = c(t) [605],
by which knowledge of the classical motion goes far toward understanding the cor-
responding coherent state. See e.g. [932] for a brief and lucid account which also
contains the original references.

48.2 Wigner Functionals

In outline, these are a type of quantum-mechanical probability density function on
Phase, analogous to the classical w(q,p) (Chap. 29). E.g. in the flat-configuration-
space K-dimensional Cartesian case, the Wigner functional takes the form [907]

W ig[q,p] ∝
∫∫

dKy
〈
ψ(q + y)

∣∣exp(2 i y · q)
∣∣ψ(q − y)

〉
. (48.1)

A fortiori, this is a semiclassical analogue of w(q,p), and in fact only a quasiprob-
ability distribution in the sense that it can take negative values. See [91, 140, 165,
197, 450, 829] for reviews, including for further detail of its physical interpretation.
The Wigner functional is such that its integral over p gives |ψ(q)|2 and its integral
over q gives |ψ(p)|2. A further distinguishing feature is that the equation of motion
for it very closely parallels the classical one [140].
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Fig. 48.1 A quantum behaviour size interface lies somewhere between the sizes of the depicted
molecules

48.3 Decoherence

We next consider why we do not observe superpositions of macroscopic objects,
such as of dead and live cats.1 One of the approaches toward understanding this,
initially due to physicist Dieter Zeh [928], is decoherence: that interaction with their
environment swiftly measures such a system, reducing it to an entirely live or dead
state.

On the other hand, quantum phenomena indicate that very small objects are not
swiftly reduced in such a manner. For example, the ammonia molecule exhibits the
properties of the superposition of states indicated in Fig. 48.1.a). This begs the ques-
tion of for what molecular size do such superpositions quickly become reduced. The
outcome of this is that glucose molecules (Fig. 48.1.b) are observed to stay in one
chiral state, in contradistinction with ammonia molecules. Therefore, the boundary
for such behaviour lies somewhere between the size of ammonia molecules and that
of glucose molecules (which are still much smaller than cats!)

Decoherence in standard Quantum Theory can be taken to involve mixed state
density matrices being traced over by removal of environmental modes. This sup-
presses interference terms between states and physically realizes a diagonalized
form (at least with respect to a suitably chosen basis). See e.g. [366] and references
therein for further details. [932] renders clear that coherent states and decoherence
are not only nominally similar but indeed conceptually and physically related as
well.

The quantum cosmological version of decoherence is moreover somewhat dif-
ferent [366, 551, 552] from that of Ordinary Quantum Theory. For instance, in
Quantum Cosmology there may be no pre-existing notion of time in which to deco-
here. . . . Unlike most of the topics in [669, 670], decoherence has been substantially
carried over to the Quantum-Cosmological setting.

We finally point to Zeh’s further suggestion [929] that the matter and gravity
inhomogeneities decohere the Minisuperspace degrees of freedom; see e.g. [549,
552] for more on this topic.

1More formally, one is dealing here with the Quantum Measurement Problem (outlined in Sect. 5.1
and [487]), which remains an unsettled, and major, area of research (see e.g. [773] for a detailed
review).
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48.4 Environments

We next consider what is meant above by ‘the environment’, with particular con-
sideration of the strategic ambiguity that this causes in the quantum cosmological
setting.

Strategy 1) Whole Universe Models have No Environment. E.g. consider anN -body
RPM to represent the whole universe. This most idealized interpretation is more-
over much less robust than absolute approaches as regards being able to assume
the existence of additional particles whose contributions are traced over.

Strategy 2) Scale Models with Shape as Environment. Whereas this approach suf-
fers from an overly simple original system, this feature is alleviated once one
considers the shape perturbations thereabout. Such small shape environments in-
clude not only the metric notion of shape for RPMs, but also one or both of small
anisotropies and small inhomogeneities in the case of GR models of perturbations
about isotropic Minisuperspace. Contrast the lack of robustness in the given ex-
ample of Strategy 1) with how Minisuperspace models can readily be extended
to admit such perturbations. In this manner, models neglecting these degrees of
freedom at the level of the dynamical equations can still cast such in the role of en-
vironment for decoherence and accompanying approximate information storage.
N.B. that even one particle is capable of serving as a nontrivial environment [411].

Strategy 3) Scale Models with Shape as both Perturbation and Environment.| For
instance, study an RPM in which a small set of the particles—say a triangle of
particles—dominate over the others, which contribute to a small but non-negligible
extent. One could alternatively study Cosmology using a SIC model, with scale
(and any other homogeneous isotropic mode) dominating over small anisotropy
and inhomogeneity modes. This is expected to most closely fit the situation in
actually realized Cosmology: that decoherence occurred through coupling with
small inhomogeneities’ multipole terms [366, 549, 551, 552, 929].

48.5 Is Physics only About Subsystems?

We now continue Sect. 19.1’s discussion of notions of Relationalism at the quantum
and quantum cosmological levels. At the quantum level, Crane [224] works along
the following lines (the split into pieces is the Author’s own, for convenience of
discussion and of proposing variants).

Crane 1) Preliminarily, Quantum Theory makes sense for subsystems, each of
which has its own Hilbert space, within which the standard interpretation of Quan-
tum Theory applies.

Crane 2) Quantum Theory solely concerns such subsystems.
Crane 3) What would elsewise be Quantum Theory for the whole universe does not

possess a Hilbert space.
Crane 4) Nor does this possess the standard interpretation of Quantum Theory.
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Crane 5) None the less, Quantum Theory does make sense for whole-universe mod-
els in some kind of semiclassical limit, which does possess a Hilbert space.

Let us use ‘Perspectivalism 1)’ as a postulate name which jointly refers to Crane 1)
to 5).

Crane makes use of sub-statespaces Subs (though his notion of these does not
carry the same local physical connotations as mine in Appendix Q.3). For QG, Crane
further considers subsystem–environment splits of the universe in which the ob-
server resides on the surface of this split.2 Each of these splits has its own Hilbert
space, sub-Hilb.

One can readily imagine weakening Crane 2) to ‘Quantum Theory almost always
concerns subsystems’. Also, a standard alternative to Crane 3) is that Quantum Cos-
mology does not lack a Hilbert space (shrunken as it may be due to closed-universe
effects as per Sects. 41.4 and 42.3). The scalefactor of the universe is an example
of a whole-universe—rather than localized subsystem—variable that can plausibly
enter one’s physical propositions, so it lies outside of Crane 2). However, this can
be taken to belong to the semiclassical regime, by which Crane 5) applies.

Finally, Crane 5) faces the problem that—in constituting a qualitative change
arising from taking a semiclassical limit—it falls afoul of ‘Earman’s Principle’.
Thus a more standard alternative to Perspectivalism 1) is the weakened form Per-
spectivalism 1W), comprising of Crane 1), the weakened form of 2), and Crane 4).
This is a nontrivial addendum to relational programs because it focuses on the Quan-
tum Theory of multiple subsystems—the entire set of Subs—rather than that for
whole-universe models. This will tend to lead to multiple inequivalent quantum the-
ories, where the inequivalences can be explained by the differences in observers;
we return to this idea in Epilogue III.A’s strategizing about the Multiple Choice
Problem.

Perspectivalism 2) Crane also allows for the Quantum Theory of observers ob-
serving other observers observing subsystems; Rovelli considers a similar notion in
[747]). This provides a further level of structure between the many Hilbert spaces
associated with all the observers in Perspectivalism 1) (or 1W).

Finally, let Perspectivalism 3) and 4) denote use of partial observables and of
‘any change’ leading to ‘any time’ respectively, each of which carry over straight-
forwardly to the quantum level.

2In fact, Crane [225] considers defining observers as boundaries of localized regions. Though
clearly not all such boundaries will have observes realized upon them. Also, sizeable boundaries
would need to be populated by many observers, forming a ‘shell of observers’ or a ‘shell array of
detectors’. The Information Gathering and Utilizing System concept may help as regards practi-
cally realizing such shells.



Chapter 49
Quantum Constraint Closure

We next turn to a fourth aspect—Constraint Closure—that the quantum constraints
arising from Temporal and Configurational Relationalism require as a consistency
check. [At the quantum level, defining the quantum constraints that these three other
aspects revolve around requires preliminary Assignment of a Function Space in the
form of Kinematical Quantization.]

More specifically, all first-class classical constraints CF are to be promoted to
operator-valued quantum constraints.1 We provided some candidates for the quan-
tum constraints in Chaps. 40–43. The next requirement is that these close as an
algebraic structure ĉ under the commutator brackets. Having constraint providing
principles and arguments for particular types of operator ordering in no way guar-
antee overcoming this hurdle as well.

Section 43.3’s Problem 0) concerning dependence of the commutation relations
on the background manifold � applies once again here.

N.B. also that sets of independent classical constraints are much smaller than
Kinematical Quantization’s input set of functionals of the Hamiltonian variables.
Because of this, selection of a constraint algebraic structure comes with less variety
than Kinematical Quantization’s choice of subalgebraic structure.

Nor need the algebraic structure ĉ formed by the quantum constraints be iso-
morphic to that of the classical constraints c, as per the brackets map ambiguity
(12.15). The underlying fundamental brackets being different on each side of the
brackets map provides a first reason for the brackets map ambiguity. A second rea-
son is that different operator orderings of constraints are expected to obey different
commutation relations. Indeed, succeeding in obtaining quantum constraint closure
can itself motivate the form of operator-ordering adopted. Constraint Closure could
well also be a stringent filter on operator ordering, by which some hitherto conven-
tional choices of operator ordering could come to be overruled.

There is moreover a quantum-level issue of why the CF are chosen for promo-
tion to operator-valued expressions rather than an equal number of functionally-

1This is in the context of having used extended Phase, Dirac bracket or reduction to free ourselves
of second-class constraints, so the classical constraints in question are all first-class.
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Fig. 49.1 Quantum Constraint Closure Algorithms are more straightforward than Classical Dirac–
type Algorithms of Fig. 24.1 which it is tied to at the classical level. This loss of complexity is due
to there no longer being any appending of constraints by auxiliary variables. The quantum-level
Constraint Closure scheme is depicted in a) and b) for trivial (or specialized) and general Kinemat-
ical Quantization respectively

independent fF(CF′). Such a change in selection is furthermore capable of substan-
tially change the form of the ensuing algebraic structure.

There are some ways in which Quantum Constraint Closure Algorithms are sim-
pler than the classical Dirac Algorithm (compare Figs. 49.1 and 24.1). The quantum
case is, moreover, already-TRi, in contrast to the classical case which requires de-
velopment of a TRi version.

49.1 Split Quantum Constraint Structures and Nontrivial g

Let us next recollect Sect. 24.5’s notion and notation for the partition of objects into
o and n, in particular with Flin or Gauge in the role of the objects O of o. Various
possibilities at the level of the brackets map m involve the classical-level structure
constants C mapping to each of the following.

Outcome i) To the same C.
Outcome ii) To distinct C′ and yet with g-compatibility preserved.
Outcome iii) Likewise but with g-compatibility violated.
Outcome iv) To C′O +� and yet with g-compatibility preserved.
Outcome v) To C′O +� with g-compatibility violated.

Outcomes iii) to v) clearly feed into the brackets map ambiguity. Furthermore, Out-
comes iii) and v) entail a g′ distinct to the classically accepted g being required
at the quantum level. In such a case, clearly, Configurational Relationalism being
a priori resolved at the classical level clearly does not automatically carry over to
Configurational Relationalism remaining resolved at the quantum level. This is a
second reason, in addition to practical inability to reduce at the classical level, to
pursue Dirac Quantization approaches.

Many of the successes with classical Constraint Closure successes falter under
almost every possible choice of operator ordering. This refers to the closures of g,
of Flin, of all the first-class constraints as per GR and Dirac formulations of RPMs,
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or, in Supergravity, of NSFlin and NSC. Two cases which are exempt from this are
as follows.

Lemma 1 If there is only one constraint and it is finite (as opposed to field-
theoretic), then it commutes with itself regardless of how it is operator-ordered.

Lemma 2 The classical and quantum constraint algebraic structures k and k̂ of
the Flin are isomorphic if these constraints are operator-ordered with the P to the
right.

Proof In this operator ordering, the quantum constraints coincide up to proportion
with the classical generators. �

Caveat. This is moreover contingent on momentum being representable as
(39.19), by which global sensitivity in Kinematical Quantization limit the scope
of applicability of Lemma 2.

Corollary This additionally holds for any constraint subalgebraic structure aX of
the Flin.

Let us end with a further consequence of ĉ not coinciding with c is that each
will in general have a distinct lattice of subalgebraic structures, Lĉ and Lc re-
spectively.

49.2 (Counter)Examples of Quantum Constraint Closure

Example 1) r-formulated RPMs attain quantum Constraint Closure by Lemma 1.2

Example 2) Dirac-formulated RPMs have a constraint subalgebra of Ĝauge which
is isomorphic to its classical counterpart by Lemma 2. Further tinkering with op-
erator ordering permits closure upon inclusion of ̂Chronos [37].

Example 3) Minisuperspace models also attain Constraint Closure by Lemma 1.
Example 4) Metrodynamical Strong Gravity can be considered pointwise, by which

Lemma 1 resolves this case as well.
Example 5) Reduced SIC has at most one finite constraint per independent S, V, T

sector.
Examples 6) and 7) Electromagnetism and, by Lemma 2, pure Yang–Mills Theory

maintain their Lie algebra status. This straightforwardness stems from these theo-
ries possessing conventional linear gauge constraints alone.

2See Chap. 24 for a sequence of previous names of varying generality for the Constraint Closure
Problem.
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Example 8) For GR as Geometrodynamics, Moncrief and Teitelboim [662] pointed
out how Lemma 2’s operator-ordering for Mi favours brackets closure as regards
brackets containing this constraint.
Let us next note the additional technical field-theoretic matter that the commutators
of the CF containing products of at least two functional derivatives, by which they
require regularization. So far in these examples, the need for regularization has at
most featured in products of two linear functional differential operators.

Example 9) For Geometrodynamics, however, the commutator of two quadratic
functional differential operators

[
Ĥ(x), Ĥ(y)

]
contains a product of four functional derivatives, (49.1)

which increases the formidability of the corresponding regularization task. This is
one reason why GR quantum constraint algebraic structure remains mysterious.
This situation is not ameliorated in geometrodynamical Strong Gravity, though at
least the commutator computations there are somewhat simplified by the absence
of Ricci 3-scalar terms.
Moreover, in Geometrodynamics interpreted with a dust matter time candidate,
the issue of using functions of constraints rather than the constraints themselves
is realized nontrivially. This occurs e.g. in Kuchař and Brown’s [175] selection
of quadratic combinations of the usual constraints. This has the particular merit of
closing as a Lie algebra of constraints, both classically and quantum-mechanically.

Example 10) Operator ordering Flin (or some subspace therein) with P to the right
due to its favouring at least partial quantum commutator closure transcends to
Nododynamics as well. Difficulties with regularizing—and elsewise defining—
H of course persist here too; [155] is a useful review of contemporary progress.

Example 11) Lemma 2’s caveat applies in particular in Affine Geometrodynamics.

Research Project 60)† Continue assessment of how M̂i is to be operator-ordered in
Affine Geometrodynamics, and whether Ĥ can continue to be ascribed a conformal
operator ordering in this setting. Proceed by computing out the resultant candidate
Affine Geometrodynamics quantum constraint algebraic structure.

Example 12) Other operator orderings, such as the symmetric operator ordering
1
2 {̂xp̂ + p̂x̂}, change the algebraic structure. This is already the case in Particle
Mechanics, whether Absolute or Relational [37].

49.3 Anomalies

Anomalies are one manifestation of quantum commutator non-closure, already men-
tioned in Sect. 6.5’s outline, and manifested as a subcase of the previous Section’s
� term. We have already seen examples of these (and avoidance thereof) in Gauge
Theory (Ex VI.12), Supersymmetry (Sect. 11.7) and String Theory (Sect. 11.8); see
also e.g. [712] for further examples involving specifically non-Abelian Gauge The-
ory.
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Anomalies were also interrelated with Configurational Relationalism in
Sect. 12.4, due to their being a means by which a classically accepted g may need
replacing by a distinct g′ at the quantum level. In particular, at the level of quantum
constraint commutators, Field Theory permits Schwinger terms

�AB =
∑
k≥1

δ(k)(x − x′)�AB, (49.2)

where (k) here indicates the kth order derivative, of the form Arrayi1 ··· ik (x, t)∂i1· · · ∂ik . Anomalies are, moreover, topological in origin, as outlined in Sect. 59.6.
This furthermore implies that anomalies hold independently of choice of regulariza-
tion, which is a metric-level issue.

Moreover, the above array contains one projector per derivative in the case based
upon a general hypersurface [269]. A classical gauge group can also be rejected at
the quantum level due to the quantum quadratic constraint ceasing to be compatible
with it. Thus even the operator ordering with P to the right does not guarantee that
the classical algebra of the Flin remains relevant at the quantum level.

Example 1) The previous Section’s Example 12) can materialize via anomalies aris-
ing. As a more specific sub-example, the so-called conformal anomaly can occur
in finite models, for instance in a 1-particle model with conformally invariant po-
tential term. This model does not however have much Background Independence
or whole-universe meaning.

Example 2) GR in the spacetime setting exhibits [139] ‘Lorentz’ and ‘Einstein’
anomalies due to 〈Tμν〉 being symmetric and conserved respectively. There is also
a ‘Weyl’ alias trace anomaly to 〈Tμμ〉 carrying over to the quantum level in cases
for which Tμμ = 0 holds classically (such as for Electromagnetism).

See also [4] for a wide range of cases of gravitational anomalies from a spin-by-
spin Covariant Quantization perspective.

On the other hand, Kuchař and Torre [583, 857] have considered anomalies
within a canonical perspective, including in particular examples of Foliation Depen-
dent anomalies and formulations which avoid these arising, at least in some model
arenas. Finally, see e.g. [332, 620] for accounts of anomalies in Nododynamics.

All in all, whereas some anomalies are related to one or both of Gravitational
Theory and Background Independence, others are not. Thus only some [583, 857]
anomalies become entwined in the Constraint Closure Problem aspect of Back-
ground Independence, though bearing relation to time, space or frames.

49.4 Strategies for Dealing with Quantum Constraint Closure
Problem

Suppose that one has a candidate triple 〈K̂,g, ĈF 〉 which exhibits inconsistency or
the appearance of unexpected extra equations more generally. One can then probe
with each element of the triple in turn, much as in Fig. 24.3.
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Strategy 1) Tweaking K̂ may either amount to selecting a different subalgebraic
structure directly, or to extending or restricting q or Phase, which may induce a
need to select differently.
In particular, some supersymmetrization of Field Theories and of Gravitation have
many successes along the latter lines, due to the fermionic terms’ opposite signs
(6.14) permitting cancellation.

Strategy 2) On the other hand, tweaking ĈF may either involve restricting an under-
lying family of classical theories, or altering how one operator-orders and regular-
izes the constraints. I.e. Quantization is itself a source of families of theories, even
when just one theory was being considered at the classical level.
The first case includes the possibility of a strong restriction. For instance, the space-
time generator version of strong restriction is how String Theory acquires its par-
ticular dimensionalities: 26 for the bosonic string, or 10 for the superstring.

Strategy 3) Permit g to be altered. One case of this is Accepting an Anomaly: the
quantum-level loss of what had been a symmetry at the classical level. If this oc-
curs, then success at accommodating the classical g’s Configurational Relation-
alism becomes immaterial, This leaving one in need of treating Configurational
Relationalism afresh for the quantum-mechanically realized g′.

Finally, as per Fig. 24.3, one can proceed by altering two or even all three of the
inputs.

49.5 Quantum Implications of Constraints Closing as Algebroids

Many approaches to Quantization ([475], Chaps. 39–43) is of at most limited value
in GR, due to the classical GR constraints forming the Dirac algebroid instead of
a Lie algebra. Moreover, the issue remains of whether the quantum GR constraints
obey the same algebraic structure as the classical ones. To date, this is not even set-
tled in the semiclassical regime, even for simplified model arenas (nor is this easy
to investigate due to involving Midisuperspace features). Because of this, we do not
know what the constraint algebraic structure is, but, pace matter time approaches, it
is rather probably still some algebroid. All in all, algebroids and their Representa-
tion Theory are likely to be relevant at the quantum level; Appendix V.6 provides a
general outline of these matters.

In some approaches, the gravitational constraint algebroid is enlarged. This oc-
curs e.g. in LQG, Histories Theory [566] and Supergravity [232].

The possibility of Quantum Foliation Independence and Quantum Refoliation In-
variance restricting the manner in which the quantum constraint algebraic structure
can close is further entertained in Chap. 55.

49.6 The Semiclassical Case

Constraint Closure is less of an issue here due to Barvinsky’s operator ordering
coincidence Lemmas alongside the commutators themselves only needing to close
up to first order in �.
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One now has

CS
(sCC

semi-TR-CR

)= Eg∈g
(strial

semi-TR-g
)

built upon q,g (49.3)

with suitable group action of g on the actions, and where the whole procedure gets
past the Semiclassical Constraint Closure Algorithm. [g corrections still feature at
the semiclassical level due to the Hamiltonian to Lagrangian or Machian variables
substitution in the emergent time provision bringing such in.]

49.7 Is There a Quantum Dirac-Type Algorithm?

Research Project 61) Let us end by asking whether constraints arising from quan-
tum non-closure themselves use up only one degree of freedom per equation, in
parallel to the phenomenon of second-class constraints at the classical level? If so,
do extension and passage to Dirac brackets have quantum-level analogues? The lat-
ter would moreover involve inverting an operator-valued matrix, which may entail
some formal limitations. . . .



Chapter 50
Quantum Beables or Observables

50.1 Types of Constrained Quantum Beables

Upon passing from Kin-Hilb to Dyn-Hilb, Chap. 39’s Taking Function Spaces
Thereover ceases to address the matter of Constrained Theories’ Assignment of
Beables. The incipient function space û of the Û , while needed for the Quantiza-
tion and facet-addressing steps hitherto, does not play the role of the final theory’s
Associated Function Space. One requires, rather, a constrained notion of quantum
beables B̂, and the function space formed by these, û. Par excellence, these are the
quantum Dirac beables, D̂, which form the function space d̂. In this way, one needs
once again to go through the gate of Taking a Function Space Thereover.

To this end, let us next consider Constrained Theories’ wider range of examples
of notions of beables or observables at the quantum level. For each notion of con-
straint subalgebraic structure Ĉw and each notion of classical A-beables Âx such that
|[Cw, Ax]| ‘ = ′ 0, this classical bracket uplifts to a quantum commutator

[̂Cw, Âx]� ‘ = ’ 0. (50.1)

This is moreover an equation for Âx and not a further restriction on � .
These notions of beables once again form a bounded lattice Lb̂ under the inclu-

sion operation. Some common specific types of quantum beables are Kinematical
Quantization’s unrestricted beables Û , as well as the Chronos beables Ĉ, Kuchař
beables K̂ , g-beables Ĝ, and Dirac beables D̂. That Kinematical Quantization in-
volves selecting a subalgebraic structure 〈K, |[ , ]|〉 ⊂ u (the algebraic structure of
the U) for promotion to a quantum kinematical algebraic structure 〈K̂, [ , ]〉 already
illustrates the nontriviality of such an uplift from classical to quantum beables.

Example 1) In the absence of any linear constraints, Kuchař beables K remain a
trivial matter at the quantum level. For instance, scaled 3-stop metroland is a simple
model for which, classically, K = U still applies. This already satisfies conditions
I) to IV) of Sect. 39.1 in evidence at the level of Kinematical Quantization, via
using sinϕ and cosϕ instead of ϕ. ϕ itself was already established to be only
locally defined even at the classical level through not being defined for θ = 0 or π .
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ϕ moreover fails the global continuity condition I), unlike sinϕ and cosϕ, which
are suitably periodic.

Lemma Suppose that we operator-order the F̂lin with P to the right. Then the clas-
sical configurational Kuchař beables δ∂DE (25.7) reappears as the quantum config-
urational beables operator.

Proof Insert (42.4) in (12.17) to obtain f A
N

δ∂K
δ∂QA� = 0. Next compare with (25.7) us-

ing the configuration representation K̂ = K, which is valid since K = K(Q alone ). �

N.B. that both the previous Chapter’s caveat, and its generalization to other types
of A-beables which correspond to algebraic structures within the F̂lin, continue to
apply.

Example 2) For N -stop metroland, which has no relative angles in space to encode,
v) is straightforward. The objects selected in Kinematical Quantization—n̂A, D̂ for
the pure-shape case and ρ̂A, p̂A and D̂ for the scaled case—are clearly sub-cubic.
Each case’s full set of objects can be taken as a particular basis of quantum Kuchař
beables for each problem’s relational quantities.

Example 3) For triangleland as formulated in terms of the ni , all selected objects
are sub-cubic again. I.e. d̂ra, S� in the pure-shape case, and D̂ra, P̂ Dra and Ŝ

� for the
scaled case.
In each of the above Examples, the first objects listed are quantum configuration
beables, which are readily accessed using the Lemma.

Example 4) By the Lemma, Electromagnetism and Yang–Mills Theory’s classical
configurational G = K = D beables bracket carries over to the quantum level.

Example 5) The simplest examples of constructing D are in cases for which D = C.
The traditional setting in which such have been computed is for Minisuperspace
models; see e.g. [79].

Examples 6–8) In the particular case of GR as Geometrodynamics, the require-
ments are, formally, that

[M̂i, K̂]� = 0, (50.2)

[M̂i, D̂]� = 0, [Ĥ, D̂]� = 0. (50.3)

In particular, the latter constitutes a hard and very largely unsolved problem. For
Plain Geometrodynamics, the Lemma gives that the configurational K̂ lie among
the classical K, but for Affine Geometrodynamics, the caveat applies. The Lemma
can also be used in (at least simple) approaches to quantizing Nododynamics, for
which configurational beables are loops, or, less redundantly, knots. Also note here
that Geometrodynamics and Nododynamics still lack satisfactory rigorously for-
mulated expressions for Ĥ, which has the knock-on effect of not even being able
to rigorously pose the equations to be satisfied by quantum Dirac beables in these
cases. Finally, note that the C∗-approach is limited within the context of GR [483].
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50.2 Indirect Constructions for Quantum Dirac Beables D

Example 1) In g-free theories, any operator Ô can be subjected to the construction

ÔD :=
∫

dt exp(iH0t) Ô exp(−iH0t) (50.4)

for a suitable notion of time t (e.g. label time λ in Minisuperspace or Newtonian
time in Mechanics), which again needs to run over all values of time rather than just
some interval. Formal field-theoretic generalizations of this construct are straight-
forward as well. DeWitt gave an early treatment of such a construct in [235], based
on (50.4) and specialized to the semiclassical case. Marolf [641] subsequently
treated such objects in the case of perturbative Quantum Theory.

Example 2) Another means of attaining beables in the case of GR, developed e.g.
by physicist Steve Giddings, Marolf and Hartle [353], involves integrating Ô over
all of spacetime. We do not follow this approach in this book because integrating
over all spacetime is particularly problematic from an operational point of view.

Example 3) Suppose that a basis set of K̂ are known. Example 1) can now be re-run
to construct Dirac beables from these.

Example 4) For instance, Halliwell’s semiclassical Dirac beables construction is
along the lines of Example 1) and can furthermore be extended along the lines of
Example 3).

Examples 1) to 4) and the Lemma, moreover, are only addressing how to end up
with examples of D and K respectively. This is as opposed to these procedures en-
suring that the quantities produced have compatible commutation relations, form a
closed algebraic structure, and consist of a basis (contain all the information and in
a minimal non-redundant manner).

Example 5) Barvinsky’s approximate equivalence Lemma 1 of Sect. 40.1 amelio-
rates Constraint Closure at the semiclassical level to leading order in �.

Example 6) The classical-level K �= G of modewise SIC carries over to a K̂ �= Ĝ

distinction as well.
Example 7) Supergravity has e.g. notions of quantum non-supersymmetric Kuchař

beables N̂SK and quantum non-supersymmetric Dirac beables N̂SD, which are fur-
ther examples of Âx beyond the list of examples of notions of beables given at the
beginning of this Section.

50.3 Quantum-Level Problem of Beables

A first issue with this is how to select a subalgebra of one’s classical beables to pro-
mote to quantum beable operators. A second issue concerns how one is to operator-
order these so as to ensure each of the following.
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i) The beables close among themselves.
ii) The beables succeed in forming zero brackets with the final selection of operator-

ordered and regularized quantum constraints.

The quantum Problem of Beables is that notions of beables are hard to construct for
constrained quantum systems, with the most interesting quantum Dirac beables D̂

being the hardest to construct of all.

Strategy 1) Promote. In this case, one takes classical beables beforehand, one can
attempt to promote them to quantum ones. This might occur at the level of Kine-
matical Quantization [475] or be viewed as a process in addition to this. In either
case, the need arises to select a classical subalgebra of objects to promote to quan-
tum operators.

Three particular reasons why a classical resolution of the Problem of Beables
may not pass over to the quantum level are as follows. Firstly, we know (from
Chap. 39) that the quantum commutator algebraic structures are not necessarily the
same as the classical Poisson algebraic structures for a given system. Secondly, that
we need to select a subalgebra of classical objects to promote to quantum operators.
Thirdly, whether a given object’s brackets with the constraints contribute to equate
to zero depends on the following.

a) The selection of classical subalgebraic structure to promote to form a quantum
kinematical operator subalgebraic structure, which is afflicted by the Multiple
Choice Problem.

b) The operator ordering involved in formulating the quantum constraints.
c) The operator ordering involved in formulating each candidate quantum beable.

Strategy 2) Start Afresh. One might also start afresh in the quest to find beables
at the quantum level. This makes particular sense upon realizing that in general
the classical and quantum brackets correspond to different algebraic structures b

and b̂; this is due to quantum level workings being more globally sensitive [475].
In general, the entities that commuted with the classical constraints with respect
to one brackets structure should not be expected to result in quantum operators
that commute with the quantum constraints with respect to an distinct brackets
algebraic structure! Schematically, for whichever appropriate pairing of classical
and quantum types of bracket,

|[Cw,Ax]| ‘=’ 0 �⇒ [̂Cw, Âx]� = 0. (50.5)

Whether this occurs is, moreover, dependent twice over on operator-ordering am-
biguities (in the beable operators and in the constraint operators).

In this way, classical beables can fail to be quantum beables. This parallels per-
fectly good classical symmetries failing to be quantum symmetries due to anoma-
lies arising. This is in the sense that both are bracket obstructions upon passing
from classical to quantum brackets. These statements are moreover dependent twice
over on operator-ordering ambiguities (in the beables operator and in the constraint
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operators). This often adds to the futility of B . . . Q schemes. This is since classical
Problem of Beables resolutions may not straightforwardly carry over to the quantum
Problem of Beables. g-beables are often exempt from invalidation due to the nice
properties of Lie groups under Quantization schemes. However, in cases beyond
this remit (Dirac beables, the classical Dirac algebroid. . . ) one may need to solve
the quantum Problem of Beables afresh. See the Halliwell-type combined scheme
of Chaps. 29 and 54 for an example of separate classical and quantum implementa-
tions for Dirac-type beables. On the other hand, triangleland’s Kuchař beables carry
over straightforwardly to the quantum level [25].

The above complication might be avoided by making strong restrictions at the
level of getting the algebraic structure of the beables to close.

The Quantum Constraint Closure Problem may cause there to be more Ĉ’s than
there were C’s. The definition of quantum beables is more stringent due to requiring
commutation with the additional Ĉ’s.

If g remains a bona fide symmetry at the quantum level, then there is no need for
more Configurational Relationalism, and classical Kuchař beables remain. However
each beables construction and closure success obtained at the classical level of clo-
sure may falter under operator ordering. In this way, some theories which had such
a closure supporting a notion of beables at the classical level may lose that closure
and with it a corresponding notion of beables at the quantum level.

Aside from the above bracket inequivalences and operator orderings, trying to
promote known classical beables to quantum ones also falls afoul of the Multiple
Choice Problem (see Epilogue III.A).

Research Project 62) Consider the quantum-level implications of Dittrich’s ap-
proach to observables; see Sect. 25.8 for an outline and [251] for further details.

Research Project 63) [Long-standing] Resolve the Problem of Observables—or
Beables—in QG.

50.4 Beables Motivated from Realist Interpretations

It is in particular at the quantum level that Bell’s term ‘beable’ is distinct from
the earlier term ‘observable’. ‘Observable’ may be taken to imply that observers
exist, and so also the measurement process and corresponding notorious Quantum
Measurement Problem. Moreover, the situation worsens once it is being used for
Cosmology rather than laboratory physics. In this setting, the Copenhagen Inter-
pretation of QM can no longer apply. Beables, on the other hand, are quantities
that just are. These steer clear of connotations carried by ’measurement’ in QM, as
well as being a better concept for whole-universe Cosmology. They entail more of
a realist than an instrumentalist interpretation of QM. Some variants of such inter-
pretations that remain alive and well—inclusion of which is a good part of why I
use the term ‘beables’ in this book—are as follows; these all feature in subsequent
chapters.
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1) Formulations of decoherence (Sect. 48.3),
2) Histories Theory [340, 429, 504] (Chaps. 53 and 54), and
3) The contextual-realist approach of Doering and Isham [260] (Epilogue III.C).



Chapter 51
Fully Timeless Approaches
at the Quantum Level

At the kinematical level, Fully Timeless Approaches exhibit the following trivial-
ity. Since these approaches have just configurations and no momenta at the primary
level, working in the configuration representation makes it immediately clear that
these approaches possess no nontrivial commutation relations at the primary level
either. Nontrivial commutation relations can only enter such approaches if they suc-
ceed in providing emergent momenta at some more secondary level. Configurational
notions of beables moreover remain defined at the primary level.

51.1 Quantum-Level Propositions

Let us next continue here with Sect. 26.1’s chain of thought that Physics consists
of questions which can be rephrased in a logical framework. While this was largely
trivial at the classical level, we shall see below that the quantum version of this be-
comes nontrivial. This chain of though being due to mathematician George Mackey
[650], we refer to it as ‘Mackey’s Principle’. It was subsequently suggested by
Isham and Linden [515] in the Histories Theory context. The Author then pointed
to its wider applicability, in particular to Timeless Approaches as well [38]. These
approaches involve timeless questions—questions of being—which are based on
(q, Point)’s ψ = ψ(q) level of structure; in this way, such approaches lie within the
q-primality worldview. The corresponding probabilities are timeless probabilities,
requiring just the above level of structure (including a characterization of regions
of q). This lies is within Chaps. 9, 10 and 26’s classification of questions into purely
timeless being, being at a time, and becoming. Let us continue by considering how
purely timeless questions about being might be formulated and handled at the quan-
tum level.

Timeless Peaking Implementation Solutions to the time-independent Schrö-
dinger equation are interpreted here in terms of where the probability distribution
function peaks. This involves integrating over some region of the classical q (or
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in some applications, a region of the classical Phase). Some cases of this are as
follows.

1) ‘Modes and nodes’, which have already been used in this book to explain whole-
universe time-independent Schrödinger equations (Chaps. 39–43).

2) The Naïve Schrödinger Interpretation (Sect. 12.6 and below).
3) Barbour’s Conjecture 2) of Sect. 26.8.
4) Combined Approaches (postponed until Chap. 54).

Some Problems with Timeless Approaches Let us next extend Sect. 26.2’s
Timeless Approach ‘brier patches’ to the quantum level.

Brier Patch 2) Nonstandard Interpretation of Quantum Theory. Fully Timeless Ap-
proaches and Histories both soon become entwined in general questions about the
interpretation of Quantum Theory. In particular, this applies to whole-universe re-
placements for standard QM’s Copenhagen Interpretation. Note here that some
criticisms of Timeless Approaches [601, 604] are underlied by wishing to preserve
aspects of the Copenhagen Interpretation , which may not be appropriate for Quan-
tum Cosmology or QG.

Brier Patch 3) Wheeler–DeWitt equation Dilemma. Kuchař pointed out that Time-
less Approaches face the following dilemma.

Either—horn 1—invoke the Wheeler–DeWitt equation, thereby inheriting some
of its problems.

Or—horn 2—or do not invoke it, risking the alternative problem of one’s ap-
proach being incompatible with the Wheeler–DeWitt equation. The action of the
Wheeler–DeWitt operator would in this case kick purported solutions out of the
physical solution space [601].

Naïve Schrödinger Interpretation The Naïve Schrödinger Interpretation is an
Interpretation of Quantum Theory for whole-universe models [448, 450, 451, 897].
It concerns probabilities of ‘being’, as already outlined in Sect. 12.6. Moreover, one
makes no attempt here to supplant all questions by questions of being.

Answers to questions of being follow here from considering Prob(the Universe
belongs to region R of q), which corresponds to a quantification of a particular such
property, as per (12.21). More precisely, one needs to address relative probabilities
of this kind, out of not being able to normalize individual expressions of the above
kind.

Example 1) r-formulation of RPMs. In this case, simple (and “geometrically nice”)
questions of being are listed in Chap. 26.1; e.g. [37] furthermore computes answers
to these. E.g. for Metric Shape and Scale RPM, (12.21) becomes

Prob(ρ has property P) =
∫

AP ⊆ R(N, d)
|�[S, ρ]|2

D[S, ρ], (51.1)

where AP denotes the P-affirmative subset.
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Example 2) For isotropic Minisuperspace with scalar field,

Prob(α,φ has property P) =
∫

AP ⊆ MINI
|�[α,φ]|2dα dφ; (51.2)

consult Hawking and Page’s work [450, 451] for various concrete such.
On the other hand, for diagonal Bianchi IX vacuum,

Prob(α,β± has property P) =
∫

AP ⊆ Mini
|�[α,β± ]|2dα dβ+dβ−. (51.3)

Concrete such P correspond e.g. to quantifications of anisotropy as per Sect. 26.1.
Example 3) For SIC treated modewise,

Prob(ζn, vn has property P) =
∫

AP ⊆ Z × Modespace
|�[ζn, vn ]|2dζndvn, (51.4)

for Z the allowed interval range of ζn.
Example 4) For GR as Geometrodynamics,

Prob(h has property P) =
∫

AP ⊆ Riem(�)
|�[h]|2

Dh. (51.5)

Concrete such P corresponding to Examples 3) and 4) include quantifications of
inhomogeneity, as per e.g. Sect. 26.1 or Appendix N.8.

Problem 1) The Naïve Schrödinger Interpretation is indeed of limited use since it
does not accommodate questions of being at a particular time, or of becoming
[601]. While subsequent Sections provide routes around this, these routes extend
beyond the Naïve Schrödinger Interpretation itself.

Problem 2) This approach is termed ‘naïve’ due to its not using any further features
of the constraint equations. This is less severe when r-formulations are available;
however it also fails to deal with Quad, which is so symptomatic of the Frozen
Formalism Problem. By this, doubts should be cast on a strategy that purports to
handle Frozen Formalism Problem while leaving Quad not bypassed but simply
unaddressed.

Problem 3) In particular, this leaves the Naïve Schrödinger Interpretation menaced
by horn 2 of the Wheeler–DeWitt equationWheeler–DeWitt equation Dilemma, in
particular via this approach’s consequently ‘naïve’ inner product postulation.

Problem 4) Generally non-normalizable probabilities are also involved, though,
however, these support finite ratios of probabilities (the relative probabilities pre-
viously alluded to).

Problem 5) In the case of Geometrodynamics, time enters the scheme as an internal
coordinate function of hij . Therefore it is represented by an operator. However, as
pointed out in e.g. [495], there are problems with representing time as an operator.

Classical q Regions Implementations of Quantum Propositions The above
propositions are associated with classical regions; consequently, these combine
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along the following lines. Set theory’s complement c, union ∪, intersection ∩ and
inclusion ⊆ are a realization of conventional propositional logic’s ¬, ∨, ∧ and 3.
Continuous regions of a manifold are a type of example of such sets, by which these
implement conventional propositional logic.

Problem 6) The above logical structure for the propositions is a questionable one to
use in a quantum-mechanical context due to its classical form.

Problem 7) (51.5) should be taken with a pinch of salt due to its involvement of
the measure on Riem(�). This would be furtherly problematic in any formally
reduced scheme, in which the measure on superspace(�) would feature.

Moreover, Chap. 54’s Combined Approach implements quantum propositions in
this manner as well.

Proposition–Projector Association The aim is to implement propositions at the
quantum level by projectors. This includes going beyond [515] the usual context and
interpretation ascribed to these in Ordinary Quantum Theory. This implementation
is preferable to representation by classical regions of integration. One reason for this
is that quantum propositions do not in general combine Booleanly, whereas classical
regions do.

51.2 Conditional Probabilities

Conditional Probabilities in Ordinary Quantum Theory Here for state ρ and
proposition P implemented by projector P̂, Prob(P ; ρ) = tr(ρ̂P̂). In this context,
Gleason’s Theorem (Appendix U.3) provides strong uniqueness criteria (see e.g.
[499]) for this choice of object from its satisfying the basic probability axioms.

Note moreover that conditional probabilities in Ordinary Quantum Theory are
given by [499]

Prob(B ∈ b at t = t2 |A ∈ a at t = t1 ; ρ) = Tr(PBb (t2)PAa (t1)ρ PAa (t1))

Tr(PAa (t1)ρ)
. (51.6)

We here denote the projector—for a beable A and a a subset of the values that
this can take—by PAa . This is given in a 2-time context, i.e. to be interpreted as
subsequent measurements. It also follows that

Prob(B ∈ b at t2 and A ∈ a at t1) = Tr
(
PBb (t2)PAa (t1)ρPAa (t1)

)
, (51.7)

and this extends in the obvious way to p propositions at times t1 to tp .

Supplant ‘at a Time’ This can be replaced by a timeless correlation between the
subconfiguration of primary interest and the value of a particular ‘clock’ subconfig-
uration. As compared to Chap. 26, most tools for implementing this only become
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available at the quantum level. In the literature, this approach has been considered
for each of the ‘any’, ‘all’ and ‘sufficient local’ versions.

Conditional Probabilities Interpretation in Timeless Quantum Theory The
Conditional Probabilities Interpretation was proposed by Page and Wootters [720];
[343, 361, 601, 604, 753] contain subsequent useful comments, criticisms and vari-
ants. It extends the Naïve Schrödinger Interpretation as regards the range of ques-
tions which can be answered, by which it is an improvement as regards Problem 1)
above. In particular, it addresses questions about conditioned being: conditional
probabilities for the results of a pair of beables A and B concern correlations be-
tween these at a single instant in time. E.g. ‘what is the probability of a triangle
model universe being almost collinear given that it is almost isosceles?’ Or ‘what is
the probability of the Universe being almost-flat given that it is almost-isotropic?’,
which can be interpreted within each of anisotropic Minisuperspace, SIC, Midisu-
perspace, and full GR. Moreover, both technically and as interpretations of QM, the
Conditional Probabilities Interpretation and the Naïve Schrödinger Interpretation
are highly distinct, e.g. for the following reasons.

1) The Conditional Probabilities Interpretation implements propositions at the
quantum level by use of projectors.

2) The Conditional Probabilities Interpretation addresses questions concerning con-
ditioned being by postulating the relevance of conditional probabilities, for find-
ing B in the subset b, given that A lies in the subset a for a (sub)system in
state ρ

Prob(B ∈ b |A ∈ a; ρ) = Tr(PBb PAa ρPAa )

Tr(PAa ρ) . (51.8)

N.B. that these occur within the one instant rather than ordered in time (one mea-
surement and then another measurement). Thereby this postulation lies outside
of Quantum Theory’s conventional formalism, for all that (51.8) superficially re-
sembles (51.6). So Conditional Probabilities Interpretation is indeed also meant
in the sense of an interpretation of QM.

The Conditional Probabilities Interpretation replaces questions of ‘being at a
time’ by simple questions of conditioned being, along the following lines. Make
use of one subsystem A as a timefunction, so that the above question about A and
B can be rephrased to involve which value B takes when the timefunction-giving
A indicates a particular time [495, 720]. The Conditional Probabilities Interpreta-
tion is moreover tied to considering a localized notion of clocks, and one which is
configuration-based rather than change-based, as in ‘the clock reads three o’clock’.

The traditional development of the Conditional Probabilities Interpretation did
not extend to modelling the propositions within a logical scheme, due to pre-dating
such considerations. This further layer of structure can however be added to the
Conditional Probabilities Interpretation so as to comply with ‘Mackey’s Principle’.
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Problem 1) This means of replacement of ‘being at a time’ questions has the prac-
tical limitation that A may not happen to have features rendering it suitable as a
sufficiently good timefunction.

Problem 2) Supplanting ‘being at a time’ by ‘being’ is as far as the original Condi-
tional Probabilities Interpretation goes. It is not a full resolution of Problem with
Naïve Schrödinger Interpretation 1) due to not addressing questions of becoming.
Page did however proceed to address this; see the next Section.

Problem 3) Kuchař pointed out that horn 1 of the Wheeler–DeWitt equation
Dilemma also applies to the Conditional Probabilities Interpretation [601].

Some of Kuchař’s critiques [601, 604] of the Naïve Schrödinger Interpretation and
the Conditional Probabilities Interpretation can however be interpreted as arising
from not accepting a separate ‘being’ position, as opposed to constituting conceptual
or technical problems once one has adopted such a position. E.g. Kuchař [601, 604]
pointed to the Conditional Probabilities Interpretation leading to incorrect forms for
propagators. Page’s response was that the Conditional Probabilities Interpretation is
a timeless conceptualization of the world, so it does not need 2-time entities such as
propagators.

Gambini–Porto–Pullin Approach Gambini and Pullin’s work with physicist
Rafael Porto [341–343, 753] is built upon conditional probabilities of the follow-
ing form:

Prob

(
beable B lies in interval 	B

provided that the timefunction τ lies in interval 	τ

)

= lim
T−→0

(∫ T
0 dt Tr(P	B(t)P	t(t)ρ0P	t(t))∫ T

0 dt Tr(ρ0P	t(t))

)
. (51.9)

The P(t) here are Heisenberg time evolutions of projectors P, i.e. P(t) = exp( iH t)
× P exp(−i H t). This approach is based on the ‘any change’ notion of relational
clocks (though this can be modified [30, 39] to the STLRC notion). These clocks are
moreover taken to be non-ideal at the quantum level, giving rise to the following.

1) A decoherence mechanism. This is based on the argument that imprecise knowl-
edge arises due to having to imprecise (non-ideal) clocks and rods (though that
needs to be checked case by case rather than assumed [10]).

2) A modified version of the Heisenberg equations of motion. This is of the Lind-
blad type [862], which for finite theories and at the semiclassical level—with
coherent-state connotations—takes the form

i �
∂ρ
∂t

= [H ,ρ] + r[ρ]. (51.10)

The form of the r-term here is σ(t)[H , [H ,ρ]], where σ(t) is dominated by the
rate of change of width of the probability distribution. By the presence of this
‘emergent becoming’ equation (51.10), this approach looks to be more promising
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in practice than Page’s extended form of Conditional Probabilities Interpretation.
This approach also has the advantage over the original Conditional Probabilities
Interpretation of producing consistent propagators. By the presence of the r-
term, the evolution is not unitary, which is all right insofar as it represents a
system about which we have imprecise knowledge (cf. Appendix Q.3).

Quantum Dirac beables for this scheme are furthermore considered in the paper
co-authored with physicist Sebastian Toterolo [344].

A full enough version of GR to model inhomogeneities wold require the δρ/δt
version of this equation. On the other hand, both the specific Lindblad case and all
explicit investigations to date involve the finite ∂ρ/∂t subcase.

Considering sets of propositions and using tsem for t above, this scheme can be
cast to comply with both Mach’s Time Principle and Mackey’s Principle. The first of
these can be implemented by conditioning on tem, or, more accurately, on tsem. The
Author views this option as possible for Gambini–Porto–Pullin schemes, unlike in
the standard Conditional Probabilities Interpretation. This is due to these being less
fully timeless, by being a limiting case of a temporal construct, in which there is a
place in the theoretical scheme for the aforementioned propagators.

51.3 Timeless Records Theories

Quantum-level Timeless Records Approaches [21, 101, 718, 719] are a very natural
successor to not only classical-level Records Approaches (Chap. 26) but to classical-
level q primary Relationalism as well.

Quantum Pre-records Theory This make use of quantum versions of the types
of structure outlined at the classical level in Sects. 26.4 to 26.7, as follows. In the
configuration representation, classical notions of localization in space and in q con-
tinue to suffice, (these may be hard to obtain and use for QG in general). At least
for simple model arenas, the mathematical structure of the quantum state space is
also well-established [130]. See Appendices U.5–6 for outlines of quantum notions
of information and of correlation; however, these also fall short if QG in general is
the objective. Finally, whereas a means of assessing significant patterns in timeless
records was demonstrated at the classical level in Sect. 26.7 by use of Kendall’s
Shape Statistics, the quantum counterpart of this remains unexplored, even for sim-
ple model arenas, never mind for full QG.

Research Project 64)† Set up the quantum-level analogue of Shape Statistics for
use in simple RPM models of Quantum Records.

Next, as regards completing Pre-Records Theory to Records Theory by considera-
tion of semblance of dynamics, four purely atemporal alternatives are as follows.
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Page’s Records Approach Page followed up [717–719] on the Conditional Prob-
abilities Interpretation’s success in supplanting ‘being at a time’ by timeless corre-
lations between the configurations of the studied subsystem and of the clock used,
by considering whether the Conditional Probabilities Interpretation computational
object could be used in supplanting ‘becoming’ as well. In this way, he addressed
correlations within a single present instant configuration which contains memories
of what might otherwise be regarded as a sequence of ‘previous configurations’.

By being an extension of the Conditional Probabilities Interpretation, this contin-
ues to be rooted on Proposition–Projector Association, and could be built up to be
additionally in accord with ‘Mackey’s Principle’. This set of quantum-level details
further advances Sect. 26.8’s account.

Bubble Chamber Arguments Bubble chamber α-particle tracks can be explained
in terms of a time-independent Schrödinger equation and can therefore be treated
as ‘timeless’: [693] and Ex II.11. Various approaches to Quantum Cosmology—
e.g. by Barbour [98, 101], Halliwell and students [420–422, 426, 429, 430], or by
physicists Mario Castagnino and Roberto Laura [200, 201]—are based on extending
this insight.

Barbour’s ‘Time Capsules’ Conjectures Let us now continue Sect. 26.8’s
classical-level discussion with some quantum-level commentary.

As regards Barbour’s Conjecture 2), his ‘concentration of mist’ is clearly a par-
ticular example of Timeless Peaking Interpretation. No basis for this conjecture is
found however among the simple solved concrete models used in this book or in
[37, 60]. RPM q geometry does not drastically affect the probability distribution of
� to substantially peak about configurations of the required sort.

More concretely, as regards whether the quantum wavefunction peaks about the
maximal collision, scaled triangleland has this point effectively excised by the po-
tential being singular there. The wavefunctions are zero there, though a number of
wavefunctions remain centred about thereabout. As regards whether there is heavy
peaking about notions of uniform state (a concept argued to be important in e.g.
[731]), pure-shape triangleland does not seem to exhibit this [37].

Addressing Barbour’s Conjectures in full moreover requires the configuration
space to not be conformally flat. This is because in conformally-flat spaces, curved
q geometry can (at least locally) recast by a PPSCT into the form of a potential
factor. On the other hand, in non-conformally-flat spaces, the q geometry possesses
an irreducible part which can not be re-encoded as a potential effect. In this sense,
triangleland does not suffice but [60]’s quadrilateralland does.

Since RPMs yield elliptic time-independent Schrödinger equations, it is relevant
that elliptic equations on manifolds are capable of producing patterns which re-
flect the underlying shape [37, 612, 634]. On these grounds, geometrically induced
patterns are more widely plausible, though this comes with no guarantees of pro-
nounced peaking, or as regards any of the suggestions of which regions peaking
occurs in.

Finally, no evidence has been forthcoming as regards Barbour’s Conjecture 3).
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Halliwell’s Imperfect Records [419] Here one considers information in a wave
pulse signal that is picked up and stored in a detector in terms of approximands or
modes. A detector can be attuned to pick up the harmonics that are principal contrib-
utors to the form of the signal. In this way one, a good approximation to a signal can
be obtained by storing relatively little information. Compare for instance the square
wave with the almost-square wave that is comprised of the first 10 harmonics of the
square wave. Even a detector that is only capable of storing one bit of information
is capable of forming an imperfect record.

The Author’s Records The idea here is to complete Pre-Records Theory to
Records Theory by use of further attributes of Shape Statistics. Whereas this is
currently classically viable, Research Project 64) would need to be tackled prior to
being able to extend this approach to the quantum level.

Comparative Discussion Timeless approaches are often tied to nonstandard in-
terpretations of QM; this is the case e.g. for the Naïve Schrödinger Interpretation,
programs inspired by the bubble chamber model arena, Conditional Probabilities
Interpretation, and Page’s approach.

N.B. that bubble chambers are carefully selected environments for revealing
tracks. However, Halliwell has emphasized that records can be imperfect. On these
grounds, one may then expect records in general to be poorer than bubble chamber
tracks. Perhaps they are far poorer, along the lines of physicist Erich Joos’ model
with Zeh of a dust particle decohering due to the cosmic microwave background
photons [540]. This is a far more generic situation to encounter in Nature than a
bubble chamber! In such a situation, records would be exceedingly diffuse, due to
the information being dispersed by the cosmic microwave background photons and
ending up spread over cosmological space. This affects Quantum Cosmology, as
regards quantification of records due to these being problematic to access. The rele-
vant information is now stored ‘all over the place’ and in a diffuse manner. In turn,
this means that the information available may be of too poor a quality to construct
history from it in any detail.

This disparity in likelihoods would leave a selection principle for ‘time capsules’
—envisaged as resembling bubble chamber tracks—needing to do a lot of work to
compensate.

The description given above of Halliwell’s notion of detectors storing imperfect
records clearly middles between the Joos–Zeh and bubble chamber conceptualiza-
tions. This represents an ‘average’ detector, rather than one which is carefully at-
tuned and capable of storing large amounts of relevant information. Cf. the former
not being so dominant as to preclude some natural Physics running along the lines
of the bubble chamber.

Barbour’s approach has the further issue of not being based on Proposition–
Projector Association. Additionally, quantitative detail of how to assess quantum
level ‘mist concentration’ from a statistical perspective remains unclear. The classi-
cal Shape Statistics approach may well be a valuable guide toward a quantum-level
understanding of this.
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Whereas collinearities in threes and the bubble chamber tracks may look similar,
Shape Statistics can be used to test any other aspect of shape, so approaches of this
kind are expected to be generically applicable.

Finally, as regards Affine Geometrodynamics, the Naïve Schrödinger Interpreta-
tion should not care, in so far as this does not make use of commutation relations or
of the Wheeler–DeWitt equation. On the other hand, the Conditional Probabilities
Interpretation does work in a Wheeler–DeWitt framework [601], this will change
in detail upon passing to Affine Geometrodynamics. Classical Records Theory is
unaffected by this difference, though subsequent changes would be expected at the
quantum level.

51.4 Records Approaches with More than Just Timeless
Structure

Example 1) Physicist Mario Castagnino’s scheme [200] builds in a time asymmetry
in the choice of admitted solutions. As such, it does not contest the Arrow of Time
issue. Note that this is a price to pay in passing from a purely Timeless Approach
to each of the approaches below as well.

Example 2) Records Theory can be considered within the Semiclassical Machian
Emergent Time Approach, whether of the ‘all’ or of the ‘STLRC’ variety. The ba-
sic idea here is to follow up a semiclassical scheme by considering timeless corre-
lations therein. This approach started with Halliwell’s follow-up [416] of Halliwell
and Hawking’s Semiclassical Quantum Cosmology [427]. It has the benefit of not
requiring a purely timeless semblance of dynamics, since the overarching semi-
classical scheme provides an emergent time. This idea can furthermore be carried
over to the specifically Machian formulation of Semiclassical Quantum Cosmol-
ogy of Chap. 46.

Example 3) The Gambini–Porto–Pullin scheme is also amenable to being ‘embed-
ded’ in this way within a Semiclassical Approach, at the cost of expanding some-
what on Gambini–Porto–Pullin’s own meaning of ‘semiclassical’.

Example 4) Section 53.7’s consideration of Records Theory within Histories The-
ory.

Example 5) Chapter 54’s treatment of with the triple combination of Records The-
ory within Histories and Semiclassical Machian Emergent Time Approaches.



Chapter 52
Spacetime Primary Approaches: Path Integrals

52.1 Unconstrained Models

In the primary spacetime ontology, the quantum path integral takes the form
∫

DQ exp
(
is[Q]/�). (52.1)

One can stay within this formulation or apply a 3 + 1 split and canonical reformu-
lation, as per Ex II.5. This Exercise’s general transition amplitude T furthermore
features as the integral kernel in the relation for passing between initial and final
quantum wavefunctions,

ψ[qfin, tfin ] =
∫

dqinT [qfin, tfin, qin, tin ]ψ[qin, tin ]. (52.2)

52.2 Path Integrals in Gauge Theory

Directly Formulated Case If we have the good fortune of being able to formulate
our action and measure in gauge-invariant terms, one can keep on working with a
close analogue of (52.1). I.e.

∫
DGc exp

(
is[Gc ]/�), (52.3)

where the Gc form a basis of configurational g-invariant quantities.

Indirectly Formulated Case This is often necessary due to lack of availability of
the former. One now inserts an expansion of unity in the following form [712]:

∫∫
DQDA det

(
δF
δA

)
δ(FG) exp

(
is[Q,A]/�). (52.4)
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Therein, the Fadde’ev–Popov factor [295] (after physicists Ludvig Fadde’ev and
Victor Popov) determinant is a subcase of Jacobian, whereas the δ-function imposes
a basis set of gauge-fixing conditions FG. The A are auxiliary fields, for now to be
regarded as gauge auxiliary fields. One has the option of performing a 3 + 1 split
with action in the third form of (L.18), so as to pass to a canonical version.

A further separate technical matter is the inclusion of opposite-chirality ‘ghost
species’. These enter a modified form of the Lagrangian as well as providing extra
measure factors followed by integrals thereover. Their introduction is a computa-
tional and unitarity-maintaining device; answers to physical questions are them-
selves free from these ghosts.

Example 1) In non-gauge models and directly gauge-invariant formulations, the
Fadde’ev–Popov factor is multiplicatively trivial.

Example 2) On the other hand, Electromagnetism and Yang–Mills Theory are non-
trivial in this way; indeed, the Fadde’ev–Popov approach opens up a rigourous
Quantization of the latter. See [712] for a simple treatment of these examples and
[446] for a more general treatment.
The field theoretic case’s formula for the determinant corresponds to the array

WGG′ δ
(
tin − tfin

)= δ
δu(tin)

δ
δv(tfin)

∫ {
GaugeG [v],FG′ [u]}dt. (52.5)

Example 3) For Finite Theories, this simplifies to

WGG′ =
∫

{GaugeG,FG′ }dt. (52.6)

In each case, one can contemplate extending from Gauge to CF, with a matching
enlargement of FG′ to FF′ .

52.3 Strategies for GR Path Integrals

Strategy 0) (11.12) is an incipient form for the spacetime formulation of GR’s T .
Diff (m)-invariance is subsequently formally incorporated in the indirect Fadde’ev–
Popov manner.1 This approach can be taken to manifest General Covariance.

To obtain a canonical version instead, begin by applying the ADM split.s now
takes the analogous form to (J.39):

sGR =
∫

dλ
∫

�

d�
{
ḣijp

ij − αH − βiMi
}
. (52.7)

1Indeed, the Fadde’ev–Popov method is on some occasions co-attributed to DeWitt [886], who
applied it to the case of GR as well [238, 239].
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Problem 1) Moreover, in considering the measure and Fadde’ev–Popov factors, the
following trichotomy is induced depending on how H is to be treated.

Strategy 1) Consider just building in the Diff (�)-invariance corresponding to Mi .
This is uncontroversial, because Mi is a gauge constraint. Here, A = β as features
in the action, and a triplet Fi of Diff (�)-fixing conditions is applied. This part of
the working at least conceptually parallels Yang–Mills Theory.

Strategy 2) Next, consider H as a gauge constraint as well. This case has a fourth
gauge auxiliary variable α and a fourth gauge-fixing condition, so that now one
has a quartet Fμ.

Strategy 3) Finally, one might not regard H as a gauge constraint, for the reasons
laid out in Chaps. 27 and 32. In this case, H still has an auxiliary variable α that
is paired to by multiplier-appending in the action. This can then enter the path in-
tegral measure and subsequently be integrated over. One can furthermore envisage
a corresponding generalized fixing condition for first-class constrained systems,
and a generalized Fadde’ev–Popov method which works for first-class constraints
regardless of whether these are gauge constraints.

Notice that Strategy 3)’s schematic form looks very similar to 2), though making
such a scheme concrete would take more technical and interpretational work. Also,
while the above trichotomy is often ignored, it is clear from the problems below that
full GR in any case remains but a very formally treated example.

In passing from a Canonical Approach to a spacetime formulated Path Integral
Approach, a ‘Non Tempus sed Via’ resolution of the Frozen Formalism Problem is
posited. (This begs further ontological questions in addition to the above questions
about the habitual technique used to handle path integrals. Moreover, this does not
address any of the other facets of the Problem of Time.) One does elude the In-
ner Product Problem with one’s time-dependent quantum wave equation, but this
is at the cost of incurring a new Measure Problem. Unfortunately, much of the
value attributed in Quantum Gravity to Path Integral Approaches over Canonical
Approaches follows from the misunderstanding that the notorious Problem of Time
is the Frozen Formalism Problem. Once it is clear that this is only a small subset
of the problem, what Path Integral Approaches attain is not ‘resolving the Frozen
Formalism Problem which is the Problem of Time’, but rather ‘trading the Frozen
Formalism Problem for further parts of the Problem of Time’.

Finally, using Strategy 2) or 3) need not automatically eschew spacetime Gen-
eral Covariance, in that some practitioners attempt concurrently Canonical-and-
Covariant Approaches.

Problem 2) Measure Problem. There are, furthermore, diffeomorphism-based com-
plications with specifying the measure part of the gravitational path integral [477].
Precisely what form these complications entail depends on which of Strategies 0)
to 3) are adopted. Strategies 0) and 1) require the more moderate tasks of defining a
Diff (m)-invariant measure on superspacetime(m) [477], and a Diff (�)-invariant
measure on superspace(�), respectively. On the other hand, Strategies 2) and 3)
amount to defining a Diff (m,�)-invariant measure on Truespace(�). This in-
volves yet further mathematical complications out of being an algebroid rather
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than an algebra. Further distinctions arise, depending on whether this space arises
in a purely Gauge Theoretic context or a more general situation involving first-class
but not necessarily gauge constraints. In some of these approaches, the GR path in-
tegral is viewed as more like an energy Green’s function than a propagator due to
the absence of an internal time [552]. For sure, all four of these strategies amount
to the Inner Product Problem being traded for another Background Independence
issue,2 with Strategies 0), 2) and 3) being further specifically tied to time.

Problem 3) The indefiniteness of the GR action causes unboundedness from below
upon being inserted in GR’s path integral’s exponential term [352]. This is clear
upon conformally transforming the metric (Exercise!) There are moreover indica-
tions that the measure produces an opposite-sign term which can cancel this off
[435]. In GR, passing to the Euclidean version no longer fully controls the be-
haviour of the action in the exponent, due to the complex rotation nullifying the
Lorentzian indefiniteness of spacetime but not the DeWittian indefiniteness of the
configuration space q.

Some model arena considerations are useful at this point.

Example 1) Minisuperspace. Diffeomorphism triviality means here that these mod-
els are not hampered by any Measure Problems. These models moreover already
exhibit GR’s indefiniteness and have a nontrivial role for H. Here, Strategy 1)
amounts to doing nothing, whereas Strategy 0), and some distinction between
Strategies 2) and 3), are already realized. [This is subject to the limitations of priv-
ileged slices of homogeneity, and of one finite H trivially closing as an Abelian
algebra.]

Example 2) RPMs. Strategy 1) remains nontrivial here as well. On the other hand,
distinctions between Strategies 2) and 3) are clearly not tied to spacetime consid-
erations here, nor does including E among the constraints substantially complicate
the constraint algebra, nor is the action indefinite. This example is moreover more
naturally formulated along the lines of the next Section.

Problem 4) In Quantum Theory, Complex Methods are commonly used, such as
slightly deformed contour integrals in expressions for propagators; see e.g. [712]
for the QFT case. This method involves making a t −→ iτ substitution on account
of the Euclidean path integral being better behaved. Complications moreover arise
in attempting to extend Complex Methods to the curved spacetime setting that is re-
quired for GR. Even for Minisuperspace, the contours between the real-Euclidean
and real-Lorentzian 4-manifolds are ambiguous and with a substantial multiplicity
[420]. Additionally, Wick rotations are non-generic (see e.g. [552]). There is little
guarantee of a complex 4-d curved spacetime containing both suitable Lorentzian
and Euclidean real 4-manifolds as submanifolds. In this way, a nontrivial issue
arises in place of a flat-spacetime triviality (see again [552]). Whereas Euclidean
approaches avoid issues with microcausality, these are however replaced by rely-
ing on analytic continuation working out [474], and in the current context this has

2This Measure Problem is, additionally, a technical trade-off [193], in the sense of having it instead
of the Canonical Approach’s Operator Ordering Problem.
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become hard to establish and is on occasion demonstrably false. Let us end by not-
ing that complex correction terms occur widely in semiclassical approaches; see
e.g. [37, 157, 158, 453].
Some of the above problems are also ameliorated upon passing to Discrete Ap-
proaches [111, 253, 628, 685, 911]. However, wishing Nature to be calcula-
ble does not make Her discrete. And, in any case so far, discrete3 approaches
have a poor track record as regards the usually last to consider—and especially
unsurmountable—Problem of Time facet that is the Spacetime Construction Prob-
lem.

Problem 5) Path Integral Formulations additionally exhibit a Constraint Closure
Problem, since the measure term’s Fadde’ev–Popov factors would be affected if
Constraint Closure were not to hold.

Problem 6) Moreover, for GR the Batalin–Vilkovilsky approach to path integrals is
more suitable than the Fadde’ev–Popov one [820], and yet still falls short of being
satisfactory in further ways [319].

52.4 Temporal Relationalism Implementing Path Integral
Quantum Theory (TRiPIQT)

This (Fig. 52.1) is a split-action almost-canonical formulation, whose action is of
the third form in (L.18). The expansion of unity inserted into the measure part of the
path integral now involves auxiliary variables of the form d∂A. The FG are also to be
reformulated as d∂FG, so the TRi-Fadde’ev–Popov form of the action is

∫∫
DQDd∂A det

(
δ d∂F
δ d∂A

)
δ(d∂FG) exp

(
is[Q,d∂A]/�). (52.8)

Now the array corresponding to the determinant is d∂WGG′ , which depends linearly
on d∂FG. The above covers the following examples.

Example 1) Straightforward rearrangements of Electromagnetism and Yang–Mills
Theory.

Example 2) The fully TRi formulation of RPM path integrals.
Example 3) For Minisuperspace models, the TRi path integral formulation boils

down to re-representing α as dI .
Example 4) For full GR, the TRi formulation requires firstly for the action to be

cast in the form

sGR =
∫∫

�

{
∂hijp

ij − ∂Fi Mi − ∂IH
}
, (52.9)

secondly the development in this Sec’s opening paragraph, and thirdly the adoption
of the previous Section’s Strategy 3).

3Or almost-discrete, e.g. involving an ancillary continuum sample space in the Causal Sets Ap-
proach or eventually taking a continuum limit in the Causal Dynamical Triangulation Approach.
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Fig. 52.1 TRiPIQT

52.5 Canonical-and-Path-Integral Approaches

E.g. QFT can be taken to involve a such in the usual Minkowski spacetime Mn con-
text for which Canonical and Path-integral Approaches support each other. As well
as such approaches inheriting both the canonical and the path-integral difficulties,
it is not clear whether the large amount of path integral to canonical compatibility
exhibited in e.g. flat-spacetime QFT continues to hold in QG. And, if not, whether
either approach can be self-sufficient, or gain sufficiency from combination with
some third program such as algebraic QFT [425]. If one tries to combine diverse
such approaches for QG, then one would expect most of the problems of each to be
present, including a wide range of time-related problems.

Additionally, one can proceed through Covariant-and-Canonical Approaches;
such can use e.g. Peierls brackets, or take the form of Histories Approaches. Finally,
a distinct covariant spacetime take on path integrals is afforded by the so-called an-
tifield formalism; see e.g. [446] for an exposition.



Chapter 53
Histories Theory at the Quantum Level

At the quantum level, histories are not just paths but rather have the further distinc-
tion of being decorated with projectors. Thus we require more than just the previ-
ous Chapter’s Feynman path integral mathematics. Moreover, we need to cover two
cases.

1) The promotion of Chap. 28’s ‘Historia ante Quantum’ scheme to the quantum
level H . . . Q.

2) Starting afresh with ‘Historia Post Quantum’ Q . . . H.

53.1 Gell-Mann–Hartle-Type Histories Theory

This is a Q . . . H scheme [340, 429] (see also [483, 780]), and consists of the follow-
ing steps.

1) Individual histories are built out of strings of projectors PAiai (ti ), i = 1 to N at
discrete time-steps ti ,

cη := PANaN (tN)...P
A2
a2
(t2)P

A1
a1
(t1). (53.1)

N.B. that these projectors do not imply measurement; Histories Theory is, more-
over, intended to have [340, 428, 483] other than the standard interpretation
of QM. Indeed, assigning probabilities to histories does not work in Quan-
tum Theory. For suppose a(t) has amplitude A[a] = exp(is[a]) and b(t) has
amplitude B[b] = exp(is[b]). Then these are nonadditive since in general
|A[a] +B[b]|2 �= |A[a]|2 + |B[b]|2.

2) Also consider notions of fine- and coarse-graining, which correspond to different
levels of imperfection of knowledge. By this, families of histories are partitioned
into subfamilies. Let Cη̄ denote coarse-graining, where η̄ is a subsequence of
the history η’s times and each projector in the new string may concern a less
precise proposition. Note that this is a further type of coarse-graining—by prob-
ing at less times—in addition to the coarse-graining criteria used Chap. 51 and
Appendix U.2.

© Springer International Publishing AG 2017
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3) Finally consider the decoherence functional between a pair of histories η, η′,
given by

Dec[cη′ , cη ] := tr(cη′ ρcη). (53.2)

This is useful as a ‘measure’ of interference between cη′ and cη. It is zero for
perfectly consistent theories, and has the following properties.

Dec[cη′, cη ] = Dec[cη, cη′ ] (Hermeticity), (53.3)

Dec[cη′, cη ] ≥ 0 (Positivity), (53.4)
∑
cη′ ,cη

D[cη′ , cη ] = 1 (Normalization), (53.5)

Dec[cη′, cη ] =
∑

η′ ∈η̄′,η∈η̄

D[cη′ , cη ] (Superposition Property). (53.6)

This scheme has the new probability postulate that

Dec[cη′ , cη ] = δη′,ηProb(aN tN,aN−1tN−1, . . . a1t1 ; ρ0). (53.7)

Let us end by noting that approximate consistency is held to suffice in this ap-
proach.

Research Project 65) To what extent do paths by themselves already support a no-
tion of decoherence? E.g. the Path Integral Approach already possesses the notions
of coarse-graining and finest possible graining that are more usually used in, and
attributed to, Histories Theory. Also the basic notion of decoherence functional
looks to already be defined at the level of paths alone, including its formulation in
terms of class functionals as per the next Chapter.

53.2 Histories Projection Operator (HPO) Approach

This is Isham and Linden’s [503, 504, 770, 771] quantum-level continuation of
Chap. 28’s classical treatment of the Histories Brackets Approach; see also e.g.
[11, 766–769]. By this, it is a Q . . . H scheme. Chapter 28’s classical histories
Poisson brackets are promoted to quantum histories kinematical commutators. This
scheme’s use of continuous time results in a 1-d QFT in the time direction. More-
over, passing from discrete to continuous time necessitates a continuum limit [816]
of the tensor product enlargement from Hilb to

⊗n
i=1 Hilb. Indeed, H . . . Q ap-

proaches can be seen as providing a second opportunity to a number of T . . . Q

approaches and to use of Geometrical Quantization. For instance, new Kinematical
Quantization commutator and constraint-bracket algebroids ensue.

Example 1) History of nonrelativistic particles in absolute space. With the notion of
a 1-d QFT in the time direction being relatively unfamiliar, I provide an outline this
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for this Example. By this, the nontrivial commutation relation is not like Ordinary
QM’s [xi,pj ] = i � δij , but rather takes the field-theoretic form

[xt1,pt2]H = i �δ(t1 − t2). (53.8)

I.e. a continuous Dirac delta is involved in place of a discrete Kronecker delta. This
is furthermore better handled in a smeared formulation; the

L2(R,dx) (53.9)

function space of real square-integrable functions on R enters at this stage [504] in
the role of test functions. The nontrivial commutation relation is now

[xf ,pg] = i �

∫ +∞

−∞
f (x)g(x)dx, (53.10)

for f,g ∈ L2(R,dx). A quantum theory based on a Fock space—as is habitual in
QFT—ensues; [504] provides further details.

The HPO approach additionally has a quantum histories quadratic constraint,

Q̂uad
λ
� = 0. (53.11)

Like the Gell-Mann–Hartle approach, the HPO approach also possesses histories-
theoretic notions of coarse- and fine-graining. The role of the previous Section’s cη
is now undertaken by the following tensor product of the projectors:

cη := PANaN (tN)⊗ ... ⊗ PA2
a2
(t2)⊗ PA1

a1
(t1). (53.12)

These immediately inherit the projector axioms from the individual projectors,
whence the name of the program. Finally, the HPO approach also provides a form
of decoherence functional; see e.g. [11] for its specific form.

53.3 Computation of Decoherence Functionals

For a given coarse-graining Cη consisting of classes {cη},

〈
Qfin
∣∣Cη
∣∣Qin〉=

∑

η ∈ QincηQfin

exp
(
is[η]/�). (53.13)

This formulation for the class function can be interpreted in terms of paths η without
association of projectors. Next,

Dec
[
η,η′]= N

∑
I,J

Probfin
I

〈
ψfin
I

∣∣Cη′
∣∣ψin
J

〉〈
ψfin
I

∣∣Cη
∣∣ψin
J

〉
Probin

J , (53.14)
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where the probabilities are initial and final inputs alongside the initial and final
states.

N := 1

/∑
I,J

Probfin
I

∣∣〈ψfin
I

∣∣CS
∣∣ψin
J

〉∣∣2Probin
J , (53.15)

where CS is the sum of all the paths in (53.13). This is built in terms of a kernel path
integral,

〈
ψfin
I

∣∣Cη
∣∣ψin
J

〉 := ψfin
I

(
Qfin) ◦ 〈Qfin

∣∣Cη
∣∣Qin〉 ◦ ψin

J

(
Qin). (53.16)

Here ◦ is some Hermitian but not necessarily positive inner product, whereas
ψin = ψin(Qin) and ψfin = ψfin(Qfin) are initial- and final-condition quantum wave-
functions.

53.4 Further Theories, Structures and Problems

Research Project 66) Consider RPMs as a theoretical probe of Savvidou’s 2-times
and Canonical-and-Covariant Approach: how many features of this approach exists
in a Background Independent but non-spacetime setting?

Research Project 67) Complete the Kouletsis–Kuchař model [568] at the quantum
level. Does the histories group approach really get past the impasses encountered
by the canonical group approach?

Problem 1) It is not clear whether the Gell-Mann–Hartle Approach is in correspon-
dence with an algebra of propositions. In this approach, histories are the product of
Heisenberg picture projectors. Moreover, such products are usually not themselves
projectors. So this approach does not implement propositions as projectors. It does
however possess a ‘disjoint sum of histories’ OR and a NOT operation. A further
possibility is to implement propositions along Hartle’s lines, from consideration
of how each history intersects with a given region R in configuration space. For
this purpose, Hartle uses (proper time spent in R), which is independent of canon-
ical slicing. However, this is not to be expected to cover all physically-relevant
propositions and the interrelations between them at the quantum level. This paral-
lels Sect. 51.1’s questioning the Naïve Schrödinger Interpretation ’s use of classi-
cal regions to pose its quantum-mechanical questions. Additionally, this approach
gives meaning to a variable which is not dynamical or subsequently quantum-
mechanical, a procedure upon which Kuchař has cast some doubt. It amounts to
altering a feature of standard Quantum Theory without as yet providing enough
justification and interpretation for this.
The HPO Approach, however, bypasses Problem 1) by finding a different way in
which to anchor the Proposition–Projector Association to Histories Theory. In-
deed, the HPO Approach can be further motivated as a demonstration that a some-
what different correspondence between histories and questions can be made. The
above correspondence can readily be completed with notions of negation and dis-
joint sum to form an orthoalgebra of propositions, up (Appendix S.4). Questions
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about histories are moreover another case of simplified logical structure as com-
pared to temporal logic [503]. In the HPO Approach, the decoherence functional is
regarded as a functional up × up −→ C. Is this additional structure a significant
further mathematical construct? Some partial answers to this are as follows.

A) The structure of this map parallels that of maps being representable by matri-
ces, by which it makes sense to talk in terms of decoherence involving negli-
gibility of off-diagonal elements.

B) Decoherence functionals are the analogues of quantum states in the parallel
given by Isham–Linden’s between Histories Theory and Ordinary QM.

Problems 2 to 5) Most of the Problems with Path Integral Approaches continue to
apply. The extra structures that Histories Theory brings in are not known to ame-
liorate the problems with the underlying path integrals themselves.

Problem 6) Which degrees of freedom decohere which is unclear for GR [413].
Possible Problem 7) Is the generalization of Quantum Theory involved in Histories

Theory self-consistent and meaningful? Does it reduce to Ordinary Quantum The-
ory in cases which are testable by experiment? In the case of a relativistic particle,
Kuchař has argued [589] that it does not. Furthermore, Dowker and quantum the-
orist Adrian Kent [264, 265, 540, 542–544] commented that future and past can
easily fall apart in this scheme. This may compromise the capacity to do Science
in such a universe.

53.5 TRi Quantum Histories Theory

The input action for this can be built from t sem by the last form in Eq. (L.18). This is
linear in d/dt sem and in dt sem, by which it is Manifestly Parametrization Irrelevant,
so one is in fact free to use any other label time λ if one so wishes. Because of this,
there is no physical content to using the emergent time in the construction of the
decoherence functional.

For now, let us consider the g-free case. Start from (Hist-Phase, Hist-Can)
and apply Kinematical Quantization. The kinematical commutator algebra is ob-
tained by selecting a subalgebra of the classical histories quantities. The constituent
commutators suitably reflect global considerations, and the quantum histories con-
straints are some operator ordering of their classical counterparts. A kinematical
Hilbert space and quantum constraint solving maps are next evoked, so to obtain (at
least formally) (Hist-Hilb, Hist-Uni). This is meant in the enlarged sense of Isham
and Linden, and is held to be useful for the following reasons.

1) Given the subsequent histories group, its unitary representations specifically per-
mit access to the orthoalgebra up of projectors as propositions about the the-
ory’s histories.

2) The Histories Approach involves a fresh set of algebraic entities. In this way,
it provides a second opportunity for the corresponding Quantization scheme to
work out in practice. [The price to pay, moreover, may be significant: basing a
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Canonical Quantization scheme on histories rather than on configurations is less
well-established, even at the conceptual level.]

The kernel path integral in (53.16) takes e.g. the Manifestly Reparametrization In-
variant form 〈Qfin |Cη |Qin 〉. This differs from the one in Hartle’s review [428] due to
use of the TRi differential of the instant d∂ I in place of the lapse α.

In terms of the answers to physical questions, moreover, there would appear to be
no difference between the HPO and Gell-Mann–Hartle schemes. HPO is a technical
refinement useful for establishing theorems, and also a conceptual improvement due
to its manifestly fitting the Proposition–Projector Association.

Example 2) Scaled N -stop metroland’s histories formulation exactly parallels the
mathematics of Example 1) while casting this mathematics in a context relevant to
Quantum Cosmology. One interpretational difference here is in the use of emergent
time tem or label time λ in place of absolute time t .

As regards the Hartle-type formulation of Histories Theory for RPMs, this approach
has workings with physical outcomes paralleling those of Chap. 52’s formalism,
albeit with the following differences.

Difference 1) It is cast in terms of the habitual multipliers rather than in terms of
TRi cyclic differentials.

Difference 2) This approach allows for time to be treated discretely. [In this case,
the subsequently-attached projectors at each time form finite strings, composed by
plain multiplication.]

Difference 3) Projectors having been evoked, the paths γ decorated by such are to
be re-denoted as histories η.

Difference 4) Histories are here plain products of projectors and so are not them-
selves projectors, by which there is a lack of Proposition–Projector Association for
these whole histories.

On the other hand, the HPO formulation for RPMs has histories brackets parallel-
ing those in Sect. 53.2. Next consider tying a continuous limit of tensor product
strings of projector operators to each of the paths in question. This overall object is
itself a projector and therefore implements a histories proposition. These objects are
therefore to be regarded as quantum histories.

53.6 Further Examples of Histories Formulations

Example 3) Minisuperspace. Anastopoulos and Savvidou [11] gave an HPO ap-
proach to isotropic Minisuperspace models with scalar field matter. The Author
made a slight modification of this within the Relational Approach [31].

g-Nontrivial Histories Theory In indirectly formulated versions, there are also
quantum first-class linear constraints

F̂lin
λ
� = 0. (53.17)



53.6 Further Examples of Histories Formulations 591

In this case (or in Field Theories) quantum histories Constraint Closure can become
nontrivial. In Historia ante Quantum Approaches, each classical histories constraint
subalgebraic structure is promoted to a quantum operators counterpart Ĉλw. The two
are, once again, not necessarily isomorphic.

Histories observables are also to be found, alongside addressing whether these
are operationally meaningful. This is rather probably handled by starting afresh,
rather than by promoting classical histories observables. Each notion of histories
quantum A-observables Âλx obeys

[
Ĉλw, Âλx

]
H� = 0. (53.18)

Finally, in relational treatments based on Dirac-type Quantization, the TRi path in-
tegrals further differ from Hartle’s presentation through containing further cyclic
differentials.

Example 4) The HRQ ordered approach to RPM has a single histories constraint:
the histories energy constraint, which is

Ê t em :=
∫

dt semÊ
(
t sem
)

(53.19)

in the Machian approach. Compared to the previous specific examples, this in gen-
eral has additional curved configuration space features.

The more specific case of scaled triangleland in the HRQ formulation gives anal-
ogous mathematics to that of the particle in 3-d , by which gcan = Eucl(3)λ. The
canonical group now consists of the histories of mixed relative dilational momenta
and relative angular momenta SO(3)λ objects S(λ) and the (R3)λ objects pDra(λ).
The corresponding linear space v∗ is an R

3 at each value of time, of objects Dra(λ)
that are the histories of ellip, area and aniso. Again, these continue to combine as a
semidirect product with no problems in considering it to be the standard gcan � v
at each value of time, which again forms an associated 1-d QFT. The kinematical
quantum histories algebra for this model turns out to be straightforward [37].

Equation (53.19) is here the sole constraint, and the quantum histories constraint
algebraic structure is straightforward, so there is no Constraint Closure Problem
here.

The quantum path integral is

〈
Drafin

∣∣Cγ
∣∣Drain

〉=
∫

η
DP Dra

DDraDdI exp
(
iS
[
Dra,P Dra,dI

]/
�
)
. (53.20)

Additionally, we can use that I = tem in the Machian version of this scheme.
The decoherence functional (53.14), (53.23) now takes the following form. ψin =
ψin(Drain) and ψfin = ψfin(Dra�fin). The DDra that plays the role of DQ in these
equations is trivial as the corresponding configuration space is flat and the Dra play
the role of Cartesian coordinates for it (Appendix G.3). The associated DP Dra that
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plays the role of DP is likewise geometrically trivial. Use an action of the third form
of (L.18), specialized to scaled triangleland in Dragt coordinates:

Sr�-ERPM =
∫ {

dDra�!Dra
� − dI E

}
. (53.21)

The Fadde’ev–Popov determinant and gauge fixing factors are trivial for the r-
formulation of this model.

〈Drafin |Cη |Drain 〉 =
∫

η
DDraDP Dra dI exp

(
is[Dra,P Dra,dI

]
/�
); (53.22)

Dec[η,η′ ] is next built from this via (53.14)–(53.16) under Q −→ Dra. In particu-
lar, the case of 1 particle in 3-d has q = R

3, which corresponds to the space of the
Dra.

Example 5) On the other hand, the HQR ordered approach to RPMs provides a more
specific example of the preceding indirect approach. This formulation more closely
parallels what is formally available for full GR than Example 4) does. The configu-
rations are now triangles redundantly described by the four components of the pair
of relative Jacobi vectors. The classical histories are then built up from sequences
of these and their momenta. The Lλ = 0 constraint remains to be imposed at the
quantum level.

The quantum path integral in this case is
〈
ρfin
∣∣Cγ
∣∣ρ in
〉

=
∫

η
DpDρ dI DdB DF [ρ,dI,dB]δ

(
F[ρ,dI,dB])exp

(
i S[ρ,p,dI,dB]).

(53.23)

The decoherence functional (53.14) can now be computed as follows. ψin = ψin(ρ in)

and ψfin = ψfin(ρfin). The Dρ that plays the role of DQ in equations (53.14) is trivial
as the corresponding configuration space is flat and the ρ play the role of Cartesian
coordinates for it. The associated Dp that plays the role of DP is likewise trivial.
Use action (L.18), in particular in its second form as specialized to the triangleland
case.

The TRi-Fadde’ev–Popov and gauge-fixing factors are now in general nontriv-
ial. Explicit evaluation of these requires making a gauge-fixing choice for scaled
triangleland. In triangleland, a double collision D and a merger M can be used as
North and South poles respectively (Appendix G.3); this entails choosing between
two overlapping charts centred about M and D. Consider first the ‘triangle base = x’
gauge’s FM := θ1 = 0. {FM,L} = 1, so the Fadde’ev-Popov determinant does not
contribute any nontriviality to the integration in this gauge. Moreover, the above ar-
gument is clearly not globally valid, since the M-chart is not. We can counter this by
considering also the median = x gauge’s FD := θ2 = 0. This gives the same histories
bracket as above, and split the region of integration into two charts within each of
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which one of these two gauges is entirely valid. As regards the delta function, F1
can be written in Cartesian coordinates as arctan(ρ1

y/ρ
1
x) = 0. I.e. ρ1

y = 0 provided

that ρ1
x �= 0, which is guaranteed by the choice of region of integration in which

this gauge-fixing is applied. So, allowing for M-indices to be rewritten as 1’s and
D-indices as 2’s, and for the index F to run over 1 and 2,

〈ρ1 |Cγ |ρ2 〉 =
∫

γ represented
in F-chart

DρDp dI DdB δ
(
θF
(
ρF
))

exp
(
iS[ρ,p,dI,dB]/�).

(53.24)
Finally, Dec[γ, γ ′ ] is built out of this through (53.14)–(53.16) using QA −→ ρi = ρ

and cG −→ B .
This book’s simple RPM models are moreover free of the following Histo-

ries Theory versions of the Measure Problem, Functional Evolution Problem, Thin
Sandwich Problem, Diffeomorphism-specific Problems and Foliation Dependence
Problem. The reduced approach to the scaled triangle is, moreover, also free of
global issues (unlike the Dirac approach to the scaled triangle). So at least for this
model, one looks to have a rather good resolution of the Problem of Time, upon
which the next Chapter builds an even better resolution.

Example 6) SIC. This is a further modewise reduced calculation which can be in-
vestigated using the HPO Approach. This does not look to be substantially harder
than the above Minisuperspace and reduced triangleland calculations. In this way,
Histories Theory for SIC has entered the realm of calculable physics.

Research Project 68) Investigate quantum histories for modewise SIC. In particu-
lar, is this case’s 1-d QFT entirely straightforward, or is it affected by a central
term?

Example 7) [8] also considered the HPO Approach for simple QFT.
Example 8) Hartle already considered Electromagnetism as a model arena of con-

strained physics [429]; an HPO counterpart has now been provided as well [182].
Example 9) The general GR case was set as Ex VI.15.ii) along the lines of the

Gell-Mann–Hartle Approach to Histories Theory. An answer, in outline, is that
for full GR, the configurations are now 3-geometries redundantly described by the
six components of the 3-metric h. The classical histories are next built up from
sequences of these. Mi and H remains to be imposed as quantum-level histories
constraints.

The decoherence functional for GR (53.14) is further evaluated as follows. ψin =
ψin(hin) and ψfin = ψfin(hfin). Use the action (52.9); the computation of the measure
needs to be left formal. Including a minimally-coupled scalar field,

〈
hfin, φfin

∣∣Cγ
∣∣hin, φin

〉=
∫

γ
DhDφDpDπφ D∂ID∂F DF [h,p, φ,πφ, ∂I,dF]

× δ
(
F γ[h, φ, ∂Fγ])exp

(
is[π,πφ,h, φ, ∂F, ∂I]). (53.25)

Finally, Dec[η,η′ ] is built out of this through (53.14)–(53.16) using Q −→ h.
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See also [548] for a Histories Theory approach to Affine Geometrodynamics
including a Minisuperspace example.

Research Project 69) Consider concrete quantum-level examples of Histories The-
ory approaches with nontrivial diffeomorphisms, from SIC to Midisuperspace.

Research Project 70) Further develop Kouletsis and Savvidou’s approaches to His-
tories Theory [567, 769] for full GR, now at the quantum level.

53.7 Records Within Quantum Histories Theory

N.B. that a Timeless Records Theory sits within each histories theory [340, 342,
411, 413–415, 421, 422]. This is moreover independent of the Gell-Mann–Hartle
versus HPO distinction. This is because records involve single-time histories, i.e.
a single projector, and the ordinary and tensor products of a single projector ob-
viously coincide and indeed trivially constitute a projector. Thus the Proposition–
Projector Association can be applied and a propositional logic structure can be based
on this.

Additionally, paralleling the treatment of records in Chap. 51 and Appendices Q
and U, one can conceive of the following notions.

1) Subhistories, Sub-Hist.
2) Distances between histories Dist(η,η′) and a corresponding sense of localiza-

tion.
3) Notions of information for quantum histories as considered by Hartle [429],

Isham and Linden [505], and Kent [541].
4) Notions of correlation between histories. For instance, the decoherence func-

tional is already a key structural element for this.
5) Histories propositions or logic remain an atemporal construct. Once again, this

is an area that mostly only becomes interesting at the quantum level [489].

Since in Records Theory, the histories brackets reduce to the usual Poisson brackets,
records approaches return one to the usual canonical group. The opening of the next
Chapter’s Interprotections 2) to 4) concern further interesting properties of Records
Theory within Histories Theory.

The conditional probability of records κ = (κ1, κ2, . . . , κn) given the past alter-
natives η is

Prob(κ|κ) = Prob(κ, κ)/Prob(η) = Tr
(
Rκρeff(η)

)
, (53.26)

for ρeff(η) = CηρC†
η/Tr
(
CηρC†

η
)
. (53.27)

Here, Rκ denotes a records projector, which can be envisaged as the obvious sub-
case of the general histories projector. Note also the relation

Prob(η) = Tr
(
CηρC†

η
)= Tr

(
Rηρ(t sem

n

))
. (53.28)



53.7 Records Within Quantum Histories Theory 595

Perfect correlation between records and past alternatives is only guaranteed if
Prob(κ | η) = 1, which only occurs if ρeff(η) is pure. For the more general case of
ρeff(η) mixed, Prob(κ | η) < 1 and this correlation is imperfect. So in general one
can expect the presence of imperfect records. In particular, imperfect records are still
possible in settings with very small environments (even just 1 degree of freedom’s
worth) [411]. This permits Minisuperspace models, small RPMs and small detector
models to remain meaningful.

Example 1) Halliwell’s investigation of imperfect records [411] concerns a heavy
particle moving through a medium consisting of a few light particles. The heavy
particle disturbs these into motion. Subsequent instants consist of the particles’ po-
sitions and momenta. It is these instants which are the records, and the dynamics
or history of the large particle can subsequently be constructed from them (to some
approximation). This example provided the first confirmation that a very small en-
vironment of light particles indeed suffices in order to have a nontrivial notion of
imperfect record. This points to the possibility of using finite model arenas with
further desirable theoretical properties, such as this book’s main model arenas:
RPM, Minisuperspace and modewise SIC. Finally, as regards the information con-
tent aspect of records, in this work Halliwell also conjectured that the number of
bits required to describe a set of decoherent histories is approximately equal to
number of bits thrown away to the environment.



Chapter 54
Combined Histories-Records-Semiclassical
Approach

At the semiclassical quantum level, the Combined Approach becomes a rather more
interprotected procedure than its classical precursor of Chap. 29. It is a combina-
tion of the Semiclassical Machian Emergent Time Approach (Chaps. 12 and 46),
quantum Records Theory (Chap. 51), and the quantum Isham–Linden type HPO
Histories Theory (Chap. 53). Pairwise, one has the following.

1) Records within the Semiclassical Machian Emergent Time Approach (Sect. 51.4).
2) Histories within the Semiclassical Machian Emergent Time Approach (Sect. 53.5).
3) Records within the HPO version of Histories Theory (Sect. 53.7).

Halliwell’s study [408] of timeless correlations within the Semiclassical Approach
arena of Halliwell–Hawking [419] is a precursor of the triple combination. Halliwell
introduced the triple combination in [413] for mechanical and Minisuperspace mod-
els; the Author subsequently provided a Machian and nontrivial-g in [25]. This is a
particularly interesting prospect because in this combination, the individual strate-
gies can remove weaknesses from each other along the following lines.

Firstly recollect that we already encountered three examples of this at the classi-
cal level (the three motivations at the start of Chap. 29). There is, moreover, a sub-
stantial increase in interprotections upon passing to the semiclassical level.

Interprotection 1) The Semiclassical Approach’s assumption of a WKB regime re-
quires justification. This is approached using decoherence in the form of histories
decohering [552, 931].1

Interprotection 2) Within each Histories Theory, there is a Timeless Records The-
ory, as per Sect. 53.7. At the quantum level, this was pointed out by Gell-Mann and
Hartle [340] and extended to imperfect cases by Halliwell [411, 413–415]. In this
way, Histories Theory supports Records Theory by providing guidance as to the
form a working Records Theory would take. This also allows for these two to be
cast as a joint mathematical package. It also provides a common atemporal logic

1On the other hand, Gambini, Porto and Pullin’s work in Sect. 51.2 provides a distinct non histories
theoretic source of decoherence.
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grounding of the two [37, 260, 504], which can become nontrivial at the quantum
level, i.e. ‘Mackey’s Principle’.

Interprotection 3) As Gell-Mann and Hartle said [340]

“records are somewhere in the Universe where information is stored
when histories decohere”. (54.1)

Interprotection 4) The elusive question of ‘what decoheres what’ can be ap-
proached based on what the records involved are [340, 413]. In this way, Records
Theory in turn supports Histories Theory. For instance, Sect. 48.3 pointed to the
suggestion that small inhomogeneities decohere the Minisuperspace degrees of
freedom.

Interprotection 5) By providing an underlying Dynamics or history, one or both of
the Semiclassical Machian Emergent Time Approach and Histories Theory over-
come present-day purely timeless Records Theory’s principal weakness of needing
to find a practicable construction of a semblance of dynamics or history. This goes
a long way towards Records Theory being a viable part of one’s worldview.

Interprotection 6) The Semiclassical Approach provides a Machian scheme for
quantum histories and quantum records to reside within.

Interprotection 7) Working in a semiclassical regime helps with the computation of
timeless probabilities of histories entering given configuration space regions. In
particular, given an eigenstate of the quantum Hamiltonian, this approach deter-
mines what the probability is of finding the system in a region of configuration
space, without reference to time [413].

Interprotection 8) Histories Theory provides a means of construction of semiclas-
sical Dirac beables. This is also a timeless construct, and one which makes use of
semiclassicality.

At the classical level, Interprotections 1), 3) and 4) are absent since they concern the
purely quantum notion of decoherence. On the other hand, Interprotection 7) drops
out since it concerns a purely quantum probability computation.

Let us finally propose how to order the constituent parts of the Combined Ap-
proach. Meaningless label histories come first, this gives the Semiclassical Ap-
proach, and the Machian emergent-time version of Histories Theory ensues. Finally,
localized Timeless Approaches sit inside the last two of these. On the other hand,
the Semiclassical Approach sits within the Timeless Approach, since its equations
arise from the Wheeler–DeWitt equation. However the Timeless Approach can it-
self be taken to sit within the meaningless label time Histories Theory. So down both
strands of the argument, histories are the most primary entities in the Combined Ap-
proach.

54.1 g-Free Models Without Machian Emergence

Let us first explain some of the features of Halliwell’s approach. This consid-
ers a Gell-Mann–Hartle approach to histories, which picks up some Problem
of Time issues from Chap. 53, though other such are absent from the model
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arenas considered. Halliwell implements propositions using regions of configu-
ration space q. In fact, Hartle and Halliwell both separately considered such
schemes, each using different versions of class functionals ĈR relating to ProbR :=
Prob(trajectory enters a region R of q). The extent to which the Naïve Schrödinger
Interpretation ’s issue due to using regions carries over to Halliwell’s approach is
covered in Fig. 59.2.

Halliwell investigated Interprotection 7) in 2003 [413] for a free particle, by ad-
dressing the following question for an energy eigenstate. What is the probability of
finding the system in a series of regions of configuration space q without reference
to time?

Halliwell subsequently investigated [414, 415] decohering histories as a possible
means of constructing the probability distribution for the Wheeler–DeWitt equation.
[This also uses Semiclassical Approach techniques and could be useful for avoiding
problems involving how to interpret the Semiclassical Approach’s Wheeler–DeWitt
equation.] Some intermediate and supporting steps in this program were co-authored
with his students Peter Dodd, Joerg Thorwart and Petros Wallden [418, 421, 422].

Semiclassicality is helpful with explicit construction of the class functional. First
apply the WKB ansatz (12.2). Comparing with Fig. 29.1, the semiclassical flow lines
now correspond to ∇CS; to zeroth order, these coincide, but there are subsequently
semiclassical corrections. Halliwell [408] furthermore established that

W ig[q,p] � ∣∣χ(q)∣∣2δ(K)(p − ∂S), (54.2)

where p would be equal to ∂S at the purely classical level, as per Hamilton–Jacobi
Theory. Next [408, 410, 441],

Probsemicl
ϒ �

∫
dt
∫

ϒ

Dϒ(q) ν · ∂S
∣∣χ(q)∣∣2. (54.3)

N.B. that this is ‘starting afresh’ as opposed to promotion of the classical precursor
(29.13).

Class Functionals Halliwell’s treatment continues within the standard framework
of decoherent histories. The key step here is the construction of class functionals,
which we denote by ĈR, so as to model ProbR. ĈR refers to a set of histories η which
cross over into region R. Halliwell’s approach to this [413–415] uses integrals over
all time to resolve the further issue of compatibility with H , by which we choose
Halliwell’s version over Hartle’s.

In seeking a mathematical implementation of class functionals, it makes sense to
preliminarily point out that one cannot use the most obvious

ĈR(q f,q0) =
∫ +∞

−∞
dt exp(−iEt/�)

×
∫

Dq(t)exp
(
iS
[
q(t)
]
/�
)
θ

(∫ λ
0

dt CharR
(
q(t)
)− ε

)
(54.4)
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—where the E-factor’ here comes from [421] assuming Sect. 41.5’s Rieffel inner
product [413, 434]—due to its non-commutation with H .

However, the ‘sharpened’ object2

ĈR = θ

(∫ ∞

−∞
dt CharR

(
q(t)
)− ε

)
P(qf,q0) exp

(
i S(q f,q0)

)
, (54.5)

is satisfactory, both conceptually and as regards commutation with H . This is given
above for a specific example from ordinary Mechanics; Halliwell furthermore con-
sidered examples of it for Minisuperspace [413].

Moreover, semiclassicality helps at this particular point by providing an explicit
construction of the class functional. N.B. also that this class functional is not the
end of the story since it is technically unsatisfactory, as resolved in [414, 415].

Construction of Quantum Chronos Beables The class functionals obey

[ ̂Chronos, ĈR ] = 0 (54.6)

by construction. The ĈR are therefore examples of quantum Chronos beables Ĉ,
which are additionally quantum Dirac beables D̂ for such models as here with no
further constraints.

While the semiclassical Halliwell construct is formulated in terms of histories
theoretic structures, note that its output indeed consist of beables rather than histo-
ries observables. This is because of the integration over all t . N.B. that this is an
example of ‘starting afresh’ with a new structure rather than of trying to promote
Halliwell’s distinct classical construct to the quantum level.

Finally, through involving use of the semiclassical quantum ĈR , the semiclassi-
cal Dirac beables construct also ‘starts afresh’ rather than being a promotion of the
classical combined scheme’s own Dirac beables construct.

Decoherence Functionals The class functional can now be used to re-express the
decoherence functional between pairs of histories η, η′

Dec
[
η,η′]=

∫

η
Dq

∫

η′
Dq ′exp

(
i
{s[q(t)]−s[q ′(t)

]}
/�
)ρ(q0,q

′
0

)
,

=
∫∫∫

DqfDq0Dq ′
f Ĉη [q f,q0 ] Ĉη′

[
q ′

f,q
′
0

]
�(q0)�

∗(q ′
0

)
. (54.7)

This can be further reformulated using the notion of influence functional, I [298],
which encodes an environmental property: the influence on a given subsystem; its

2Here, qcl(t) is the classical trajectory, q0,p0 is initial data, and θ is the step function. The cor-
responding cofactor is the standard semiclassical approximation to the unrestricted path integral.
ff is the characteristic function of region R, ε is a small positive number, and S(q f,q0) is the
classical action between q f and q0. See [421] for the detailed form of the prefactor function P.
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mathematical form is

I
[
q(t),q ′(t)

]

=
∑
f

∫∫
DQ(t)DQ

(
t ′)

× exp
(
i
{
S0
[
q(t)
]− S0

[
Q′(t)

]+ Si
[
q(t),Q(t)

]− Si
[
q ′(t),Q′(t)

]}
/�
)
.

(54.8)

Next, (54.7) gives

Dec
[
η,η′]=

∫∫∫
DqfDq0Dq ′

0Ĉη [qf,q0 ]Ĉη′
[
qf,q

′
0

]
I
[
qf,q0,q

′
0

]
�(q0)�

∗(q ′
0

)
.

(54.9)
If [421]’s conditions furthermore hold—modelling environment-system interac-

tions—then I takes the form

I
[
qf,q0,q

′
0

]= exp(iq · � + q · σ · q). (54.10)

Here, σ is a non-negative matrix, q− := q − q ′, whereas �� , σ�$ are real coeffi-
cients depending on q + q ′ alone. Furthermore in this case,

ProbR =
∫∫

Dp0Dq θ

(∫ +∞

−∞
dt CharR

(
q+cl
)− ε

)
W̃ ig
[
q+

0 ,p0
]
, (54.11)

where q+ := {q0 + q ′
0 }/2 and q+cl(t) the classical path with initial data q+

0 ,p0.
Finally,

W̃ ig
[
q+

0 ,p0
]=
∫

Dp exp

(
− 1

2
{p0 − p − �} · σ · {p0 − p − �}

)
W ig
[
q+

0 ,p0
]
.

(54.12)
is the Gaussian-smeared version of the Wigner functional, which itself is

W ig[q,p] = 1

{2π}k
∫

Dq exp(−ip · q)ρ
(
q+ + q−/2,q+ − q−/2

)
. (54.13)

Example 1) Halliwell considered this for absolutist particle models [413], for which
the configuration spaces are R

n.
Example 2) Simple Minisuperspace models for which the Minisuperspace is flat.

Since these are indefinite, they is qualitatively distinguished from the previous.

54.2 Machian Time Version Sitting
Within Semiclassical Approach

This involves the t −→ t sem � t sem
1 version of the preceding three Sections. We also

return here to Sect. 29.1’s enumeration of types of emergent Machian time.
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Type 4) tsem, which is taken to be formally arbitrarily satisfactory within the
premises of the semiclassical approach.

Type 5) tsem
1 : the distinct semiclassical quantum Machian first approximand; the two

zeroth approximands coincide, so let us relabel Type 2) as tem
0 .

Type 6) tsem′, which is taken to be some formal improvement on tem that is not
dependent on any use of semiclassical approximations.

54.3 Combined Approach for g-Nontrivial Theories

Many examples require generalization of the Wigner functional to curved space.
This enters not only the volume elements, but also causes the sums inside the
bra and ket to cease to be trivially defined. For Riemannian configuration spaces,
this was resolved in [189, 402, 532, 625, 913]. See instead [860] for an approach
which assumes just affine structure. Mathematicians Liu Zhang-Ju and Qian Min
also extended their work [625] to principal fibre bundles over Riemannian man-
ifolds, which meets the requirements for extending Halliwell’s 2003 approach’s
treatment in terms of Wigner functionals. We thereby take ‘Wigner functionals in
curved space’ in Liu and Qian’s sense.

Reference [408]’s straightforward approximations in deriving (54.2) locally carry
over [25], so for K a basis of Kuchař configurational beables,

W ig
[
K,P K

]� ∣∣χ(K)∣∣2δ(r)
(
P K − ∂KS

)
(54.14)

(P K being ∂KS for classical trajectories). One next applies the Halliwell-type
heuristic of replacing w by W ig in expressions for timeless probabilities, giving

Probsemicl
ϒ �

∫
dt sem
∫

ϒ

dϒ(K)νK · ∂S
∂K

∣∣χ(K)∣∣2. (54.15)

Decoherence Functional The decoherence functional is theQ to K version of the
first equation in (54.7) Class functionals are next inserted into the expression for the
decoherence functional, giving (modulo PPSCT factors) [25]

Dec
[
η,η′]

=
∫∫∫

DK fDK0DK ′
fĈη [K f,K0 ]Ĉη′

[
K ′

f,K
′
0

]
�(K0)�

(
K ′

0

)
. (54.16)

=
∫∫∫

DK fDK0DK ′
0Ĉη [K f,K0 ]Ĉη

[
K f,K

′
0

]
I
[
K f,K0,K

′
0

]
�(K0)�

∗(K ′
0

)
.

(54.17)

The second step is in the context that the Universe contains a classically-negligible
but quantum-non-negligible environment as per Appendix 48.4, so it indeed makes
sense to use the influence functional I .
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Alternative Indirect g-Act, g-All Implementation In this case,

ĈR
g-free [ρf,ρ0 ] =

∫

g∈g
Dg

→
gg

(
θ

(∫ +∞

−∞
dt sem CharR

(
ρf

0

(
tem))− ε

)

× P(ρf,ρ0)exp
(
iS(ρf ,ρ0)/�

))
. (54.18)

It is indeed physically desirable for these to be individually g-invariant. Next form
the decoherence functional out of ĈR

g−free,

Dec
[
η,η′]=

∫

g∈g
Dg

→
gg

{∫∫∫
Dqf Dq0 Dq ′

0 Ĉη
g-free [qf,q0 ]

× Ĉη′ g-free[qf,q
′
0

]
�(q0)�

∗(q ′
0

)
︸ ︷︷ ︸

}
I
[
qf,q0,q

′
0

]
�(q0)�

∗(q ′
0

)
.

(54.19)

A problem with this alternative approach is that it becomes blocked early on as
regards being more than formal when g = Diff (�).

Example 1) Scaled triangleland avoids Curved Geometry subtleties3 [25] since this
model possesses a flat presentation of configuration space. On the one hand, its
r-formulation involves the qi to Dra� of the flat-space case, as in [25, 37]. On the
other hand, for the indirect formulation, g = SO(2) = U(1), so in Example 5) of
Sect. 42.2’s notation,

∫

g∈g
Dg× =

∫

ζ∈S1
Dζ× =

∫ 2π

ζ=0
dζ×. (54.20)

54.4 Construction of Quantum Dirac Beables from Quantum
Kuchař Beables

For theories which possess of a notion of Kuchař beables, we have class functionals

ĈR = θ

(∫ +∞

−∞
dt sem

1 CharR
(
K
(
t sem
))− ε

)
P(K f,K0) exp

(
i S(K f,K0)/�

)
,

(54.21)
obeying

[ ̂Chronos, ĈR ] = 0 (54.22)

3To have this nontrivial, consider e.g. the relational quadrilateral and the non-diagonal Bianchi IX
Minisuperspace.
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Fig. 54.1 This extends Fig. 35.2 to its quantum counterpart. While d)’s main loop is the same
shape as b)’s, d) provides the decoherence upon which b)’s starting point depends. In each of b)
and d), the disjoint path provides a construction for Dirac beables so as to complete a) and come
closer to completing c)

by construction, and

[F̂lin, ĈR ] = 0 (54.23)

due to being functionals of the Kuchař beables. These ĈR are therefore quantum
Dirac beables, D̂.

However, the above form does suffice as a conceptual-and-technical start for
RPM version of Halliwell-type approaches, and amounts to an extension of these
to cases including linear constraints also.

Another caveat is that the semiclassical procedure for finding Dirac beables does
not fully apply in the case of Supergravity, for the same reasons that the classical
procedure does not (Sect. 29.3).

The above working clearly generalizes to restricting other A-beables subalge-
braic structures by commutation with Chronos, in cases in which the correspond-
ing extended constraint algebraic structure itself closes. Supergravity moreover pos-
sesses various cases of this more limited construct.

54.5 Frontiers of Research

See Fig. 54.1 for comparison of this Chapter’s Problem of Time strategy with the
book’s main previous such.

The method for constructing Dirac beables provides quantities which commute
with Quad and the Flin. Yet no ready means of checking that the quantities provided
in this way can be assembled into an algebraic structure. Thus it does not look at
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all likely that the quantum Dirac beables constructed in this manner will form a
subalgebraic structure of the algebraic structure of quantum Kuchař beables.

ĈR comes with the following further issues.

2) It involves a slight spreading.
3) The ProbR notion is open to difficulties in general for chaotic reasons.
4) The θ function has harsh edges, which cause a Quantum Zeno Problem,4 which

is resolved by Halliwell’s subsequent construction [414] to which we next turn.

Smooth Window Function Extension The above Secs’ class functional, while
conceptually illustrative, has technical problems, in particular it suffers from the
Quantum Zeno Problem. Smoothing out Halliwell 2003’s [413]’s sharp-edged win-
dow function—also done by Halliwell, now in 2009—[414] removes this, and is
equivalent to taking the region in question to contain a finite potential. Here the class
functional being the corresponding S-matrix and the smoothed-out case represent-
ing a softening in the usual sense of Scattering Theory (albeit now in configuration
space rather than in space). This upgrade manages to remain compatible with H .

In further detail, [422], this approach makes use of

P(Nε) . . . P(2ε)P(ε) = exp(−iH t). (54.24)

One furthermore now conceptualizes in terms of probabilities that the region is never
entered. Halliwell [414] additionally applied a ‘softening’ result [277]; in this way,
one passes to

P(Nε) . . . P(2ε)P(ε) = exp
(−i{H − iV0P }t) (54.25)

for ε V0 � 1. The class functional for not passing through region R is

Ĉ“� R = lim
t1 −→−∞,t2 −→∞ exp(iH t2)exp

(−i{H − iV }{t2 − t1 })exp(−iH t1). (54.26)

Such expressions do not suffer from the Quantum Zeno Problem, and they are still
quantum Chronos beables Ĉ. Moreover, in the smooth window function approach
[414], regions of q that are large enough need no environment.5 Sect. 48.4’s ‘Scale
Models with Shape as both Perturbation and Environment’ strategy offers a second
resolution to [421]’s issue of ‘losing the environment’, i.e. arguing that it was hith-
erto negligible in the study but is nevertheless available at this stage of the study as
an environment.

4This actually-observed quantum effect’s name follows from its resemblance to Zeno’s Arrow
‘Paradox’. Here an arrow in flight is argued not to be in motion at any instant, by which it is
not in motion at all. This amounts to breaking time down point-by-point rather than in intervals as
in Zeno’s Achilles and Tortoise ‘Paradox’; it is also clearly fallacious once one has a sufficiently
sturdy theory of limits. The similarity with the quantum effect is, rather, at the level of sufficiently
frequent quantum observation impossibilitating the occurrence of quantum change.
5Here, ‘large’ means compared to wavelength, which is solution-dependent.
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One would next apply λ −→ t sem’s in the Machian version of the updated Com-
bined Approach.

Extending the smooth window function approach to the RPM arena mostly con-
cerns defining class functionals somewhat differently, so as to get these to be better-
behaved as regards the Quantum Zeno Effect. In the case of nontrivial-g theories
which are reducible, the Ĉ“� R are quantum Dirac beables D̂.

Let us end by pointing out that the arrival time problem in Quantum Theory has
similar conceptual content and mathematics [417, 423].

Research Project 71) Halliwell [413, 414] and Marolf’s [641] approaches to His-
tories Theory remain to be compared in detail with each other. Does one of these
confer greater advantages, do the two approaches produce compatible results?

Research Project 72) The smooth window function approach [414, 415] remains to
be applied to examples with additional linear gauge constraints.

Research Project 73) Consider the quantum-level Combined Approach and its con-
struction of Dirac beables for SIC.

Research Project 74) Consider the Combined Approach for Nododynamics.



Chapter 55
Quantum Foliation Independence Strategies

55.1 Constraint Algebraic Structure’s Ties to Other Facets

One of the more conceptually interesting possibilities for quantum constraint non-
closure is its arising in the form of Foliation Dependent terms. For instance anoma-
lies could result from scale being included among the physically-irrelevant vari-
ables, though the concept of ‘spatial frame’ now involves a conformal factor as
well as a shift. This is at least known to occur in simpler models which do not
receive a Background Independent interpretation: conformal anomalies for e.g. a
nonrelativistic particle in a scale-invariant potential. A complication with this is the
interplay between different operator orderings and regularizations on the one hand
and Foliation Dependent effects on the other. E.g. whether suitable choices of these
other matters can be made such as to avoid Foliation Dependence in the ensuing
constraint algebraic structure.

Research Project 75) Are deformation first principles—successfully considered at
the classical level in Sect. 32.1—also useful at the quantum level? Does the De-
formation Approach’s classical derivation of GR have a quantum—or at least
semiclassical—counterpart?

55.2 Semiclassical Refoliation Invariance?

Given Teitelboim’s classical demonstration of Refoliation Invariance as the geo-
metrical counterpart of the key part of the Dirac algebroid, does the semiclassical
constraint algebraic structure of GR imply a similar result?

Strategy 1) Accept. Demand classical GR’s Foliation Independence and Refoliation
Invariance continue to hold at the quantum level. We next need to face that the com-
mutator algebroid at the quantum level is almost certainly distinct from classical
GR’s Dirac algebroid. One’s quantum constraint algebraic structure may contain
Foliation Dependent anomalies as well [583, 857].

© Springer International Publishing AG 2017
E. Anderson, The Problem of Time, Fundamental Theories of Physics 190,
DOI 10.1007/978-3-319-58848-3_55
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Strategy 2) Discard. Use Background Dependent or privileged slicing alternative
theories. These involve times which this approach imposes sufficient significance
upon that they cannot be traded for other times. These are more like the Ordinary
Quantum Theory notion of time than the conventional view of time in GR. In such
an approach, Foliation Dependence is built in from the start, and so the matter of
Refoliation Invariance is avoided. At the classical level, this amounts to throwing
away an established Background Independence aspect of GR. On the other hand,
at the quantum level, Refoliation Invariance remains to be demonstrated and might
conceivably not hold.

The Discard strategy should not be confused with instances of some special highly-
symmetric solutions can possess geometrically-privileged foliations. Generic solu-
tions are however central to GR, and even perturbations about highly-symmetric
solutions cease to have geometrically-privileged foliations to the perturbative order
of precision [589]. Additionally, even highly-symmetric solutions that admit a priv-
ileged foliation in GR are refoliable. In this way, the problem below with losing
Refoliation Invariance is curtailed.

Kuchař argued that [586] “The foliation fixing prevents one from asking what
would happen if one attempted to measure the gravitational degrees of freedom
on an arbitrary hypersurface. Such a solution amounts to conceding that one can
quantize gravity only by giving up GR. I.e. to say that a quantum theory makes
sense only when one fixes the foliation is essentially the same thing as saying that
Quantum Gravity makes sense only in one coordinate system.”

Fixed foliations are a type of Background Dependence, which, from the relational
perspective, is undesirable from the outset. For all that investigating the effects of
making just this concession is indeed also of theoretical interest.

Research Project 76)† What is the semiclassical analogue of the Dirac algebroid?
Does it guarantee Refoliation Invariance? Do its other commutator brackets close
in the same pattern as GR’s?

Research Project 77)†† Find a full and rigorous QG analogue of the Dirac alge-
broid. How unique is it? How universal are its features? Does it guarantee Refoli-
ation Invariance?

55.3 Suitable Model Arenas for Quantum Foliation Issues

RPM and Minisuperspace models, while either trivially or fortunately possessing
quantum Constraint Closure, are unsuitable for investigating foliation issues at the
quantum level. Thus more complicated examples are required.

Example 1) SIC has already been presented as a more viable model for investi-
gation of Foliation Independence. One particular quantum issue here is whether
the algebraic structure of Ĥ and M̂i can be formulated in a Foliation Independent
manner.
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Example 2) In [583], Kuchař approaches parametrized Field Theory by finding an
operator ordering in which its Hamiltonian maps to that of a massless scalar field
on M

2 viewed in ‘cylindrical’ coordinates.
Example 3) Kuchař and Torre [594] argued that the bosonic string can be viewed

as a model arena of Geometrodynamics. This application, moreover, involves a
Quantization procedure which is distinct from that usually performed on a bosonic
string. In this approach, the string exhibits anomalies; furthermore, these are Fo-
liation Dependent. They considered worldsheet diffeomorphism-covariant Quanti-
zations, among which an anomaly-free constraint algebraic structure can be found
by obtaining suitable internal time ‘embedding variables’. For these models, this
resolves not only the Constraint Closure Problem but their Foliation Dependence
Problem as well.

Example 4) Torre [857] exhibited quantum-level Refoliation Invariance in a func-
tional time evolution approach to 1 + 1 GR.

Example 5) Bojowald [155] has argued for quantum corrections to the Dirac alge-
broid maintaining a deformed notion of General Covariance.

Research Project 78) Consider the quantum-level consequences of Pons et al.’s
classical level work [722, 724] (Sect. 32.4–32.6). In particular, what are the
quantum-level consequences of the Hamiltonian to gauge condition distinction and
of the ‘nothing happens’ fallacy?

55.4 Foliation Problems at the Quantum Level

Example 1) Let us now return to the form taken by a split-spacetime diffeomor-
phism transformation—unlike that for a rotation transformation—depending on
what object it acts upon ([832] and Fig. 35.1). At the quantum level, this has
the further repercussion of greatly complicating the corresponding Representation
Theory.

Example 2) Foliation Dependence Problem with Internal Times. The bubble time
version describes a hypersurface in spacetime only after the classical equations
have been solved. This unclear status of foliations limits the extent to which such
internal time approaches are understood [552]. Quantum use of bubble times fea-
tures moreover in the Semiclassical Approach.

Example 3) Foliation Dependence Problem with Path Integral Approach. The path
integral’s definition furnishes a direct counterpart of Foliation Independence (the
construction of intermediate surfaces in Fig. 10.3.b). The Path Integral Approach
is an interesting place to look for whether this probably physically desirable result
of classical GR extends to the quantum level.

Example 4) Foliation Dependence Problem with Histories Theory. This is that GR
time’s many-fingeredness brings in Foliation Dependence issues to Histories The-
ory.

Finally, some constructive examples toward the Accept strategy are as follows.
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Example 5) In Savvidou’s work [768–771] to the HPO Approach, she pointed out
that the space of histories Hist has implicit dependence on the foliation vector.
This is the unit normal vector to the spatial hypersurface nμ mentioned in Chap. 8
as being orthogonal to a given hypersurface, now re-interpreted as the foliation 4-
vector [with a label running along the foliation, nμ(λ)]. With this HPO approach
admitting 2 types of time transformation, the histories algebroid turns out to be
Foliation Dependent. However, the probabilities—which are the actual physical
quantities—are Foliation Independent. In this way, this approach avoids ending
with a Foliation Dependence Problem.

Example 6) The preceding example leads to a further possibility, namely that the
classical foliation vector itself be among the structures being quantized. This was
considered by Isham and Savvidou [506, 507, 767]. Here,

n̂μ� = nμ�, !̂μν� = i

{
nμ

∂

∂nν
− nν∂∂nμ

}
�, (55.1)

where the antisymmetric !μν is the momentum conjugate to nμ and satisfies the
Lorentz algebra. They subsequently apply a Group-theoretic Quantization to the
configuration space of all foliation vectors for the Minkowski spacetime model
arena of the HPO Approach.

Example 7) Whereas Diff (m) is kinematical and shows up in Path Integral Ap-
proaches [477], in contrast, Digg(m)is dynamical and shows up in Canonical Ap-
proaches. However, quantum-level consequences of this remain to be worked out.

Example 8) Canonical-and-Covariant Histories Approaches may offer further per-
spectives on quantum-level foliations, though this remains but tentatively outlined
[769].
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Quantum Spacetime Construction Strategies

Construction of spacetime from space has been much less developed at the quan-
tum level than at the classical level. Whereas attempting to recover spacetime in
a suitable limit from a quantum theory with some non-continuum inputs has been
more widely studied, we postpone discussion of this to Epilogue III.C. For now, let
us note that such programs are indeed often designed so the recovery of a contin-
uum with spacetime properties is the last facet to encounter. [The Cubert Z carries
connotations of coming last in these strategic contexts.]

56.1 Semiclassical Spacetime Construction

Research Project 79)† Example 1) What is the quantum—or at least semiclassical
—counterpart of the classical Spacetime Construction workings of Chap. 33? Par-
alleling Wheeler’s classical considerations, this can be considered to be an inves-
tigation of why the semiclassical GR Hamiltonian constraint takes its given form.
In this case, can the versions assuming each of metrodynamics, geometrodynam-
ics and conformogeometrodynamics be worked out? (See [716, 717] for a start
on the Strong Gravity subcase at the quantum level.) Having seen rigidities which
give back GR play a significant role at the classical level, do these have a direct
quantum counterpart, and are there any further rigidities which greatly cut down
on choices of operator ordering and regularization?
If there is a semiclassical hypersurface kinematics (Project 78), does this further-
more admit a Machian interpretation, and is there a semiclassical counterpart of
TRiFol? Try starting with the geometrodynamics-assumed (Diff (�)-invariant) but
arbitrary supermetric ansatz

Ĥa,b,x,y = − �
2

√
Mx,y

δ

δhij

{√
Mx,yNijklx,y

δ

δhkl

}
� − �

2ξR(x; Mx,y]�

+ √
h
{
a + bR(x; h]}�, (56.1)
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much as Chap. 33 starts with the classical ansatz (33.3), alongside the ‘momenta
to the right’ ordering of M̂i . Compute the three commutator brackets formed by
these, including under Semiclassical Approach assumptions.

Example 2) Consider Spacetime Construction in the simpler, if more restrictive,
SIC setting.

Example 3) In Nododynamics alias Loop Quantum Gravity, semiclassical weave
states have been considered by e.g. Ashtekar, Rovelli, Smolin, and physicists
Matthias Arnsdorf and Luca Bombelli; see [845] for a brief review and critique
of these works.
Subsequent semiclassical construction work has mostly involved coherent states
(Sect. 48.1) instead, as constructed in this particular case by the ‘complexifier
method’ [845]. See [320] for a further distinct approach to these. In Lorentzian
spin foam models, semiclassical limits remain a largely open problem. E.g. [112]
is a treatment of Lorentzian spin foams that also covers how Regge Calculus’s
action emerges as a semiclassical limit in the Euclidean case. On the other hand,
almost all the semiclassical treatment in the more recent review [711] remains Eu-
clidean. The further LQC truncation [153] does possess solutions that look classi-
cal at later times. [These are amidst larger numbers of solutions that do not, which
are, for now, discarded for this reason. This is somewhat unsatisfactory due to its
replacing predictivity by what amounts to a future boundary condition.] It also pos-
sesses further features of a semiclassical limit [151]. (This means a WKB regime
with powers of both � and the Barbero–Immirzi parameter β being neglected. It
is still subject to open questions about correct expectation values of operators in
semiclassical states.)
Let us end by pointing out that Isham has argued [482] for spacetime being a
meaningful entity at most at the semiclassical level.

56.2 Spacetime Construction in Histories Theory

For instance, recovery of microcausality at the quantum level is possible in Savvi-
dou’s [768, 769] or Kouletsis’ [566] Canonical-and-Covariant Approaches. How-
ever, once again, this work very largely remains to be extended to the quantum
level.



Chapter 57
Quantum-Level Conclusion

In Part III, we further considered time in ‘Quantum Gestalt’: Quantum Gravity
treated on an equal footing with Background Independence. We began by provid-
ing further detail of what Quantization means, firstly within Canonical Quantiza-
tion Programs (Chaps. 39 to 43) and secondly within Path Integral Approaches
(Chap. 52). The structures used in formulating Quantum Theory have, moreover,
been argued in Chaps. 39 to 43 to transcend from Ordinary QM and QFT based on
Newtonian and Minkowskian absolutism to the Relational Approach as well.

Quantum Theory’s global sensitivity points to adopting Affine Geometrodynam-
ics at the quantum level, rather than the hitherto more often considered Plain Ge-
ometrodynamics. This is a consequence of the positive-definiteness of spatial 3-
metrics. That said, one seldom gets far enough in non-formal detail with Problem
of Time approaches to Geometrodynamics for this Affine versus Plain distinction to
have started to make a difference.

57.1 The First Four Facets

Let us next sum up as regards Part III’s main theme of quantum level interferences
between Problem of Time facets.

Kinematical Quantization—the nontrivial quantum analogue of the trivial assign-
ment of unconstrained beables U at the classical level—needs to be considered first
in Canonical Approaches. At the level of Problem of Time facets, this is amounts to
a preliminary consideration of Assignment of Beables. This involves a Kinematical
Quantization algebra K with commutator bracket product [ , ] acting on a Hilbert
space Kin-Hilb. Having done this, Configurational and Temporal Relationalisms
can be considered; these giving constraints ̂Chronos and F̂lin respectively, Con-
straint Closure then needs to be addressed before Assignment of Beables is further
amended so as to respect the constraints.

Dynamical Quantization subsequently involves operator ordering and the Wheel-
er–DeWitt equation exhibiting the Frozen Formalism Problem and the Inner Product
Problem.
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As regards residing within Temporal Relationalism implementing (TRi) formal-
ism, the general classical-level Temporal Relationalism implementing scheme (TRi-
PoD: Principles of Dynamics) can readily be extended to form TRiCQT (‘Canon-
ical Quantum Theory’). This is in great part by virtue of the classical Princi-
ple of Dynamics entities that become significant in Canonical Quantum Theory—
Hamiltonian variables, Poisson brackets, Hamiltonians, constraints, beables—being
already change-scalar quantities, alongside there not being a quantum analogue of
Dirac-appending of constraints.

Semiclassical Machian emergent time. The main classical strategy considered in
Part II is the Classical Machian Emergent Time Approach. In Part II, we argued in
favour of this over other candidate times such as hidden, matter and unimodular,
as well as over spacetime-first and entirely-timeless and spacetime-first approaches.
Part III has now provided further quantum-level arguments against the other ap-
proaches that survived Part II’s classical-level considerations. One salient case of
this is that hidden time candidates provide (Chap. 44) very hard quantum equations,
approximands to which do not resemble the underlying problem’s quantum physics
(which is known in full for a few simple models). Another is that quantum arguments
for purely timeless worldviews (Chap. 51) are lacking somewhat in generality and
greatly as regards current practical viability.

The classical Machian emergent time tem moreover fails to immediately carry
over as a Frozen Formalism Problem resolution at the quantum level. It has more-
over an emergent semiclassical time sequel (Chaps. 46-47). This is a reinterpre-
tation of—and further correction of—the already well-known notion of emergent
WKB time tsem [552]. We recast this in Machian form, providing a perturbative
Semiclassical Machian Scheme for the RPM analogue of Halliwell–Hawking-style
Semiclassical Quantum Cosmology. In this scheme, the semiclassical tsem coincides
with the classical tem to zeroth order but not so to higher (perturbative) order. This is
clear from quantum change being given the opportunity to enter the former Machian
time. One passes from an emergent Machian time of the form F[h, l,d∂h,d∂ l] to one
of the form F[h, l,d∂h, |χ(h, l) 〉]. This takes into account that the light subsystem has
passed from a classical to a quantum description, by which quantum change is now
being given an opportunity to contribute.

Some remaining issues with the Semiclassical Approach are as follows.

1) A priori motivation for use of the WKB approximation is limited. If this is
dropped, moreover, the emergent time mechanism ceases to function. We also
show in Epilogue III.B that this ansatz is merely local over configuration space
and space.

2) The Semiclassical Quantum Cosmology literature has hitherto suffered more
widely from insufficiently justified approximations. Some of these approxima-
tions are moreover inconsistent at least in fairly analogous quantum and even
classical systems. For instance, Part II pointed to one such approximation im-
plying that the 2-body problem sits stably within the 3-body problem. Another
approximation amounts to the neglect of central terms. Part III itself pointed
to higher derivative terms being dropped—dangerous in Fluid Mechanics—and
averaged terms being dropped: dangerous in Atomic and Molecular Physics. As
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such, humankind has probably only just seen the tip of the iceberg as regards
making Semiclassical Quantum Cosmology calculations. The current book has
outlined the physical significance of each often-omitted term and commented
on a few of the simpler regimes obtained by keeping but a few of these terms.
We provided more full equations keeping correction terms, and gave a start on
variational methods to underlie numerical treatment of such subsystems. This
is of interest as regards details of the possible quantum cosmological origin of
structure: galaxies and cosmic microwave background hot-spots.

Configurational Relationalism remains resolved in a range of models: having re-
duced at the classical level, Quantization does not unreduce the system.

In cases in which reduction cannot be carried out in practice, emergent WKB
time is, like its classical counterpart, only known implicitly due to a pending ex-
tremization over g in its definition. This is one significant Problem of Time facet
interference. It is moreover also a subcase of the indirectly formulated quantum-
level g-act g-all method for addressing the Configurational Relationalism facet.

Two further double—and one triple—facet interferences concern how quantum
constraint commutator brackets may behave differently from their classical counter-
parts. This may cause a difference in which group is physically irrelevant in passing
from a classical theory to its quantum counterpart. This description can be linked
to a subset of anomalies, by which the physically irrelevant group gets smaller:
g −→ gQM. The subset in question are those anomalies tied to time, space, frame
or q. It may also occur that classically compatible Chronos and Flin are promoted to

quantum-mechanically incompatible ̂Chronos and F̂lin. Finally, ̂Chronos may imply
new integrabilities, which render the original g unsuitable.

Whereas the above facet interferences already have classical counterparts as per
Fig. 35.2.a), the following further up to five-way interferences between facets very
largely do not.

Firstly, the classical and quantum constraint algebraic structures c and ĉ do not in
general coincide. The subalgebraic structures admitted by each consequently differ
in general as well.

Secondly, promoting classical constraints and classical beables to their quantum
versions require choice of operator ordering. Due to this, the particular notion of
beables (Chaps. 25 and 50) that one may wish to use for one’s problem may differ
between the classical and quantum levels. This last problem clearly does not oc-
cur if one uses the zero and unit extremes of the lattices in question: the algebraic
structure of all the first-class constraints CF corresponding to the Dirac beables D,
and the trivial algebra id of no constraints corresponding to the unconstrained be-
ables U . It is thus unsurprising that managing to promote classical beables to quan-
tum ones B −→ B̂ is the exception rather than the norm. This is one reason why one
often needs to start afresh at the quantum level. Another is that only a subalgebraic
structure of the quantum level beables b can be consistently promoted to quantum

beables b̂, due to the Multiple Choice Problem.
Thirdly, suppose Kuchař beables exist at both the classical and quantum levels,

for which Configurational Relationalism stays resolved with the same g, and for
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which momentum P can be represented as

P̂ = −i � δ∂

δ∂Q
.

Then operator ordering with P to the right preserves the classical first-class linear
constraint algebraic structure. Furthermore, classical Kuchař beables (or any other
type of A-beables corresponding to constraint subalgebraic algebraic structures of
the first-class linear constraints Flin) can be promoted to quantum ones in a suitable
operator ordering.

57.2 Spacetime, Timeless, Histories and Combined Approaches

At the quantum level, Spacetime Primality Approaches become Path Integral Ap-
proaches. Whereas Gauge Theory is well understood in such terms, a multitude of
problems surface in the case of GR. Some of these concern the unusual form of
the GR action, and others the difficult nature of the diffeomorphism group (e.g.
diffeomorphism-invariant measures). The QFT use of imaginary time also under-
goes severe shortcomings in the presence of curved, and generic, spacetime geome-
tries. Finally, Temporal Relationalism implementing Path Integral Quantum Theory
(TRiPIQT: Fig. 52.1) renders quantum path integral approaches compatible with
Temporal Relationalism.

Quantum Histories Approaches involve not just paths but strings of projectors
attached to these. Some such schemes, due to Isham and Linden, follow on from
quantizing classical histories theory, whereas other schemes such as Gell-Mann and
Hartle’s start de novo at the quantum level.

As regards Timeless Approaches, whereas at the quantum level a wider variety of
mechanisms for obtaining a semblance of dynamics have been proposed, few such
are conducive to carrying out calculations. Additionally, a quantum-level succes-
sor of the most promising classical scheme—based on Shape Statistics—for now
remains unformulated.

On the other hand, there are a number of approaches available in which time-
less records sit within formulations in which further structure is assumed. These
offer less radical but more solid ways out than being able to derive a semblance
of dynamics. In particular, one can consider Records Theory within one or both
of the Semiclassical Machian Emergent Time Approach or Histories Theory. Addi-
tionally, many of the strategies suggested for attempting to justify the WKB ansatz
requires investing in Histories or Timeless Approaches [329, 552, 931]. In the Au-
thor’s opinion, this is best approached by considering a combination of Timeless
Records, Histories Theory and Machian Emergent Time Approaches. This extends
a previous formulation by Halliwell [413, 414] to an explicitly Machian interpreta-
tion. Halliwell also provided a corresponding semiclassical means of constructing
observables for g-free models. This can also be extended to the g-nontrivial case
as a means of constructing semiclassical Dirac beables given semiclassical Kuchař
beables.
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57.3 State of Completion in Model Arenas

Relational Particle Mechanics (RPM) Configurational Relationalism is resolved
at the classical level for a range of simple such, and can be taken to remain resolved
in passage to the quantum level. Temporal Relationalism is subsequently resolved
in a directly computable manner in Quantum Cosmology model arena regimes by
semiclassical Machian emergent time. To leading order, this is a relational recovery
of Newtonian time. Constraint Closure remains a non-issue at the quantum level
for RPMs. Quantum Kuchař beables remain well-defined and are immediate to con-
struct, and subsequently Halliwell’s method for promotion to quantum Dirac beables
applies. Spacetime and hence Foliation Dependence and Spacetime Construction
issues are absent from RPMs. We are therefore done as regards providing A Local
Resolution of the Problem of Time for these RPMs. Reference [37] covers some of
the RPM models and the Problem of Time therein in further detail.

Minisuperspace This has trivial notions of Configurational Relationalism, Con-
straint Closure and Kuchař beables, as well as of Spacetime Relationalism, Foliation
Dependence and Spacetime Construction within its foliation privileged by spatial
homogeneity. Such models have a directly computable semiclassical Machian emer-
gent time, which to leading order is a relational recovery of cosmic time. Finally,
Halliwell’s method was designed in the first place for these very models, by which
A Local Resolution of the Problem of Time has also been attained for these.

Slightly Inhomogeneous Cosmology (SIC) [34, 50] To leading nontrivial per-
turbative order about an isotropic S

3 Minisuperspace with scalar field matter, this
has Configurational Relationalism resolved at the classical level, and can be taken
to remain resolved in passage to the quantum level. This model also has a directly
computable semiclassical Machian emergent time; once again this is a relational re-
covery of cosmic time to leading order. There are no known problems with quantum-
level Constraint Closure or Assignment of Beables here, though these remain to be
computed explicitly. Halliwell’s method now permits finding quantum Dirac be-
ables as functionals of quantum g-beables which no longer coincide with quan-
tum Kuchař beables in this model arena. For this model, Foliation Dependence and
Spacetime Construction remain to be worked out, even at the semiclassical level.

57.4 Research Frontiers

GR: Semiclassical and Quantum Counterparts of the Dirac Algebroid The
current state of knowledge still leaves us with most Foliation Independence and
Spacetime Construction matters very undeveloped, even at the semiclassical level.
The extent of Quantum Refoliation Invariance, Spacetime Construction and TRI-
Fol remains unclear. Foliation Dependent quantum constraint algebraic structures
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constitute yet another example of interference between Problem of time facets. Re-
search Projects 76), 77) and 79) have been suggested to address these matters.

Loop Quantum Gravity: Quantum-Level Position This is better-defined at the
quantum level than Geometrodynamics is. However, there are a number of issues
with the various branches of this program, as outlined in Sects. 43.5 and 56.1.

Research Project 80)† Carry out a quantum-level survey of the Problem of Time
throughout LQG alias Quantum Nododynamics.

Open Universe GR Models

Research Project 81) To what extent do Background Independence and Problem of
Time ideas apply in a) asymptotically flat and b)† asymptotically AdS spacetimes?
[These are natural alternatives to compact without boundary spaces, and are widely
used models. Asymptotic flatness is assumed in most treatments to date of isolated
Generally-Relativistic astrophysical objects, whereas AdS is very central in Holo-
graphic Approaches. Also bear in mind that whereas metric level Relationalism
provides arguments for favouring closed (compact without boundary) spaces, topo-
logical manifold level Relationalism more generally encourages treatment both of
open models and of open and closed models considered together. This is addi-
tionally a useful precursor to considering topological manifold level Background
Independence.]

Research Project 82)†† Since the Universe we actually live in looks to be, more
accurately, FLRW on larger scales, develop a suitable notion of asymptotically-
FLRW. [This would be a more complicated venture than setting up asymptotically
flat or AdS formulations.] Consider the extent to which Background Independence
and the Problem of Time apply here.

CPT in QG?

Research Project 83)† To what extent does CPT invariance carry over to QFTiCS?
To more full QG programs than this? If this remains relevant in Quantum GR,
does this interrelation of charge and time impinge upon Problem of Time facets
and strategies?

Arrow of Time in QG and Quantum Cosmology?

Research Project 84)† Does the quantum cosmological setting—or the full QG
one—affect the Arrow of Time arguments, or provide new reasons to suggest a
Master Arrow?

Supergravity This book has revealed that Background Independence and the
Problem of Time for Supergravity are substantially classically distinct from Ge-
ometrodynamics. This is due to a change in the integrability structure of the con-
straints. This causes further changes in the interpretation of Temporal and Configu-
rational Relationalism and in the types of notions of beables which are appropriate.
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Further implications of this for the nature of time and the foundations of QG re-
main to be worked out. To date, the Semiclassical Approach to Supergravity has
been most developed in [555]. By the anomaly-cancelling properties of the super-
symmetry, there is some chance of obtaining a better-behaved quantum (or at least
semiclassical) constraint algebroid, as regards Constraint Closure, Refoliation In-
variance and Spacetime Construction.

Research Project 85)† Investigate Background Independence and the Problem of
Time for Quantum Supergravity.

M-Theory Canonical Approaches to M-Theory include e.g. theoretical physicists
David Berman and Malcolm Perry’s [136], or Jonathan Bagger, Neil Lambert and
Andreas Gustavsson’s [85–87, 400]. Whereas a few approaches to time in M-Theory
have been considered, e.g. in [782] by theoretical physicist Nathan Seiberg from
an emergent spacetime perspective, such works are as yet few and far between.
Supergravity is itself a kind of semiclassical limit of M-Theory. In this way, at least
some semiclassical approaches to M-Theory follow from passing to Supergravity,
which further motivated making use of Supergravity as an example in this book.

Moreover, some of the conceptual changes in passing from GR to Supergravity
significantly change again in passing to Superconformal Supergravity. For now, very
little is known about whether any of the Canonical Formulations of M-Theory are
yet again distinct, including among themselves. E.g. [85–87, 400] involves a differ-
ent type of brackets algebraic structure, and so of constraint algebraic structure and
of notions of observables or beables [32].

Research Project 86)†† Perhaps the relational notions along the lines of those pre-
sented in this book are furthermore necessary for a notion of M-Theory which
possesses GR, or Supergravity, type Background Independence. Might the elusive
meaning of ‘M’ turn out to be resolved by ‘M for Mach’?

Research Project 87)†† To what extent are Holographic Approaches Background
Independent?

The established physical theories combine to give the appearance that there is no
such thing as time at the primary level for whole-universe models. However, fol-
lowing Mach, time can be abstracted from change in a wide range of circumstances,
including for all practical purposes in everyday life. That time is an abstraction from
change is also the answer we give to Saint Augustin’s opening question.

Why time consistently exhibits a direction, an also widely-noted and mysterious
issue, remains an issue that is much more widely not convincingly explained to date,
although this (‘the Arrow of Time’) was never the subject of this book.

SR, QM and GR have moreover all entered accurate measurement of length and
time, and the corresponding definitions of the units for these quantities as well. This
gives practical interest to further understanding Fundamental Physics: it eventually
enters both the accuracy and the conceptualization of all Physics.

Returning to Einstein’s sins that the Introduction ends with, Quantum Theory still
implicitly enters GR’s timestandards. But there is no such thing as a purely classi-
cal world; ultimately a bottom-up theory of Quantum Gravity would be expected
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to be consistent in this regard. For now, GR’s idealizations are still doing fine for
Science. . . .

Let us end with warnings and reassurances. “I wasted time, and now doth time
waste me.” William Shakespeare [787]. Thus in theorizing, ignore time at your
peril! “The strongest of all warriors are these two—Time and Patience.” Leo Tolstoy
[850]. So when faced with the knot of Time, employ Patience, and “all we have to
decide is what to do with the time that is given us” J.R.R. Tolkien [849]. Along such
lines, if all we have is an emergent time in some regimes, then let us see how much
we can do with it.



Chapter 58
Epilogue III.A. The Multiple Choice Problem

This Epilogue is an expansion of Sect. 12.15’s outline of the Groenewold–van Hove
phenomenon that is the main part of the Multiple Choice Problem. See [392, 866] for
the original papers. More recent technical papers include [375, 376, 378–381]; these
are on particular examples given by mathematical physicist Mark Gotay, some in
collaboration with mathematical physicists Janusz Grabowski, Hendrik Grundling,
C.A. Hurst and Gijs Tuynman. [376] itself reviews all preceding papers; see also
[355, 361] for subsequent commentary.

Moreover, generic GR gives further reasons for such choices to be made. Here
there is no geometrically natural choice for the internal spacetime coordinates. Clas-
sically these all have equal status [479, 483], and yet the limitations on consistent
quantum algebraic structures push one toward making such a choice. Part of the
Multiple Choice Problems in QG arise from this clashing combination of quantum
and GR features. More widely, quantizing nonlinear theories is likely to produce this
phenomenon [483]. Let us end by noting that this occurs not only for field theories
but for finite models as well (a common misconception prior to [483]).

58.1 Multiple Choice Problems

Multiple Choice Problems are exhibited by not only the above choices of timefunc-
tion and of spatial frame, but also by the choice of classical beables subalgebraic
structure.

The Multiple Choice Problem, moreover, perseveres even in the Semiclassical
Approach when studied in sufficient detail [586]. For instance, there could be mul-
tiple regions with distinct WKB approximations holding in each, leading to distinct
emergent times in each such region. There could also be a variety of different ap-
proximate emergent times within each such region. The Groenewold–Van Hove phe-
nomenon is on occasion avoided here, due to some subalgebraic structure choices
and unitary inequivalences being of negligible order in semiclassical expansions.
E.g. these may be O(�) smaller than the smallest terms kept.
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Section 20.3’s scale time ambiguity corresponds to selecting different entities to
be among one’s subalgebra of quantum beables, which is a source of the Multiple
Choice Problems upon passing to the quantum level. In Internal Time Approaches
more generally, the Multiple Choice Problem applies e.g. to making two different
choices of internal coordinates [483].

In Path Integral Approaches, there is no longer a time whose selection causes
this problem. But there often does remain a choice of frame, and always a choice
of beables, and each of these is rather likely to be afflicted with a Multiple Choice
Problem. These can additionally be passed on to the measures involved in gravita-
tional path integrals [477, 586].

The above problems with path integrals carry over to Histories Theory, which
also suffers from the following further problem. Histories Theory is usually ap-
proached in gauge-dependent form. This is with each gauge being equipped with
an internal time. In this way, many internal time problems return, one of which is
the Multiple Choice Problem in the timefunction. In this book, we get round this
problem with internal time by making use of emergent Machian time instead. How-
ever, this still carries no guarantee of freedom from Multiple Choice Problems, e.g.
due to the above points about the Semiclassical Approach continuing to hold in the
version receiving a Machian interpretation.

Let us end by pointing to Foliation Dependence as one of the ways in which the
Multiple Choice Problem can be manifested.

58.2 Strategies for the Multiple Choice Problems

1) Total Excision. Work only with models that do not exhibit the Multiple Choice
Problem. This is however draconian, given that there is no deep-seated physical
reason to reject these models, which are also for now in the majority amongst
those studied (Sect. 58.3).

2) Unconditional Acceptance of all cases of the phenomenon as part of quantum
reality. In this case, one would need experimental tests to determine which choice
Nature makes.

1) and 2) are opposite extremes; the next three strategies lie somewhere in between.

3) Patching. For instance, one could accept that timefunctions are both multi-
ple and local, and proceed to consider how to interpolate between such in
passing between patches. This is carried out in e.g. Bojowald et al.’s works
[157, 158, 452, 453]. Multiplicity of times is also inherent in Rovelli’s ‘any
change’ and ‘partial observables’ approaches to Relationalism, and also in the
STLRC approach (where one tests one’s way among the many to find which is
locally-best); see also Sect. 58.2.

This timefunction patching strategy, however, has so far not addressed the
entirety of the Multiple Choice Problems. This is firstly because while each patch
having its own time manifests some aspects of the Multiple-Choice Timefunction
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Problem, it is not known to overcome, more specifically, the Groenewold–van
Hove phenomenon itself. Secondly, this strategy has not hitherto been used to
address the multi-facetedness of the Multiple Choice Problems. On the other
hand, through this strategy’s use of a moments expansion, it does concurrently
offer a new approach to the Inner Product Problem. It additionally works toward
resolving the Global Problem of Time (see the next Epilogue).

4) Partial Excision: remove the problem by considering a hypothetical subspace of
the canonical transformations such that the square of maps of Fig. 12.2 com-
mutes. It is not however clear [37] which nontrivial subspace would have this
property!

5) Perspectival Acceptance of those cases of the phenomenon for which there is
physical justification for the choices through their correspondence to different
perspectives. This would for instance allow for different observers observing
different subsystems that have different notions of time; this fits in well with the
partial observables and patching approaches.

Research Project 88)† To what extent does the Multiple Choice Problem coincide
with to differences in perspective between observers?

58.3 Specific Model Arenas

A common misconception [483] has been that the Multiple Choice Problem would
only be of concern in the study of infinite models. It can however occur for finite
models as well. Indeed concrete model studies of it have concentrated on finite mod-
els. Namely, the following phase spaces: R2n [375], S2 [381], T∗

S
1 [378] which do

exhibit the Multiple Choice Problem, and T
2 [379] which does not. T∗

R+ admits a
polynomial Quantization [377]. [376] reviews all of these. See [399] for an excellent
part-worked introductory example.

Some of the above cases can furthermore be interpreted in whole-universe model
arena terms; for r-formulations of RPMs the current frontier of knowledge is as
follows.

Metric Shape and Scale RPM

N = 3 N ≥ 4

d = 1 Phase = R
4 Phase = R

2n

Both exhibit MCP
d = 2 Phase = R

6 Phase = T∗(C(CPn−1))

Exhibits MCP MCP status unknown

Metric Shape RPM

N = 3 N ≥ 4

d = 1 Phase = T∗
S

1 Phase = T∗
S
n−1

Exhibits MCP MCP status unknown but relationally trivial
d = 2 Phase = T∗

S
2 Phase = T∗(CPn−1)

MCP status unknown MCP status unknown
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This settles that Multiple Choice Problem does occur for some RPMs, which, con-
versely, pose a number of interesting extensions to the Multiple Choice Problem
analysis so far.

Research Project 89)† How ubiquitous is the Multiple Choice Problem for Minisu-
perspace and modewise SIC? What is known about the Multiple Choice Problem
for systems that retain linear constraints at the quantum level? What about in sim-
ple Field Theories?
E.g. do the various distinct isotropic Minisuperspace ‘true Hamiltonians’ in
Isham’s account (Sect. 4.2.3 of [483]) which correspond to different choices of
time candidate have an underlying manifestation of the Groenewold–van Hove
phenomenon at the level of Kinematical Quantization? If this example were to fail
to exhibit this phenomenon, find other Quantizations of Minisuperspace models
for which it does occur.



Chapter 59
Epilogue III.B. Quantum Global Problems
of Time

59.1 Extending Classification of Global Problems of Time

The classical level considerations of meshing together manifold charts and patching
together local solutions of PDEs are augmented at the quantum level to include the
following patchings.

1) Various classes of operators on Hilbert spaces. Self-adjointness confers a more
global character upon quantum operators than classical functions are bestowed
with. One now has kinematical operators, constraint operators, dynamical oper-
ators and beables operators to contend with. Maps between classical and quan-
tum spaces further complicate the Analysis involved due to the heterogeneity
between domains and codomains.

2) How to patch together representations.
3) Since some quantum wave equations are FDEs rather than PDEs, patching their

solutions together may be more intricate.
4) Inner products are required as well as wavefunctions so as to handle physical

quantities. One now has to patch together quantum mechanical unitary evolu-
tions which involve both of these features. In general, this list of quantum-level
patchings is short on conceptual, let alone technical, understanding.

Some particular examples do afford a more concrete understanding. For instance,
in some particular cases of CFT and TFT [916], there is a sense in which Hilbert
spaces can be associated with boundaries. This can furthermore be interpreted in
terms of assigning representations, and in terms of evolving through intermediary
boundaries. On the other hand, in spin network approaches, vertices are labelled by
representations and edges by intertwiners (defined in Appendix W.1). This gives a
concrete implementation of patching representations together.

A more well-known global issue concerns viewing the quantum wavefunction as
defined on a section. So in the event of a lack of global section, a fibre bundle pre-
sentation with multiple charts is required. In this setting, the corresponding quantum
states belong to a cohomological—rather than just plain—Hilbert space.
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59.2 Semiclassical Approach

Problem 1) What happens when a wavepacket approaches a zero of the potential
factor? This is the wavepacket version of the geodesic problem 1) of Sect. 37.1.

Problem 2) The forcedly local nature—in the sense of finite regions in space and
in configuration space— of Sect. 37.1’s Problems 2) to 4)’s heavy–light split des-
ignations carries over to the quantum level. The relevant set of approximations is
now that given in Chap. 46.

Problem 3) Abstracting a GLET from a STLRC remains local in the context of
Semiclassical Quantum Cosmology.

Problem 4) In Chap. 46, we already alluded to how emergent semiclassical time
picks up a significant imaginary part if considered over too large a piece of q.

Problem 5) In particular, WKB regimes are not expected to hold globally in time,
space or configuaration space. Classical–semiclassical Machian emergent time
alignment extends the relevance of the issues raised at the classical level in
Chap. 23 and in Epilogue II.B. Semiclassical emergent time is moreover glob-
ally limited (in space and in configuration space) by S having zeros. There is often
oscillatory behaviour to one side of these and decaying behaviour to the other. In
such cases, the WKB procedure is both invalid at the zero and a very poor approx-
imation nearby.

A distinct approximation is therefore required around each zero; cf. the theory of
connection formulae [667] for moving between WKB regimes in the case of ODEs
(Fig. 59.1.d). Because of this, a time arising from a WKB procedure cannot be
claimed to be generically applicable over q. One should rather expect a number of
patches in q in which a different regime applies; therein emergent semiclassical time
is not a valid answer to the Problem of Time. This raises the interesting question of
whether these patches remain timeless, or whether the connection formulae provide
their own emergence mechanism. Additionally, if the zeros are sufficiently near to
each other, there is no room for a WKB regime in the region between them. Applica-
bility of the WKB procedure is thus expected to be local along such lines within any
q that contains many potential factors zeros. Moreover, the theory of (some gener-
alization of) connection formulae for use in Quantum Cosmology largely remains
to be developed.

Research Project 90) In the quantum cosmological setting, what form does the
wavefunction take in the connecting regions? Is there any resolution of the Prob-
lem of Time in these regimes? If this holds, can this be patched with the emergent
WKB time resolution in the other regions? Does some version of the connection
formula procedure for patching together regions remain suitable at the level of
prolonging quantum evolution?

59.3 Hidden Time Approaches

Problem 1) The quantum-level Ĥ True is also questionable as regards its global
well-definedness. This may well just be defined in a localized patch within thidden

itself; this already occurred in Sects. 37.4–37.5’s classical treatment.
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Fig. 59.1 a) Wavepacket moving across a stratum barrier. b) Wavepacket reflected on a stratum
barrier. c) Time in a Patching Approach arising in the Semiclassical Quantum Cosmology arena.
d) An analogous ODE problem (e.g. 1-d QM), for which WKB breakdown near a zero Z is patched
over using the connection formula method. I.e. firstly, an approximation around Z is made in terms
of Airy functions [1]. Secondly, matching conditions are applied to relate the solutions in each re-
gion. f) Global behaviour of wavepackets in isotropic Minisuperspace. The initial condition spec-
ification indicated is for scale factor time [552]. This is also to be contrasted this with the single
point data prescription of the classical trajectory in Fig. 37.1.g)

Problem 2) The corresponding quantum wave equation can also have negative-
probability interpretation issues in some finite regions of the state space.

59.4 Basic Monopole and Gribov Effects at the Quantum Level

The Gribov ambiguity [446] now interferes with gauge-fixing as a route to Quanti-
zation. Much of the mathematics of monopole defects [886] is intended for use at
the quantum level. See e.g. [674, 675, 886] for a further range of global effects well-
known in standard QFT, and [473, 475] for the less well-known and more involved
extension of some of these to QFTiCS and to full GR.

On the other hand, the reduced phase approach is not affected by the Gribov
obstruction.

59.5 Quantum Issues Following from Stratification

From the classical treatment, we have learned that configuration spaces q are not in
general manifolds, nor are Fibre Bundle Methods always applicable to them. They
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are more generally stratified manifolds, for which Sheaf Methods are more natural
and more generally applicable.

Moreover, the quantum state vector is not on superspace(�) but on a section of
a flat vector (fibre) bundle [482]. This point is just a subcase of Sect. 59.1’s, the flat-
ness resulting from (43.14)’s topological consideration. The quantum consequences
of this, however, largely remain to be worked out. E.g. Schmidt [775] considered
Geometrical Quantization in the model arena of gauge group orbit spaces O, while
advocating further finite model studies of quantizing stratified manifolds.

The first five issues below are reasons why approaching stratified manifolds with
an Unfold Strata strategy (Sect. 37.5) would amount to a nontrivial alteration of the
corresponding Quantum Theory.

Issue 1) In quantizing a stratified manifold, different strata would be expected to
contribute their own representations.

Issue 2) Since operator self-adjointness is a globally sensitive matter, removal of
strata would likely affect the form of quantum theory in question.

Issue 3) Some types of operator ordering for the quantum wave equation, such as
the Laplacian or conformal Laplacian operator orderings, have geometrical content
which can only be defined on a stratum-by-stratum basis.

Issue 4) Wavefunctions on an unfolded configuration space would be expected to
have a distinct probability density over the part which does not require unfolding.

Dynamical Issue 5) There is a quantum wavepacket counterpart of the classical
phenomenon of geodesics hitting strata (Fig. 59.1.a–b).

Issue 6) At least in some cases, non-generic gauge orbit strata can be taken to pos-
sess an analogue of magnetic charge, whereby they can be viewed as a type of
magnetic monopole. In this way, the inclusion of non-principal strata can affect a
quantum theory’s dynamical behaviour.

Issue 7) Stratified manifolds require General Bundle Methods, or a fortiori Sheaf
Methods, in place of just Fibre Bundle Methods. Wavefunctions are now to be
defined on sheaf sections; in the event of a lack of a global such, a multiple sheaf
section presentation is required.

For now, we know that the various trianglelands in Fig. G.11 differ both at the level
of Kinematical Quantization and of the forms taken by their quantum wavefunc-
tions. In this way, the differences between these models have quantum-level conse-
quences.

59.6 Constraint Closure

Problem 1) Paralleling the classical situation with Poisson brackets, the quantum
commutator remains a local-in-time-and-space slab construct, rather than neces-
sarily holding globally.

Problem 2) Anomalies carry topological connotations. Some anomalies are purely
topological, due to which they are entirely missed by perturbative methods. In
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this manner, the Quantum Constraint Closure Problem is at least part global. Such
anomalies can be tied to characteristic classes, cocycle conditions and Index Theo-
rems; see e.g. [673] for an outline and [139] for a more detailed exposition includ-
ing of such in Gravitational Theory.

Research Project 91) [alias Problem 3)] E.g. [443] demonstrated that further cases
of anomalies can arise from nongeneric strata. Provide a topological and geomet-
rical characterization of this phenomenon alongside a physical interpretation.

Problem 4) The algebraic structure formed by the quantum constraints can vary
from point to point in space or in Phase. This remains moreover within the remit
of Sheaf Methods.

59.7 Observables and Beables

Quantum observables or beables are in general not globally defined over all of time,
space, Phase (or q in the purely configurational case). The local operationally
favoured versions of these entities are ‘fashionables’ and ‘degradables’, respectively
(as per Sect. 37.8). Some global issues with this are as follows.

Problem 1) At the quantum level, it is somewhat strange for globally-defined kine-
matical commutator brackets algebraic structures and constraints to be associated
solely with locally-commuting entities.

Problem 2) In the absence of global quantum observables or beables, it is further-
more unclear how one is to patch between different sets.

Issue 3) Consideration of localized notions of observables or beables carries over to
the quantum and semiclassical levels. For instance, in Bojowald et al.’s [157, 158,
453] fashionables approach at the semiclassical level (Fig. 59.1.c), a moments ex-
pansion is used to bypass the Inner Product Problem. Whereas fashionables are
real-valued, solving the constraints gives that this approach’s notion of time go
complex around the semiclassical regime’s turning points. [Their sense of ‘semi-
classical’ is that they neglect O(�2) and higher moment polynomials.] In this ap-
proach, moreover, the imaginary part of a time variable becoming significant is a
diagnostic for that time variable ceasing to be accurate. This is due to the onset of
non-unitarity in the evolution brought about by the local nature of the Semiclassi-
cal Approach.
Time having to be complex in this program—and in other more orthodox treat-
ments of connecting regions—may furthermore interfere with such a time candi-
date having enough of the list of time properties to pass muster as a time. Let us
finally recollect (Chap. 52) that the use of Complex Methods for detailed path-
integral or canonical type calculations has a poor track record in Gravitational
Theory.

Problem 4) Sect. 37.12’s argument on operational grounds against types of quan-
tum beables which are integrals over all t , space, q, or Phase, continues to hold
at the quantum level.
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Problem 5) That quantum observables, beables, fashionables or degradables consti-
tute an algebraic structure is a further hurdle for the Patching Approach, which has
hitherto largely not been taken into account.

Let us finally consider modelling algebraic structures of observables or beables
by sheaves. Sect. 37.8’s classical-level transcends to the quantum level; this can
be seen as a more mathematically advanced approach to patching which can take
Problem 5)’s algebraic structure point into account. We note that Haag [401] has
pioneered the modelling of quantum observables by sheaves. This is also among
the many applications covered in mathematical physicist Urs Schreiber’s immense
review [778] of advanced topological and categorical applications to Theoretical
Physics.

59.8 Timeless Approaches

Problems 1) and 2) are Sect. 37.9’s 2) and 5), which are in practice mostly to be
considered at the quantum level. This is due to the importance of quantum con-
ceptualization of records and of the role of (some variant on) Quantum Theory in
whatever actually-proposed mechanisms for obtaining a semblance of dynamics or
of history.

Problem 3) The Wheeler–DeWitt equation has at most been studied in neigh-
bourhoods of highly symmetric metrics such as Halliwell–Hawking’s around S

3.
Giulini [358] comments that it would be interesting to know how ‘far’ from such
a point one has to go in order to encounter singular regions and signature change.
In this way, locality in configuration space q enters consideration. He additionally
comments on how Wheeler–DeWitt equations have apparently not been studied in
the neighbourhoods of metrics with spatial Ricci scalar R< 0 (as opposed to S

3’s
R> 0).

Problem 4) The Global Problems concerning the heavy–light split sharpen the part
of Barbour’s conjecture concerning the importance of q’s geometry to the quantum
probability distribution.

Problem 5) Sect. 51.3’s argument—about conformal non-flatness being required to
separate out q’s geometry effects from potential effects in investigating Barbour’s
conjecture—is only locally valid. This is because viewing the potential factor W
as a conformal factor is in general only locally valid due to the Problem of Zeroes,
Infinities and Non-Smoothnesses (PoZIN).

Issue 6) Our classical-level argument for sheaves providing a more advanced set-up
for Records Theory furthermore transcends to quantum Records Theory.

59.9 Paths and Histories Approaches

Problem 1) Since nongeneric gauge orbit strata affect classical motion, they can
contribute nontrivially to quantum path integrals [759]. This can lead to some
quantum states being localized; [290] gives a finite mechanical example.
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Problem 2) The Fadde’ev–Popov construction of path integrals is less straightfor-
ward in cases with multiple strata [759].

Problem 3) The Gribov ambiguity in the path-integral formulation of Yang–Mills
Theory continues to feature in Gravitational Theory.

Problem 4) At the classical level, we already alluded to how the consequences of
Histories Theory are usually considered in gauge-dependent form. Moreover, each
gauge choice is tied to an internal time candidate; consequently many internal time
problems recur, including quantum-level ones. Furthermore, by Histories Theory
being based on paths, Problem 3) recurs here as well; e.g. the forms of Eqs. (53.24)
and (53.25) are affected.

Problem 5) This book’s main program, moreover, breaks contact with such internal
times by using emergent Machian time instead, including within the context of
Histories Theory. This program, however, has its own set of Global Problems to
face as per Sect. 59.2.

Problem 6) As at the classical level, histories constraints and histories observables
also have global issues, now paralleling those in Sects. 59.6–59.7.

Problem 7) Histories have the possibility of intersecting non-uniquely with spatial
hypersurfaces [586].

Issue 8) By being built up as sequences of quantum timeless records, quantum his-
tories are also well-modelled by sheaves.

Issue 9) So are quantum histories constraint and observables algebraic structures,

L
H
ĉ and L

H
b̂.

59.10 Combined Approach

In addition to each constituent approach’s problems, the Combined Approach has
the following additional Global Problems. Section 37.12’s Problems 1) to 3) each
have obvious quantum-level analogue. In particular, Problem 3)’s semiclassical
counterpart is that t sem is only locally defined for even more reasons than tem is.
Problem 2) is the conflict between this and the requirement of integration from − ∞
to +∞ so as to have quantum Chronos or Dirac beables. In contrast, Anastopoulos’
distinct histories-based construct [9] does not require integration from − ∞ to + ∞;
the end-products of this are, however, histories observables rather than beables.

Problem 4) Semiclassical emergent Machian time now only provides a local sem-
blance (PoZIN, multiple approximations, GLET); presumably also the histories
only decohere locally since the WKB regime produced is in general only local.

Problem 5) Gell-Mann and Hartle’s ‘somewhere’ in statement (54.1) is meant lo-
cally.

Issue 6) The timeless probabilities of Halliwell concern localized regions in q.
Consideration of multiple—or more extended—such regions is sketched in
Fig. 59.2.

Issue 7) The class functional (54.5) is to be interpreted locally. Through selecting a
region, using such a construct to solve the Problem of (especially chronos or Dirac)
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Fig. 59.2 Composing Halliwell’s regions construct. a) Consider now two regions U and U′ which
are pieces of general hypersurfaces ϒ and ϒ ′ within the configuration space q. b) Occasionally
there will exist a single hypersurfaceϒ orthogonal to the classical flow that includes both U and U′ .
Furthermore, by (29.13), ProbU OR U′ = ProbU ∪ U′ just as for the Naïve Schrödinger Interpretation.
c) However, if U and U′ do not lie on the same hypersurface, this is not directly analogous to the
Naïve Schrödinger Interpretation. Now one can consider the flow evolution U′ ′ of region U, say,
so that it lies in a hypersurface ϒ that extends U′ . In this case, one can now compose U′ and U′ ′
just as one did for the Naïve Schrödinger Interpretation. d) Moreover, there need not always exist
a section that extends U′ while also containing a flow evolution image U′ ′ of U. This case is an
example of the composition of Halliwell’s implementation not always reducing to a parallel of the
Naïve Schrödinger Interpretation’s composition. Local sections and meshing conditions between
them suffice for composition, but this does not always hold either. These non-existences reflect that
some flows can be pathological, e.g. exhibiting breakdowns in well-definedness or smoothness

Beables or Observables at the quantum level is indeed compatible with the basic
ethos of degradables or fashionables. So in general Halliwell’s method just con-
structs quantum chronos or Dirac degradables. Nor have such yet been built with
global or even widely non-local geometrical considerations in mind. Two reasons
why in general these are just degradables are as follows.

i) h–l splits are not in general global (in space or in configuration space).
ii) Problem 4) applies to these degradables as well. In particular, the precluded

locality in time would be a desirable property for beables that can be used in
practice.

Problem 8) Halliwell’s scheme does not a priori use a Naïve Schrödinger inner
product (see also Fig. 59.2). None the less, its implementation of propositions is
also by regions of classical q (or maybe a generalization to regions of Phase). So
it still suffers from probabilities corresponding to regions composing too simply
(Booleanly) for one to be able to represent all quantum propositions in such a form.
E.g. quantum propositions in general compose nondistributively [484, 486, 503],
whereas the composition of configuration space regions is distributive; see also
Appendix S.4. See Epilogue III.C for a possible way out.

59.11 Refoliation Invariance and Spacetime Construction

Research Project 92) To date, Quantum Spacetime Construction just has local pro-
tective theorems. This locality is in space, time and configuration spaces, given
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that all of these already applied at the classical level. However, this global quan-
tum version should await obtaining local quantum results.

Research Project 93) Quantum Refoliation Invariance has hitherto only been stud-
ied locally. Pass to a global version.



Chapter 60
Epilogue III.C. Deeper Levels’ Quantum
Background Independence and Problem of Time

We finally return to Riemann’s question that Epilogue II.C opened with, now ad-
dressing it at the quantum level. Whereas commutation relations can be imagined to
all levels, are equal-time commutation relations impaired by loss of temporal proper-
ties in the descent of levels of mathematical structure? Which aspects of Background
Independence survive this descent, and which break down at each level?

Another interesting question is how far down this descent the notion of fermions
remains supported. At the level at which this breaks down, the notion of Supersym-
metry is compromised as well. Note here that supersymmetric TFTs are well-known
[915]; on the other hand, at least some elements of topological manifold level struc-
ture may be indispensable for Supersymmetry.

Moreover, Mackey’s g/H example (Sect. 39.5) transcends to the generalized q
of other levels of mathematical structure [480, 481, 491].

Spacetime Construction attempts from assuming less mathematical structure are
fairly common, usually in the guise of ‘Discrete Approaches’. For instance, one
investigates here how such as curvature and causality arise—at least in suitable
limits—within less structured approaches. What of a single, integer-valued and suf-
ficiently large dimension? We prefer however to consider these matters in terms of
dropping some of the topological manifold or topological space assumptions that
make up the conventional package of ‘the continuum’. This is much more general
that a continuum versus discrete dichotomy, because there is a rich range of models
which are intermediate between the naïve notions of ‘continuum’ and ‘discrete’.

While ‘Discrete Approaches’ have a taming effect on the path integral, Space-
time Construction Problems pose significant difficulties for these approaches. For
instance, difficulties are to be expected to ensue from the Causal Sets Approach’s
insistence on very sparse structural assumptions. At the point this book was written,
recent advances were e.g. Rideout and physicists Seth Major and Sumati Surya’s
account [634] for a recovery of a spacetime-like notion of topology, or Rideout and
Wallden’s work [734] for a (classical-level) recovery of a metric.

Isham [497] has also pointed out that functional integrals involve distributions—
Quantum Theory ‘roughens up’ spaces so why not sum over differentiable mani-
folds alongside manifolds with singularities in place of just over differentiable man-
ifolds?

© Springer International Publishing AG 2017
E. Anderson, The Problem of Time, Fundamental Theories of Physics 190,
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Twistor Theory is an area of Theoretical Physics in which Sheaf Methods have
featured since the 1970s. E.g. [707] covers this point at the level of Twistor The-
ory’s quantum wavefunctions. This is another way in which the Twistor Approach
was well ahead of its day as a pioneering program, and this extends to use of sheaf
cohomology as well. The Twistor Approach can furthermore be viewed as a null
structure Quantization counterpart to Isham and Savvidou’s quantizing of the folia-
tion vector in Sect. 55.4.

60.1 Topological Manifold Level Considerations

We consider here Wheeler’s spacetime foam conceptualization [897], in which
quantum fluctuations could be expected to cause the metric to change signature
and alter the topology of space. In this manner, Quantum Theory might tolerate—
or even motivate—inclusion of metrics which are more general (e.g. degenerate
or singular) amongst a theory’s configurations. On these grounds, the elsewise-
motivated classical-level inclusion of degenerate beins in Ashtekar variables formu-
lations might come to be acceptable, and similarly the quantum-level consideration
of Plain rather than Affine Geometrodynamics.

This approach originated from Wheeler’s idea of applying Feynman path inte-
grals to Quantum Gravity. So perhaps now summing over histories entails sums
over topologies. One would next contemplate computing transition amplitudes for
‘topology change’ (meaning change in spatial topological manifold). More specif-
ically, which topologies is one to include, and what kind of metrics are there to be
thereupon (Appendix S.2)?

Problem 1) The non-classifiability of 3-d topologies renders ‘GR with summing
over topologies’ highly formal.

Problem 2) Geroch’s Theorem (Appendix S.2) entails choices which are both tech-
nically and conceptually difficult.

Model Arena 1) Topological Field Theory (TFT) [674, 916], in particular the
Chern–Simons Theory following from (38.4). This is a metric-free model. More-
over, being spatially 2-d , it is free from the excessive complications caused by 3-d
topologies.

Problem 3) Spatially 2-d models are sufficiently tractable that one can get far
enough to espy further technical problems. Quantum wavefunctions tend to con-
centrate about the classical action’s extremal contribution, albeit now only due to
this contributing more rather than being the sole contributor as it was at the clas-
sical level. However, the topological manifold level counterpart of this involves
extremization of discrete, rather than continuous, parameters in the action. At the
very least, this requires an extended version of the Calculus of Variations to jus-
tify, and how to proceed in general remains unclear. Moreover, whereas the largest
value of the action contributes the most probability, other cases of sizeable action
contribute as well. On the one hand, this covers the well-known case of multiple
saddle points in standard approaches to Semiclassical Quantum Cosmology. On



60.2 Metric and Topological Space Level 637

the other hand, it also covers dominance by less probable but more numerous con-
figurations, of which [193] provides a spatially 2-d GR example. Both of these are
quantum effects which smoothen out classical extrema, and both cast some doubts
on semiclassical approximations used in Quantum Cosmology.

Problem 4) If one’s model allows for pinching off (Appendix S.2), a quantum-level
microscopic problem ensues due to virtual pairs pinching all over the place, which
might compromise some aspects of local SR physics.

Model Arena 2) There is a partial analogy between topology change in GR and
change in particle number in RPMs. One can view this as modelling operations
that alter the ‘list of contents of the Universe’ aspect of topology change in GR.
Finite RPMs would involve ⋃

N∈N0

q(N,d) (60.1)

so as to allow for particle coalescence and splitting, or creation and annihilation.
Some instances of stratified q for RPM can at least on some occasions be regarded
as already being of this form. This analogy additionally suggests the concept of
interaction terms between topologies which parallels particle non-conserving in-
teraction terms. Moreover, this has the interpretation of ‘Second Quantization’ in
the sense of model universe creation rather than of mere particle creation within a
universe; this is far from a clear upgrade both physically and philosophically. This
is the opposite of ‘Second Quantization’ as a model arena of ‘Third Quantization’
as a Problem of Time scheme (Sect. 45.3). By this analogy, the interacting theory
involves topology-changing ‘ripping’ operations, i.e. cobordisms: Appendix S.2.
The variable particle number N -a-gonlands provide a more specific variable parti-
cle number model arena for Quantum Cosmology. Here,

∑
N≥3 N-a-gonlands

=
∑

k∈NCP
k

(60.2)

gives a sum of manifolds over a simple family of different dimension. This is also a
far simpler proposal than summing over the manifolds for a fixed dimension p > 2
due to the diversity issues in Appendix G.

Let us end with an example of some progress with kinematical-level detail for topol-
ogy change in GR itself. This takes the form of a selection rule for the Path Integral
Approach to Quantum Gravity by Gibbons and Hawking [350, 351]: that handle
creation and annihilation must involve handles in pairs.

Research Project 94) Further develop this Sec’s model arenas as regards the form
taken by time and Background Independence therein.

60.2 Metric and Topological Space Level

Most of the currently pursued approaches to Quantum Gravity assume continuum
notions at some level or other [186]. However, beyond a certain point, use of con-
tinuum notions (on which manifolds are based): spacetime, space, Principles of Dy-
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namics spaces, Lie groups, probabilities. . . becomes a presupposition of background
structure. So are the choice of function spaces (most notably standard Hilbert spaces
at the quantum level), and the standardly-adopted assumptions that one’s mathemat-
ics can be rooted in Set Theory and that standard binary logic is to be used.

‘Discrete Approaches’ can be viewed as a challenge to modelling using mani-
folds. Moreover, metric and topological spaces include both discrete and continuum
features. Isham considered quantizing at each of these levels in [479, 482, 508, 509].

In fact, the suggestion [508, 509] of quantizing distance itself goes back to
Wheeler [897]. Quantizing distance requires implementing an inequality constraint,
now with

Dist(p, q) ≥ 0 (60.3)

somewhat paralleling the det h ≥ 0 condition encountered in Affine Geometrody-
namics. The space of norms now plays the role of generalized configuration space.

This case also involves [479] a semidirect product of groups, by which once
again Mackey Theory can be used to extract representations. There is also a square
root operation to contend with, with the entity inside being concentrated on a curve,
whereby Isham is concerned that this is singular enough for this square root to cause
difficulties. The above two examples moreover turn out to have enough parallels for
QFT to permit a Fock space based approach [508, 509]. In particular, analogues of
creation and annihilation operators can be defined for these.

Finally in [480, 481] Isham considers various attitudes to time at the topolog-
ical manifold level, including timelessness, discrete time-steps, and path integrals
which incorporate transition amplitudes for change of topological space. On the
other hand, Isham [497] viewed time as a continuous label, and along the lines of
an internal time, at least in the semiclassical limit.

Research Project 95) Develop further this Sec’s considerations of quantizing at the
topological space level. For instance, the Machian Emergent Time and Records
Approaches exposited in this book remain unaddressed at this level.
For now, this is procedurally obstructed due to not much being known about how to
quantize stratified manifolds, which are the reduced configuration and phase spaces
in question. In particular, what happens to stratified manifold ‘fitting together’ con-
ditions upon quantizing? The expectation is that different strata contribute repre-
sentations to the Quantum Theory in hand, but how are these to be fitted together to
making a coherent, computationally viable Quantum Theory? Also, how are quan-
tum wave equations, and wavefunctions solving these, to be patched together at
the quantum level? Do particular stratified manifold pairings with sheaves (or dif-
ferentiable structures) persist through to the quantum level, and do such help with
the previous two questions?

60.3 Yet Deeper Levels of Structure

Quantizing causal sets has been considered in e.g. [491, 637, 800, 801, 821]. This
resembles a Histories Theory in being based on paths and on presuming some as-
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pects of spacetime (i.e. causal structure). However, it does not involve strings of
projectors, so it does not strictly meet this book’s specifications for a Histories The-
ory. Thereby, it involves a third approach to the implementation of propositions, at
the level of regions in the space of paths, path(q).

Moreover, Spacetime Construction difficulties do however follow from the
Causal Sets Approach’s insistence on very sparse structure. This is already prob-
lematic for this approach at the classical level (Sect. 38.5), and remains very largely
unexplored at the quantum level.

A further question at the level of sets themselves is whether the cardinality of
the underlying set is itself subject to quantum fluctuations. Isham [492–494, 498]
entertained this possibility by quantizing at the level of sets themselves.

In the single-floor case, if only collections of subsets of a set contain physically
meaningful information, what is the Quantum Theory on Collect(X)? [I.e. on the
space of collections of subsets of X.] On the other hand, in the tower case, what
is the effect on the upper layers of structure if ‘the underlying set’ is allowed to
quantum-mechanically fluctuate?

Research Project 96) Develop further this Sec’s considerations of quantizing at the
levels of collections of subsets and of sets.

Research Project 97) How well do discrete (and continuous limit of discrete) mod-
els fit within this Epilogue’s considerations? E.g. what do these already cover ver-
sus what gaps this Epilogue reveals in the modelling assumptions of such theories
studied so far?

Research Project 98) Investigate fully quantum-level Spacetime Constructions.

60.4 Situations with Negligible Deeper Levels of Structure

Semiclassical Quantum Cosmology does not involve fluctuations of topological
manifolds or beyond; this protects us from the tower of mathematical structure
for some practical purposes. Of course, the most interesting questions in QG con-
cern more full regimes. E.g. Isham [482] has furthermore argued for modelling of
space(time) base on Differential Geometry to be unlikely to apply beyond the semi-
classical level.

60.5 Records and Histories

Research Project 99) Given Part II’s position for timeless records based on ad-
vances involving Stochastic Mathematics, what is a quantum-level counterpart?
What can be said about theories of quantum records along such lines?

Research Project 100) Formulate classical Histories Theory at each level.
Research Project 101) Formulate quantum Histories Theory at each level.
Research Project 102) Formulate the Combined Approach (Machian emergent

time, histories and records) at each level.
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Research Project 103) Reflect on whether there are conceptual or technical reasons
to favour the standard meaning of configuration over an extended meaning that
also covers such as paths in time or histories.

60.6 Quantum Theory, Categories and Topoi

Category Theory and Topos Theory offer alternatives1 (Fig. 60.1) to the ‘Equipped
Sets’ Foundational System for the levels of mathematical structure that is conven-
tionally used in Theoretical Physics. The idea here is that perhaps the conventional
‘Equipped Sets’ Foundational System of Mathematics is itself a fixed background
structure. Isham [492–494, 498] quantized small categories. (Appendix W.1)2 Here
the objects are generalized configurations and the morphisms alias arrows as gener-
alized momenta. The subcase for which Mackey’s trick applies can once again be
exploited, along with creation–annihilation operator analogues.

Research Project 104) The question of spaces of spaces for Theoretical Physics can
be reframed in terms of spaces of categories, or indeed of categories of categories.
While the set of sets impasse carries over to the category of categories, it does
not carry over to the small categories since the category of small categories is
not itself small. Finally, consider all of dynamical evolution, Probability Theory
and Quantization on a general category; Isham looked into the last of these in
the moderately general case of small categories [492–494, 498]. The suggested
Research Project concerns the first two of these, as well as generalizing the third.

As per Appendix W.3, sheaves are the basis for more general patching constructs.
Presheaves (Appendix W.2) are a less structured alternative. Presheaves do not in
general possess the gluing property, by which sheaves are more amenable to patch-
ing constructs.

Topoi (the plural of topos) can be envisaged as categories with three extra struc-
tures providing some properties similar to those of sets, as per Appendix W.4. Us-
ing topoi instead of sets leads to use of multi-valued and contextual logic. ‘Multi-
valued’ here means extra answers in addition to YES and NO, whereas ‘contextual’
means that such ‘valuations’ can differ from place to place. These features occur
because topoi are Geometrical Logics; valuations here are somewhat analogous to
Differential Geometry’s locally-valid charts, with binary Logic’s globally-valid val-
uations playing the analogous role to flat space.

Topos Theory is, alongside Sheaf Methods, a potentially useful tool as regards
provision of superior patching methodology. Topoi are capable of supporting patch-
ing constructs to an even greater extent than sheaves. Finally, as we shall see below,

1See Appendix W for a more technical outline of this Sec’s notions.
2This is a substantial limitation on applications, since most of the categories of interest as regards
the mathematics underlying Theoretical Physics are larger: at least locally small. It may also be
tied to yet another assumption of background structure.
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presheaves and sheaves coincide in some cases, and can occur in the same package
as—rather than instead of—topos structures.

Topos approaches are likely to be useful in Quantum Theory or some replace-
ment or generalization thereof, whether or not this ameliorates the clash with Gravi-
tation. Isham considered using topoi to upgrade Quantization in [187, 260, 495, 496]
(some co-authored with mathematical physicist Andreas Doering or philosopher of
Physics Jeremy Butterfield; see [448] for Landsman alongside mathematical physi-
cists Chris Heunen and Bas Spitters’ alternative approach). N.B. this use of Topos
is more subtle than ‘Quantization on’. Rather, it concerns conceptual issues in (the
interpretation of) Quantum Theory being usefully recastable in terms of Topos The-
ory.

Application 1) Isham and Doering [260, 261] succeeded in reformulating the
Kochen–Specker Theorem (39.42) in terms of a presheaf on the category of self-
adjoint operators. This is based on contexts: von Neumann subalgebras of oper-
ators which commute among themselves, so this approach is termed ‘contextual
realism’. This presheaf formulation furthermore points to a generalization of the
definition of valuation that is more suitable to Quantum Theory. In this setting, the
Kochen–Specker Theorem can be reformulated as a statement that this presheaf
lacks global sections. Representing propositions as subobjects of state space in
this setting requires daseination, which is conceptually a type of coarse-graining.

Research Project 105) and Application 2) Expand on the relation alluded to in
[489] between Histories Theory [504] and the Topos approach.

Research Project 106) and Application 3) Expand on [37]’s sketch of how [260]
can be interpreted as a Timeless Records Theory.

Research Project 107) Consider the Kochen–Specker Theorem for QG theories
themselves.

Application 4) Schreiber [778] has pioneered the application of sheaf and topos
methods to reformulating standard Classical Physics, as well as to a large collection
of applications in Supergravity and in String and M-Theory.

60.7 Multiple Choice Problem Revisited

Research Project 108) The Groenewold–van Hove phenomenon itself bears the
hallmarks of a global obstruction. This has not however to date received a pre-
cise mathematical characterization, which rather probably requires going beyond
the range of global considerations habitually made in Theoretical Physics. Cf.
the Kochen–Specker Theorem receiving interpretation in terms of presheaves and
Topos Theory as an example of ‘going beyond’. Moreover, these two cases are
conceptually distinct enough to likely require distinct technical resolutions. I.e.
the Kochen–Specker case involves patching together local contexts, whereas the
Groenewold–van Hove case truncates to at most quadratic polynomials rather than
considering multiple local patches of types of polynomial.



642 60 Epilogue III.C. Deeper Levels’ Quantum Background Independence

Fig. 60.1 a) Levels of mathematical structure commonly assumed in Classical Physics, as based
on equipped sets. b) Progression in conceptualization of notions of space

This points to the Groenewold–van Hove phenomenon involving a codomain re-
striction (of the subalgebraic structure selection map) and a more severe type of
global obstruction which is to be characterized rather than patched over. It looks
to be an obstruction arising in mapping between two distinct cohomologies. I.e.
a classical cohomology—such as de Rham cohomology, or more concretely, Pois-
son cohomology [458]—and a cohomology for the modelling of quantum-level
operators—for which e.g. Hochschild or cyclic cohomology [627] have at least
some suitable features. For the problem described here, it would be interesting to
precisely characterize how simple unobstructed realizations of the first can be ‘de-
formed’ into more complicated realizations of the second. Mathematical physicist
Maxim Kontsevich’s work [565] on Deformation Quantization may be a useful
starting point.

60.8 Background Independence, Categories and Topoi

Research Project 109) Study the classical counterpart of Isham’s Quantization of
small categories [492–494, 498]. What is the corresponding classical dynamics?
How does one formulate Probability and Statistics on such categories?

Research Project 110) Consider time and Background Independence in the cate-
gorical setting, including e.g. an appraisal along these lines for [492–494, 498].

Research Project 111)† Consider time and Background Independence in the setting
of topoi, including e.g. an assessment along these lines of Isham and Doering’s
work [256–259].

Research Project 112)†† Are Relationalism—or Background Independence more
generally—criteria as to whether to use the standard ‘equipped sets’ Foundational
System for Mathematics to model the deeper levels of Theoretical Physics, or to
use categorical or topos-theoretic Mathematics instead? For instance, might it be
that standard notions—such as giving points primary ontological status, or the con-
ventional notion of open sets—that are artificial?
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Research Project 113) One longstanding suggestion in Quantum Gravity has been
termed ‘field marshal covariance’ [818], as in ‘outranking’ General Covariance
due to its having an even wider scope. Heunen, Landsman and Spitters have for-
mulated a notion of ‘general tovariance’ [449]—a topos counterpart of General
Covariance—which might constitute a realization of ‘field marshal covariance’.
As other alternatives, Noncommutative Geometry’s version of General Covariance
[216] is also more general than GR’s, as is Supergravity’s. However Topos Theory
greatly further outstrips these theories as regards both mathematical generality and
non-assumption of ‘standard’ mathematical structures in Physics that are in fact
only standard due to being rooted in Background Dependent assumptions. Assess
‘general tovariance’ from a Background Independence perspective.

Research Project 114)† Let us further widen the scope of the preceding to ‘general
grovariance’. This generalization is based on Grothendieckian mathematics hav-
ing an even broader scope of structural concepts [66] than even its Topos Theory
portion does, by which maybe that another part of this mathematics is required for
the foundations of QG. . . .
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Parts II and III on interferences between Problem of Time facets. Double starred
ones support the Epilogues on global aspects and deeper levels of mathematical
structure being contemplated as Background Independent. If an Appendix is starred,
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Appendix A
Basic Algebra and Discrete Mathematics

A.1 Sets and Relations

For the purposes of this book, take a set X to just be a collection of distinguishable
objects termed elements. Write x ∈ X if x is an element of X and Y ⊂ X for Y a
subset of X, ∩ for intersection, ∪ for union and Yc = X\Y for the complement of
Y in X. Subsets Y1 and Y2 are mutually exclusive alias disjoint if Y1 ∩ Y2 = ∅:
the empty set. In this case, write Y1 ∪ Y2 as Y1 5 Y2: disjoint union. A partition
of a set X is a splitting of its elements into subsets pP that are mutually exclusive
and collectively exhaustive:

∐
PpP = X. Finally, the direct alias Cartesian product

of sets X and Z, denoted X × Z, is the set of all ordered pairs (x, z) for x ∈ X,
z ∈ Z.

For sets X and Z, a function alias map ϕ : X → Z is an assignation to each x ∈ X

of a unique image ϕ(x) = z ∈ Z. Such a ϕ is injective alias 1 to 1 if ϕ(x1) = ϕ(x2) ⇒
x1 = x2, surjective alias onto if given z ∈ Z there is an x ∈ X such that ϕ(x) = z,
and bijective if it is both injective and surjective. For Y ⊂ X, the corresponding
inclusion map is the injection j : Y → X with j (y) = y ∀y ∈ Y. X is countable if
it is finite or admits a bijection ϕ : X → N: the natural numbers. On the other hand
the set of real numbers R is uncountable. |X| is the number of elements in the set X
in the finite case, or the extension of this to the notion of cardinality of the set more
generally.

A binary relation R on a set X is a property that each pair of elements of X may
or may not possess. We use a R b to denote ‘a and b ∈ X are related by R’. Simple
examples include =,<,≤,⊂ and ⊆. Some basic properties that an R on X might
possess are as follows (∀a, b, c ∈ X). Reflexivity: a R a. Symmetry: a R b ⇒ bR a.
Antisymmetry: a R b and bR a ⇒ a = b. Transitivity: a R b and bR c ⇒ a R c. To-
tality: that one or both of a R b or bR a holds, i.e. all pairs are related. Commonly
useful combinations of these include the following.

1) Equivalence relation, ∼, if R is reflexive, symmetric and transitive.
2) Partial ordering, 3, if R is reflexive, antisymmetric and transitive, e.g. ≤ or ⊂:
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Fig. A.1 Equipping sets with a variety of structures. The main structures considered in this book
are presented in straight font, and we use italic font to denote some of the associated morphisms.
Reversing the arrows gives examples of forgetting structures. τ is a topology, Dist is a metric space
metric, diff are differentiable structures, γ and � are connections, and U and m are Riemannian
metrics; γ and U are conformally invariant versions

ordering by ‘is a subset of’.
3) Total ordering, alias a chain, if R is both a partial order and total.

A fairly standard Foundational System for Mathematics involves equipping sets X

with further layers of structure ς ; we denote this by 〈X, ς〉. For example, a set
equipped with a partial order is a poset 〈X,3〉. One can furthermore equip an al-
ready established equipped space s (rather than just a set) with extra layers of struc-
ture 〈s, ς〉. Such equipping is what is meant in Chap. 10 and Epilogue II.C by ‘levels
of mathematical structure’, within the traditional (if in some ways restrictive) con-
text that the base level consists of Set Theory. See Fig. A.1 for further examples of
equipping.

A (homo)morphism is a map μ : s1 → s2 that is structure-preserving. In partic-
ular, if a such is bijective (equivalently invertible) it is an isomorphism, if s1 = s2

it is an endomorphism, and if both of these apply, it is an automorphism.
A forgetful map is one that ‘forgets’ (or ‘strips off’) some of the layers of struc-

ture: φ : 〈s, ς〉 → s. There is corresponding loss of structure preservation in the
maps associated with the latter equipped space. The obvious reversal of each of the
equipping maps in Fig. A.1 readily provides an example of forgetful map.

Let us end by noting that whereas many further mathematical entities are often
thought of as arising by imposing further layers of structure on a set as per above,
this is not the only way of doing mathematics. E.g. Category Theory [611, 612, 631]
and Topos Theory [126, 260] offer extensions and alternatives in this regard. While
these are very briefly outlined in Appendix W, all detailed applications in this book
can be taken to be based upon sets.
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A.2 Groups

A group 〈g,◦〉 is a set g equipped with an operation ◦ , such that ∀g1, g2, g3 ∈ g,

i) g1 ◦ g2 ∈ g (closure),
ii) {g1 ◦ g2 } ◦ g3 = g1 ◦ {g2 ◦ g3 } (associativity),

iii) ∃ e ∈ g such that e ◦ g1 = g1 = g1 ◦ e (identity), and
iv) ∃g−1

1 ∈ g for each g1 such that g1 ◦ g−1
1 = e = g−1

1 ◦ g1 (inverse).

Groups (see [69, 213] for further reading) are one of the most widely useful math-
ematical structures in Physics [526]. They encode the mathematics of transforma-
tions and symmetries. This book often uses g as a shorthand for 〈g,◦〉. |g| denotes
the order of g, i.e. the number of elements of g. If additionally g1 ◦ g2 = g2 ◦ g1
(commutativity), g is said to be Abelian (after mathematician Niels Abel). H is a
subgroup of g, denoted H ≤ g, if H ⊆ g, and H is closed with respect to the same
group operation ◦ that g possesses while containing the identity and all its elements’
inverses. If 〈g,◦〉 and 〈K,∗〉 are groups, the (direct) product group g× K is defined
by having (g, k) as its elements: the Cartesian product of the sets of g and K, with
group operation

(g1, k1)� (g2, k2) = (g1 ◦ g2, k1 ∗ k2).

Two groups 〈g,◦ 〉 and 〈K,∗〉 are isomorphic, denoted by ∼=, if there is a bijection
ϕ that preserves the group structure: ϕ(g ◦ k) = ϕ(g) ∗ ϕ(k) ∀g ∈ g, k ∈ K.1

Examples of groups include 1) 〈R,+〉, 2) 〈R/{0},×〉. 3) The cyclic groups Zn,
which are Abelian and with the sole relation gn = e, and 4) the permutations of
a finite set X form a group, Perm(X). 5) The automorphisms for each s form a
group, Aut(s); Perm(X) is the simplest case, corresponding to s = X finite. 6) Lie
groups (named after 19th century mathematician Sophus Lie) such as Appendix E’s
standard examples and Appendix V’s larger ones. 7) Given a group g, its centre
Z(g) is another group: the subgroup of g formed by the elements of g which
commute with all the other elements: {c ∈ g | cg = gc ∀g ∈ g}. Exercise Set IV is
dedicated to groups.

Groups are of yet further interest through acting on other mathematical or physi-
cal objects (sets of points, figures, physical matter...) A group action on a set X is a

map α : g × X → X (often denoted by
→
gg in this book) such that

i) {g1 ◦ g2 }x = g1 ◦ {g2x} (compatibility) and
ii) ex = x ∀x ∈ X (identity).

Subcases include left action gx, right action xg, and conjugate action gxg−1.
By a natural group action, we just mean one which does not require a choice

as to how to relate X and g due to there being one ‘obvious way’ in which it acts.
E.g. Perm(X) acts naturally on X, or an n × n matrix group acts naturally on the

1This is the well-known group isomorphism subcase of Appendix A.1’s more general notion of
isomorphism, and is useful in classifying groups.
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corresponding n-vectors. An action is faithful if g1 �= g2 ⇒ g1x �= g2x for some
x ∈ X, whereas it is free if this is so for all x ∈ X. So free ⇒ faithful, but not vice
versa. Finally, an action is transitive if for every x, y ∈ X there is a g such that
gx = y.

For g a group acting on a set X, and x ∈ X, the group orbit Orb(x) := {gx |
g ∈ g}: the set of images of x, and the stabilizer alias isotropy group alias little
group Stab(x) := {g ∈ g |gx = x}: the set of g ∈ g that fix x. := denotes ‘is defined
by’.

A subgroup N that is invariant under conjugate action—gNg−1 = N for every
g ∈ g—is called a normal subgroup of g, denoted by N� g. The quotient of one
group by another, g/H, only makes sense if H � g. In this case, g/H := {gH |
g ∈ g} is itself a group: the quotient group . Finally, the semidirect product group
g = N�H is given by

(n1, h1)� (n2, h2) = (n1 ∗ ϕh1(n2), h1 ◦ h2)

for 〈N, ∗〉 � g, 〈H,◦ 〉 a subgroup of g and ϕ : H → Aut(N) a group homomor-
phism.

A transformation is passive if it changes the problem in hand’s coordinate de-
scription. On the other hand, it is active if it is held to actually move around the
problem in hand’s entities. This book’s main use of this distinction is for diffeomor-
phisms (in Chaps. 7 to 10).

A.3 Linear Algebra. i. Fields and Vector Spaces

For F a set and two operations ◦,�, 〈F,◦,�〉, is a field if

i) 〈F,�〉 is an Abelian group.
ii) 〈F/{e},◦〉 is an Abelian group for e the identity of the preceding.

iii) ◦ is distributive over �: ∀x, y, z ∈ F, x ◦ {y� z} = {x ◦ y} � {x ◦ z}.

Ex III.0 asks the reader to investigate which of N, Z, Q, R, C are fields.
A vector space v over the field F is an ‘additive group’ g = 〈F,+ 〉 together with

a product F × v → v sending the pair (p, v) to the scalar-multiplied pv, such that
∀p,q ∈ F and ∀g,h ∈ g,

i) {p + q} × g = pg + qg and p × {g + h} = pg + ph (distributivities),
ii) p{qg} = {pq}g, and

iii) 1g = g.

See [213] for more about fields and vector spaces.
Examples of vector spaces used in Physics include 3-vectors in R

3 and 4-vectors
in Minkowski spacetime M

4 (both for F = R), while the F = C case is useful in
Quantum Theory. Dirac’s kets used in Quantum Theory are in fact often, but not al-
ways, infinite-dimensional vectors. These form an infinite-dimensional vector space
of the Hilbert space type (see Appendix C.2 for an outline). The complementary
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function part of the solution of a linear ODE (which solves the corresponding homo-
geneous equation), and Fourier series are further widely useful examples belonging
to finite and infinite vector spaces respectively.
w ⊆ v is a subspace of v if it is itself a vector space under the same two

operations. For two subspaces u,w of v, their sum, denoted u + w, is the set
{pu + qw ∈ v |u ∈ u,w ∈ w,p, q ∈ F}. v is the direct sum of u and w, denoted
v = u ⊕ w if v = u + w and u ∩ w = 0.

Forw ⊆ v, the span 〈w〉 is the intersection of all subspaces containingw. The
vectors vi ∈ v (i = 1 to n) are linearly independent iff (if and only if)

∑n
i=1 aivi = 0

only for ai ∈ F all zero. A basis for a vector space v is any linearly independent
subset that spans v. The number of vectors in a basis set is the dimension dim(v) of
the vector space v. If {vi, i = 1 to p} is a basis, each vector v ∈ v can be expressed
as v =∑p

i=1 aivi for unique scalars ai ∈ F; these are termed the components of v
with respect to this basis.

Linear maps can be set up between vector spaces: L : v → w such that L(ax +
by) = aL(x)+ bL(y). Use Im(L) := L(v) ≤ w to denote the image of v under L
and Ker(L) := {v ∈ v |L(v) = 0} ≤ v for the kernel of L. If the vectors in question
are written with respect to specific bases, the map in question is cast in matrix form.
For F = C, one can also define antilinear maps: A(az + bw) = āA(z) + b̄A(w)

where the bars denote complex conjugate.
For u, v, w vector spaces over the same F, μ : u×v → w is a bilinear map if

it is linear in each argument. μ is degenerate if there is either a nonzero u ∈ u such
that μ(u, v) = 0 ∀v ∈ v, or a nonzero v ∈ v such that μ(u, v) = 0 ∀u ∈ u.

Two vector spaces v, w are isomorphic if there is a bijection ϕ between them
such that ϕ(v1 +v2) = ϕ(v1)+ϕ(v2) and ϕ(pv1) = pϕ(v1) ∀v1, v2 ∈ v and p ∈ F.
They are homomorphic if these relations hold but bijectivity is dropped.

Some bases are more convenient than others: bases can be chosen to maximally
simplify problems. This includes casting matrices in diagonal form, or as close to it
as possible, and with as many as possible of the remaining elements being 1’s (on
some occasions −1’s are also required). In the case of F = R, bilinear forms μ(x, y)
which are symmetric: μ(x, y) = μ(y, x), the corresponding matrices are always di-
agonalizable. One can select a basis such that the corresponding matrix takes the
form diag(Is ,−Ir−s ,0). Here Ip denotes the p×p identity matrix, with s and r − s
indicating the dimensionality of each block. s + {r − s} = r is the rank: number
of nonzero diagonal entries. Mathematicians define signature by s − {r + s}.2 On
the other hand, for F = C, the natural counterpart to symmetric bilinear forms are
sesquilinear Hermitian forms (after mathematician Charles Hermite). These are lin-
ear in the first argument and antilinear in the second, and with μ(x, y) = μ(y†, x),
where the Hermitian †-symbol denotes complex conjugate transpose.

2Physicists often use ‘signature’ in a more loose but none the less related manner, mostly out of
only needing to distinguish between one minus in spacetimes and no minuses in spaces. So physi-
cists use ‘− − + + +’ or ‘indefinite’, whereas the mathematicians’ concept of signature involves
the number of plusses with the number of minuses subtracted off, giving spacetime signature 2.
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Multilinearity follows similarly to bilinearity; for F = R and constituent linear
spaces Rn, this gives the mathematics of Cartesian tensors (Sect. 2.12).

The invertible linear maps L : v → v (or the matrices corresponding to these)
form the general linear group GL(v). This book makes use of the GL(n,C) and es-
pecially GL(n,R) cases. The unit-determinant version is denoted by SL(v), stand-
ing for special linear; in this book, ‘special’ is furthermore taken to mean restriction
to unit determinants in a wider range of contexts.

Suppose v1, v2 ∈ v and μ is either symmetric bilinear (for F = R) or Hermitian
sesquilinear (for F = C). Then μ(v1, v2) : v × v → F can also be viewed as an
inner product (v1, v2)μ (generalizing R

p’s dot product). A (for now finite) inner
product space is a vector space equipped with an inner product.

We use ‖v‖μ to denote (v · v)1/2μ . This is a norm on v if it obeys

i) ‖v‖μ ≥ 0 with equality if v = 0 (positive definiteness),
ii) ‖u+ v‖μ ≤ ‖u‖μ + ‖v‖μ (triangle inequality alias subadditivity),

iii) ‖p v‖μ = |p| ‖v‖,p ∈ F (absolute homogeneity).

In the finite case, a normed space is just a vector space v equipped with a norm.
A well-known example of this is the Euclidean norm and the Euclidean inner

product (μ = id, whose components are δAB in a suitable basis). Another is the
complex norm and inner product, based on (z · w) = zw̄, where the bar denotes
complex conjugation.

A projector is a map Px = (x ·n)n, giving the component of x in the direction n.
Vectors v and u are orthogonal with respect to a given inner product if (v,u) = 0.

For δij the Kronecker delta symbol, a set of vectors vi for which (vi, vj ) = δij are
orthonormal; orthonormal bases can readily be constructed by keeping on picking
linearly independent vectors and removing projections onto vectors which have al-
ready been picked.

The dual vector space v∗ of v consists of the linear maps ϕ : v → F. Finite
‘transposed vectors’ are a simple example. As another simple example, in Dirac’s
quantum notation, the bras 〈 ψ | are the corresponding duals to the kets | ψ 〉. (More
complicated examples exhibit more substantial distinction between vector spaces
and their duals.) Let {ei} be a basis of v; then the dual basis {f

i
} is a basis of

v∗ such that (ei · f
j
) = δij . In the case of F = R, Cartesian tensor multilinearity

(Sect. 2.12) follows.
The 2p × 2p symplectic matrix is

Jp :=
(

0 Ip

−Ip 0

)
. (A.1)

This corresponds to casting the symplectic quadratic form [70] according to a con-
venient choice of basis.
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Fig. A.2 Directed graphs.
Each can additionally be
interpreted as a poset

A.4 ii. Rings and Modules∗

A monoid is a set X obeying the group axioms except that not all of its elements are
necessarily invertible. A ring is a set R with two binary operations such that axioms
i) and iii) for fields hold, but now in place of ii), we require that R is a monoid under
multiplication. An ideal J in a ring R is a subgroup of 〈R,+ 〉 such that RJ ⊆ J,
JR ⊆ J (i.e. under both right and left action). Ideals play a major role, analogous
to that of normal subgroups for Group Theory. Finally, modules are the analogous
notion to vector spaces upon replacing the input field by a ring. All that is needed
to follow this book is that addition and direct sum continue to be defined here. See
especially [213] for more about rings and modules.

A.5 Representation Theory

Representations are homomorphisms ρ : g → GL(v) by which one can pass from
handling groups to the more convenient problem of just handling matrices. The
mathematics of this—Representation Theory—(see in particular [786]) is based on
both Group Theory and Linear Algebra, and has been considerably developed. This
is widely useful for Physics [526] (symmetries and Quantum Theory in particular)

A representation is irreducible (an irrep) if it cannot be broken up into a direct
sum of representations.

In basic Group and Representation Theory, it is quite often useful to construct
a g-invariant version Og-free of a non-inherently g-invariant object O for which
addition and scalar multiplication are meaningful. This is by applying a g-action to
O followed by averaging over all of g. E.g. for a finite group, this takes the form

Og-free = 1

|g|
∑

g ∈g

→
gg O. (A.2)

Ex IV.1 is a worked example for gaining familiarity with this Sec’s concepts.

A.6 Graphs and Generalizations

A graph (see especially [159]) is a set of vertices and the corresponding set of
edges between vertices. Mathematical entities such as groups, knots, and Feynman
diagrams can on some occasions be usefully represented by graphs. This illustrates
a more general sense than the preceding Sec’s of the concept of ‘representation’;
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see Appendix W for further discussion. Graphs can additionally be generalized to
versions including higher-dimensional entities starting with faces and solid blocks;
see Appendices F and G for examples. Generalizations along the lines of labelled
versions of graphs are also possible, such as directed graphs—with ordering arrows
on their edges: Fig. A.2—and coloured graphs [159] to labellings by representations
in spin networks: Sect. 43.5.



Appendix B
Flat Geometry

“He who attempts natural philosophy without geometry is lost”. Galileo Galilei

B.1 Real Geometry

We approach this here from a simple Kleinian position,1 by considering g ≤
Aut(〈Rd , ς〉) for various layers of mathematical structures ς . ς could be · (scalar
products: the Euclidean metric δij ), but also / (ratios), − (differences, as features
e.g. in the Euclidean notion of distance), ∠ (angles), and d-dimensional volumes
(such as areas built out of cross products × in 2-d or volumes built out of scalar
triple products [ × · ] in 3-d). Let us denote the last of these in the general case by ∧,
for the top form supported in dimension d . Additionally, a number of combinations
of these structures are possible.

To be clear about the above shorthands’ definitions, let u, v, w, y ∈ R
d . The

scalar product is a 2-slot operation u · v. The Euclidean norm alias magnitude is a
special case of the square root of this: ‖v‖ := √

v · v. Also

(Euclidean distance between u and w) := ‖u−w‖, (B.1)

i.e. the Euclidean norm of the difference between the two vectors u−w. Ratios are
then a 2-slot operation acting on scalars, e.g. a ratio of two components of a vector.

(ratio of magnitudes of u and w) := ‖u‖
‖w‖ , (B.2)

(ratio of distances) := ‖u− v‖
‖w − y‖ , (B.3)

1See [222] and [815] for further positions. Also note that this Appendix’s variety of flat geometries
is a major precursor of understanding the variety of differential geometries with extra structures.
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(ratio of scalar products) := (u · v)
(w · y) . (B.4)

The angle between u and w is the arccos of the particular combination

(scalar product of unit vectors û and v̂ = (û · v̂)) = (u · v)
‖u‖ ‖v‖ , (B.5)

which is a product of square roots of 2 subcases of (B.4). Finally, p-volume between
vectors is

(areas of parallelograms formed by vectors u, v) := (u×v)3 in 2-d, and
(B.6)

(volumes of parallelepipeds formed by vectors u, v, w) := u×v · w in 3-d.
(B.7)

Possible g include the following; see Figs. B.1 and B.2 for the meanings of the types
of transformations mentioned. g = id: a trivial limiting case corresponding to no
transformations being available. g = Aut(〈Rp,−〉) = Tr(p), the translations x →
x + a, which form a p-dimensional Abelian group 〈Rp,+ 〉. g = Aut(〈Rp, /〉) =
Dil: dilations alias homotheties x → kx, which form a 1-d Abelian group 〈R+, ·〉.
g = Aut(〈Rp,−/−〉) = Tr(p) � Dil. g = Aut(〈Rp, ·〉) = Rot(p): rotations x →
Bx forming the special orthogonal group SO(p) := {B ∈ GL(p,R) |BTB = I,

detB = 1}, which is of dimension p{p− 1}/2 g = Aut(〈Rp,− · − 〉) := Isom(Rp) =
Tr(p) � Rot(p) =: Eucl(p): the p{p + 1}/2-dimensional Euclidean group of
isometries, corresponding to Euclidean Geometry itself.2 g = Aut(〈Rp, ·/·〉) =
Rot(p) × Dil. g = Aut(〈Rp,− · −/ − ·−〉) = Tr(p) � {Rot(p) × Dil} = : Sim(p):
the p{p + 1}/2 + 1 dimensional similarity group corresponding to Similarity Ge-
ometry.

Next, using ∧ for the general p-dimensional case for reasons explained in
Sect. D.2 g = Aut(〈Rp,∧ 〉) = SL(p,R). This is the p2 − 1 dimensional special
linear group, consisting of the p{p − 1}/2 rotations, p{p − 1}/2 shears and p − 1
‘Procrustean stretches’. g = Aut(〈Rp,∧ −〉) = Tr(p)�SL(p,R): the p{p+ 1} − 1
dimensional ‘equi-p-voluminal group’ corresponding to ‘equi-p-voluminal geom-
etry’. (For p = 2, ∧ = × and this is the quite well-known [222] equiareal ge-
ometry.) g = Aut(〈Rp,∧/∧ 〉) = GL+(p,R): the p2-dimensional general linear
group, consisting of rotations, shears and Procrustean stretches now alongside dila-
tions. g = Aut(〈Rp, (∧ −)/(∧ −)〉) = Tr(p) � SL(p,R) = : Aff (d) the p{p + 1}-
dimensional affine group of linear transformations, corresponding to Affine Geome-
try.

So far, the above transformations can all be summarized within the form of the
equation at the top of Fig. B.1. The most general case included in this is Affine
Geometry, within which all the other g above are realized as subgroups.

2In a slight abuse of notation, elsewhere in this book, we use Eucl and Sim to denote the cases
excluding the rotations; in the SL and GL cases, we denote the cases excluding the reflections by
SL+ and GL+ .
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Fig. B.1 Elementary transformations, in each case from a yellow square to a red image. 2-d il-
lustration of translation, rotation, dilation, shear, and Procrustean stretch, i.e. d-volume top form
preserving stretches, in particular area-preserving in 2-d and volume-preserving in 3-d . Under-
neath, we also indicate the relation of the last four of these to the irreducible pieces of the general
linear matrix G, and which geometrically illustrious groups these transformations form part of.
The T superscript denotes ‘tracefree part’. Procrustean stretches, moreover, do not respect ratios
and shears do not respect angles

Reflections can also be involved in each case, about an invariant mirror hyper-
plane (e.g. a line in 2-d or a plane in 3-d). These are a third elementary type of
isometry; unlike translations and rotations, they are a discrete operation. The case
of a mirror through the origin is characterized by the unit normal n; here the explicit
form for the corresponding reflection is the linear transformation

Ref : v → v − 2 (v · n)n. (B.8)

A further direction in p-dimensional geometry arises by introducing inversions
in S

p−1

Inv : v → v

‖v‖2
. (B.9)
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Fig. B.2 2-d depictions of a) reflection, which in this case is about a mirror line. b) Inversion
in the circle. This transformation requires a grid of squares to envisage—rather than a single
square—since it has a local character which differs from square to square. N.B. also that this
can map between circles and lines, with the sides of the squares depicted often mapping to circular
arcs

Inversions also preserve angles—but not other ratios of scalar products (Fig. B.2.b)
—paving the way to the yet larger group of transformations (Appendix E.3) that
correspond to Conformal Geometry, in which specifically just relative angles are
preserved.

Another perspective [815] on Geometry involves weakening the five axioms of
Euclidean Geometry [222]. The best-known such weakening is Absolute Geometry,
which involves dropping just Euclid’s parallel postulate. This leads firstly to Hyper-
bolic Geometry arising as an alternative to Euclid’s, and then more generally to such
as Riemannian Differential Geometry (Appendix D.4). In contrast, Affine Geome-
try retains Euclid’s parallel postulate, and indeed places central importance upon
developing its consequences (‘parallelism’). This approach drops instead Euclid’s
right-angle and circle postulates. These two initially contrasting themes continue
to play major parts in the eventual generalization to Affine Differential Geometry
(Appendix D.3).

Two more primary types of geometry are, firstly, Ordering Geometry [222],
which involves just an ‘intermediary point’ variant of Euclid’s line postulates. By
involving neither the parallel postulate or the circle and right-angle pair of postu-
lates, this can be seen as serving as a common foundation for both Absolute and
Affine Geometry [222]. Secondly, in Projective Geometry3 one ceases to be able to
distinguish between lines and circles, in addition to angles being meaningless and
no parallel postulate holding. This now corresponds to the projective linear group
PGL(p,R) = GL(p,R)/Z(GL(p,R)) [815].

For practical use within Euclidean theories of space, note in particular that ‘spa-
tial’ measurements in our experience are of the forms (B.3) and (B.5), i.e. measuring
tangible objects against a ruler and measuring angles between tangible entities. On
the other hand, more advanced, if indirect, physical applications make use of (ex-
tensions of) the other notions of geometry above.

3See [222, 815] for an introduction to Flat Projective Geometry.
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B.2 Minkowski Spacetime Geometries

This case has an indefinite flat metric ηAB on M
p+1 in place of Euclidean Geome-

try’s positive-definite metric δAB on R
p . While the most obvious application of this

is to SR spacetime in support of Part I [736], it is also used under various other
circumstances such as Minisuperspaces and perturbations thereabout (Appendix I)
used in Part II.

One can furthermore quite readily envisage counterparts of each of the above
types of geometry in this next setting, though we restrict mention to the ones that
this book makes use of. Preserving the indefinite interval takes the place of preserv-
ing the Euclidean norm. This is attained by, firstly, translations Tr(p,1), which now
include both the already-familiar spatial translations Tr(p) and the time translations
t → t + k. Secondly, rotations alongside boosts—the tx component analogue of ro-
tations with the indefiniteness resulting in these taking the form of a ‘hyperbolic’
rather than ‘standard’ rotation—form the proper orthochronous Lorentz group
SO+(p,1). The full Lorentz group O(p,1) := {M ∈ GL(p + 1,R) |MηMT = I}
involves also reflections not only in space but also in time; removing each of these
gives rise to the qualifiers ‘proper’ and ‘orthochronous’ respectively. Finally, the
second and third items form together the (proper orthochronous) Poincaré group
SPoin+(p + 1) = Tr(p,1)� SO+(p,1), whereas the (full) Poincaré group ensues
from considering all three together: Poin(p + 1) = Tr(p,1)�O(p,1).

A first instance of this arises in the p = 3 case as the kinematical transforma-
tion group for Electromagnetism, and is subsequently taken to be the kinematical
transformation group for all of Classical Physics bar Gravitation. In this way, it lies
beyond what Eucl(d)models physically; one would need to adjoin time and velocity
to obtain the Galilean group counterpart of that (Ex IV.15) [354].

Another feature of note is that Minkowski spacetime’s null cones are preserved
by conformal transformations; conformal transformations become causal transfor-
mations in the context of indefinite spacetime (Ex III.11).

B.3 Complex Transformations and Geometries

These are for use in various applications, starting with quantum symmetries. R2 can
also be modelled as C and R

2p as C
p . GL(p,C) and SL(p,C) are defined as ex-

pected. We also need unitary transformations: such that U†U = I, which form the
unitary groups SU(p) special unitary transformations, for which |detU | = 1 as
well, which form the special unitary groups U(p), and antiunitary transformations,
for which U†U = −I instead.

Probably the best-known example of projective group is the M öbius group [815]
PGL(2,C) (after mathematician August Mobius). This acts upon C ∪ ∞ as the
fractional linear transformations

z −→ az + b

cz + d
,
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for a, b, c, d ∈ C such that ad − bc �= 0. It is a 6-d group, due to there being one
complex restriction on it: for λ ∈ C,

λaz + λb

λcz + λd
= λ

λ

az + b

cz + d
= az + b

cz + d
. (B.10)



Appendix C
Basic Analysis

C.1 Real Analysis

The real numbers R possess the further completeness property . One way of ex-
pressing this is through the Fundamental Axiom of Analysis: if xn ∈ R, n ≥ 1 is an
increasing sequence and xn < B for some constant B ∈ R for each n, then there is an
x ∈ R such that xn → x as n → ∞. I.e. every increasing sequence that is bounded
above has a limit which also belongs to R. Analysis on R can be built upon this
property. On the other hand, e.g. the rational numbers Q do not have such a benev-
olent property [822]. Without this, it is much harder to find any kind of substitutes
for results that require proving by Analysis (see below for a few more details and
e.g. [184] for a systematic exposition).

Analysis often proceeds via an ‘ε and δ’ formulation of concepts, according to
which for each ε, however small, one can find a corresponding δ of an adequate size
for the property under consideration to hold. However, this in itself transcends to Q

rather than being specific to complete spaces.
Completeness for R renders a number of further concepts useful, in which that

do not apply in the absence of completeness such as for Q. One furthermore usu-
ally uses a convenient implementation of the completeness property, such as the
Bolzano–Weierstrass Theorem [184] by which every bounded sequence in R has a
convergent subsequence.

Analysis, as a rigorous theory of limits, for instance brings about the demise of
Zeno’s paradoxes (outlined in the Introduction). Achilles and the tortoise cross each
other at a limit point arrived at within finite time.

A sequence {xn,n ∈ N} is a Cauchy sequence if ∀ ε > 0 ∃N such that |xp −xq | <
ε ∀p,q > N . Completeness can also be very usefully formulated in terms of every
Cauchy sequence converging [184].

Many results in Analysis concern functions on some space, for now f : R → R.
A function f is continuous at some point x ∈ R if given ε > 0, ∃ δ(x, ε) such that
|f (x) − f (y)| < ε ∀ |x − y| < δ(ε, x). Intuitively, this means that a function f is
continuous if we can get f (y) to be as close to f (x) as we please just by letting
y be sufficiently close to x; see Fig. C.1.a). f : R → R is differentiable at x ∈ R if

© Springer International Publishing AG 2017
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there is a linear map Df (x)—the derivative—such that when |h| < some δ,

f (x + k) = f (x) +Df (x)k + ε(x, k)|k|,
where the error term decreases faster than linearly: |ε(x, k)| → 0 as |k| → 0, as per
Fig. C.1.b).

Subsequent Analysis theorems of note are [184] firstly the Intermediate Value
Theorem concerning any continuous function f : [a, b] −→ R; then for any v such
that f (a) < v < f (b), ∃ c ∈ (a, b) such that f (c) = v. Secondly, the Mean Value
Theorem concerning any function g : [a, b] −→ R continuous on [a, b] and differ-
entiable on (a, b); then there is a point m ∈ (a, b) such that the derivative

g′(m) = g(b)− g(a)

b − a
.

N.B. that these theorems do not hold for functions h : Q→Q; see e.g. Fig. C.1.c)–d).
They do however readily extend to functions k : Rn → R

m. The real modulus | | is
here extended to the Euclidean norm ‖ ‖, which furnishes a ball concept: Fig. C.1.e);
open balls are convenient in many proofs.

A second definition of continuity of a function—which can indeed readily be
proven equivalent to the above one: Ex III.5.iii)—is that f is continuous if the in-
verse image f−1(U) of any open set U is open. E.g. in the f : R → R case pre-
sented in Fig. C.1.f), the region in the domain R is open whenever the region U in
the codomain R is. The latter definition extends to considerably more general cases
(see below).

This Sec’s results furthermore readily generalize to R
n; some further generaliza-

tions are in Sects. C.4 and C.6. Useful notions in this regard, for now presented at
the level of Rn, are as follows. A set U ∈ R

n is i) open if whenever u ∈ U there is
an ε(u) > 0 such that ‖u− v‖ < ε ⇒ v ∈ U. ii) Closed if whenever the sequence of
points {un,n ∈ N} lies in U and un → u, then this limit point u also lies in U.

C.2 Basic Functional Analysis

A function space is a space whose constituent points are themselves functions. Some
simple examples are 1) the continuous functions c0. 2) The once-differentiable func-
tions c1 and their further specialization to the k-fold differentiable functions ck .
3) The smooth alias infinitely differentiable functions c∞. 4) Finally, the analytic
functions cω are those that have convergent power series about each point.

Study of function spaces is Functional Analysis. Applications of this include
infinite-dimensional spaces, PDEs, FDEs, and operators (including quantum ones)
acting on function spaces. An example of function spaces that are well-known in
Theoretical Physics are the infinite-d Hilbert spaces: infinite-d versions of vector
spaces that are both equipped with an inner product and are complete. In Quan-
tum Theory, this inner product is usually denoted by Dirac’s bra-ket combination
〈ψ1 |ψ2 〉. See Appendices H.2 and P.5 for a bit more on Hilbert and other function
spaces, and [207, 270, 729] if you have need of extensively learning this subject.
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C.3 Complex Analysis∗

Complex differentiability of a complex function f is equivalent to the Cauchy–
Riemann equations for real functions u(x, y), v(x, y) such that f = u+ iv:

∂xu − ∂yv = 0, ∂xv + ∂yu = 0. (C.1)

These are solved by complex-analytic functions f (z alone) (as opposed to of the
complex conjugate z). Finally, in this case and in sharp contrast to Real Analysis,
all functions which are differentiable once are furthermore infinitely differentiable.
See e.g. [184, 726] for more about Complex Analysis.

C.4 Metric Spaces

A metric space—(see especially [184, 822]) is a set X equipped with a metric func-
tion Dist: X × X → R satisfying the following properties.

Metric 1) Dist(x, y) ≥ 0 ∀x, y ∈ X (non-negativity).
Metric 2) If Dist(x, y) = 0, then x = y (separation).
Metric 3) Dist(x, y) = Dist(y, x) (symmetry).
Metric 4) Dist(x, y) ≤ Dist(x, z) + Dist(z, y) (triangle inequality).

These properties encapsulate features of the Euclidean notion of distance, which are
now applied to a wider range of settings.

Dist—standing for ‘distance between’—generalizes the Euclidean norm ‖ ‖ of
R
n, and continues to support the concept of balls. Dist is translation invariant if the

metric space possesses a ‘+’ operation and Dist(x +w,y +w) = Dist(x, y).
An isometry—in the metric space sense—is a Dist-preserving transformation,

ι : X → X such that Dist(x, y) = Dist(ιx, ιy).
For metric spaces, one can still conceive of completeness (in terms of Cauchy

sequences), and of continuity and differentiability (in terms of balls).

C.5 Inverse and Implicit Function Theorems∗

A Fixed Point Theorem holds for metric spaces. The Implicit Function Theorem—
concerning the existence of implicitly-defined functions—follows from this on met-
ric spaces. The R

n → R
n Inverse Function Theorem—about the existence of an

inverse f−1 for interior points within sets on which a function f is continuously
differentiable, alongside provision of a formula for f−1’s own derivative—then fol-
lows as a special case. This is because its inverse function condition is a subcase of
implicit function. See e.g. [184] for proofs and further discussion.
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C.6 Topological Spaces

These further generalize metric spaces while retaining many key notions of Anal-
ysis, such as convergence and continuity; see especially [822] for an introduction.
Topological spaces are based on extending the notions of open and closed sets away
from Appendix C.1’s R

n context. Rn’s open set notion obviously carries over to
metric spaces, but further extension requires reconceptualization. Preliminarily, one
associates a collection of subsets τ(X) = 〈X, τ 〉 to a given fixed set X. The open sub-
sets UO are a particular type of collection that is convenient for performing Analysis.
Topological spaces [68, 613, 822] are collections of open subsets with the following
properties.

Topological Space 1) X,∅ ∈ τ .
Topological Space 2) The union of any collection of the UO is also in τ .
Topological Space 3) The intersection of any finite number of the UO is also in τ .

Closed sets in X are then defined as the complements of sets which are open in X.
The reader should now work through the start of Ex III.5 to establish that the defi-
nitions given for Rn indeed comply with these more general definitions.

As a slight detour [822] useful further on in these Appendices, a point y is a point
of closure of Y ⊆ 〈X, τ 〉 if U ∩ Y �= ∅ for any open U ⊆ X such that y ∈ U. The set
of points of closure of Y in X is termed the closure of Y in X, and is denoted by
Clos(V). On the other hand, y is an interior point of Y ⊆ 〈X, τ 〉 if ∃ some U open
in X such that y ∈ U ⊆ Y. The set of interior points, Int(V), of Y in X is known
as the interior of Y. The frontier alias boundary of Y ⊆ 〈X, τ 〉 is Clos(V)\Int(V).
Y is dense in X if Clos(Y) = X [207].

The open sets version of the definition of continuity remains meaningful in topo-
logical spaces’ more general setting. Moreover, a homeomorphism is a continuous
bijection with continuous inverse, i.e. the ‘open image of an open set’ version of
the definition of continuity carries over to topological spaces. Topological proper-
ties are those properties which are preserved by homeomorphisms; the rest of this
Chapter lays out a number of topological properties, supported by Exs III.8 and 9.

Notions of separation are topological properties which indeed involve separating
two objects (points, certain kinds of subsets) by encasing each in a disjoint subset. A
particular such is the Hausdorffness property [613, 822] (after mathematician Felix
Hausdorff):

for x, y ∈ X, x �= y,∃ open sets Ux,Uy ∈ τ
such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅. (C.2)

So this case involves separating points by open sets. Hausdorffness allows for each
point to have a neighbourhood without stopping any other point from having one.
This is a property of the real numbers, and is additionally permissive of much Anal-
ysis. In particular, Hausdorffness secures uniqueness for limits of sequences. More-
over, it extends to how compact sets can be separated by open neighbourhoods, so
in Hausdorff spaces ‘compact sets behave like points’. Examples in this book that
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are not Hausdorff are the trousers topology and the related branching in Fig. 1.2.e),
and the general quotients of Appendix M.

If U1,U2 are open sets such that

i) U1 ∩ U2 = ∅,
ii) U1 ∪ U2 = X, and

iii) neither U1 nor U2 are ∅,

then U1,U2 disconnect X. If X is not disconnected by any two sets, X is connected
[68, 613, 822]. This notion is motivated by considering how far the Intermedi-
ate Value Theorem can be generalized. On the other hand, X is path-connected
if for x, y ∈ X,∃ a path γ from x to y. Finally, X is simply-connected if it is path-
connected and all continuous paths between two given points can be continuously
transformed into each other (without leaving X).

Some notions of countability are concurrently topological properties, due to in-
volving counting of topologically defined entities [613]. First countability holds if
for each x ∈ X, there is a countable collection of open sets such that every open
neighbourhood Nx of x contains at least one member of this collection. Second
countability is the stronger condition that there is a countable collection of open
sets such that every open set can be expressed as union of sets in this collection.
Second-countability is also useful via being a property standardly attributed to man-
ifolds.

A collection of open sets {UC } is an open cover for X if X =⋃C UC. A sub-
collection of an open cover that is still an open cover is termed a subcover, {VD }
for D a subset of the indexing set C. On the other hand, an open cover {VD } is a
refinement of {UC } if to each VD there corresponds a UC such that VD ⊂ UC. {VD }
is furthermore locally finite if each x ∈ X has an open neighbourhood Nx such that
only finitely many VD obey Nx ∪ VD �= ∅.

A topological space τ(X) is compact [68, 613, 822] if every open cover of X has
a finite subcover. Compactness generalizes continuous functions being bounded on
a closed interval of R.

A topological space τ(X) is paracompact [613] if every open cover of X has a
locally finite refinement.

A topological space τ(X) has topological dimension [672] p if every open cover
of X has an open refinement such that no point lies in more than p + 1 subsets. The
topological dimension of R

p is indeed p, so R
p is not homeomorphic to R

q for
p �= q .

A topological group [207, 613] is a set equipped with both a topology and a
group operation such that the composition and inverse operations are continuous.
Lie groups (Appendix E) are a major example of this. A topological vector space
[207] is a set equipped with both a topology and the vector space operations such
that the addition and scalar multiplication are continuous. Such include some very
useful function spaces, as per Appendix H.2.

There is fascinating interplay between topological properties: many combina-
tions of these imply other a priori unrelated properties [672, 822]. Except where
explicitly stated, we henceforth assume Hausdorffness and second-countability.



Appendix D
Manifold Geometry

D.1 Topological Manifolds

Passing from topological spaces to topological manifolds is a specialization (rather
than an equipping), and is widely useful in Physics and in Mathematics. A topo-
logical space 〈X, τ 〉 is locally Euclidean if every point x ∈ X has a neighbourhood
Nx that is homeomorphic to R

p: Euclidean space.1 I give an arbitrary dimension p
treatment of this with coordinates xA, so as to cover a wide range of applications:
spacetime (Chap. 7), space (Chaps. 1 and 8) and auxiliary spaces from the Principles
of Dynamics (Appendices G to L). 〈X, τ 〉 is a real topological manifold if it obeys

Topological Manifold 1) local Euclideanness,
Topological Manifold 2) Hausdorffness, and
Topological Manifold 3) second-countability.

See in particular [613]. I denote the general manifold by M, and term the above trio
of topological space properties ‘manifoldness’; moreover, this trio implies paracom-
pactness as well [613]. Second countability ensures sequences suffice to probe most
topological properties, whereas Hausdorffness ensures that neighbourhoods retain
many of the intuitive properties of their metric space counterparts. In these ways,
much of Analysis can be carried over to manifolds.

Riemann’s trick for study of manifolds involves introducing the notion of chart
alias local coordinate system for M: an injective map φ : U → φ(U) ⊂ R

n for U

an open subset of m. Each chart does not in general cover the whole manifold;
one gets around this by considering a suitable collection of charts. These serve as
homeomorphisms which guarantee the locally Euclidean property. One can loosely
think of these as ‘deformations of a rubber sheet’, with continuous stretching but no
guarantee of smoothness. Appendix D.2 then concerns adding in a further level of
structure to model the smoothness. One is to compare those charts which overlap,

1A topological manifold’s topological dimension indeed turns out to be p as well, though this is
not straightforward to prove; see [672] for a start on this.
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Fig. D.1 a) A chart. b) Overlapping charts and transition functions. c) A 2-chart cover for S2:
from N to the lower curve and from S to the upper curve

leading to the 2-chart Fig. D.1.b), with φ1 : U1 → R
n, φ2 : U2 → R

n which do
indeed overlap: U1 ∪ U2 �= 0. Next, consider a composite map

t12 := φ2 ◦ φ−1
1 (D.1)

which sends U1 ∪ U2 to itself. This is a locally defined map of R
n → R

n; it is a
local coordinate transformation, and is called a transition functions. An atlas for a
topological manifold is a collection of charts that, between them, cover the whole
manifold.

Example 1) For some basic intuitions, consider the well-known case of the 2-
sphere S

2. No matter which type of flat map of the world one peruses, it is highly
distorted in some places. This is a manifestation of multiple charts being required
to cover the whole of S

2 (Fig. D.1.c). Moreover, there is interest in comparing
charts which partly overlap; atlases (in the colloquial sense) contain multiple part-
overlapping charts.

Example 2) Consider the 2-manifolds more generally; these form a simple model
arena for which a well-known classification of topological manifolds exists. This
is in terms of 1) genus: the number of handles. 2) Non-orientable genus: number of
non-orientability twists. At the topological manifold level, orientability concerns
a consistent allocation of handedness of rotation for each simplex in a simplicial
complex. For now, we give examples: S2 and the 2-torus T

2 are orientable with
genus 0 and 1 respectively. On the other hand, the 2-d real projective space RP2 =
{set of lines through a point in R

3 } has non-orientable genus 1.
Moreover, by the rubber sheet property being all at this stage, it makes no dif-
ference whether the handles are ‘large’ or ‘small’ or ‘near’ or ‘far’. For those are
metric concepts that the current level of structure does not possess.

Example 3) Topological manifolds of dimension ≥ 3 are harder to study in general,
with some sensitivities to particular dimensions. Each of dimension 3 and ≥ 4 have
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rather different mathematical properties at the topological level [848, 876]. Knots
(Appendix N.13) also specifically require dimension 3.

Example 4) Some spaces come in series within each of which dimension makes
little difference to the properties and presentation of the space. E.g. p-spheres Sp

and p-tori Tp form such series. As well as the above 2-d models, these include S
3

and T
3, which are each in some senses the simplest 3-d topological manifolds that

are compact without boundary, for use as notions of space in GR.

A manifold with boundary [606, 614] is locally homeomorphic to some open set
in the half-space {(x1, . . . , xp) ∈ R

p |xp ≥ 0}. Charts ending on the half-space’s
boundaries are describing part of the manifold that is adjacent to its boundary
(Fig. 37.5.a). See Appendix M for a substantial generalization of this. Chapter 8’s
compact without boundary notion makes sense here; moreover, this book takes this
to imply connectedness as well as a default.

D.2 Differentiable Manifolds

Charts can furthermore allow for one to tap into the standard R
p −→ R

q Calculus.
This allows for manifolds to be equipped with differentiable structure. These man-
ifolds possess not only a local differentiable structure in each coordinate patch Ui

but a notion of global differentiable structure as well. This is due to the ‘meshing
condition’ on the coordinate patch overlaps (Fig. D.1.b). The transition functions
can in this case be interpreted in terms of Jacobian matrices of derivatives for one
local coordinate system with respect to another,

LA
B = ∂(xA)

∂(x̄B)
. (D.2)

The great mathematician Hassler Whitney [903] showed that the topological
manifold notion of atlas can additionally be equipped with differentiable structure.
Moreover, our main interest here is really in equivalence classes of atlases. Dif-
ferentiable structure is then approached using a convenient small atlas [such as in
Fig. D.1.d)’s 2-chart approach to the 2-sphere]. In contrast to the previous Section’s
atlas being c0 (the continuous functions) the current Sec’s is usually taken to be
c∞: the smooth functions. In fact, weakening c∞ to ck k ≥ 1 makes little differ-
ence, since each such differentiable structure is uniquely smoothable [903]. Having
Calculus available throughout the manifold, moreover, allows on to study differen-
tial equations which conventionally represent physical law.

We next introduce vectors on the manifold as the tangents to curves (mappings
I → M for I an interval of R: Fig. D.2.b). One can furthermore compose curve and
chart maps to make use of standard R

p → R
q Calculus; moreover one can show

straightforwardly that all notions involved are chart-independent.
At this level of structure orientability can be taken to involve a continuous assig-

nation of normal vectors. It can be treated in terms of the Jacobians in each sequence
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Fig. D.2 a) The curve construct. b) Basing a notion of vector on the curve construct

of charts that runs across the space (Fig. D.2.a). An orientable differentiable man-
ifold possesses a coordinate atlas all of whose transition functions have positive
Jacobians; this consistently maintains orientability throughout the manifold.

We can furthermore apply [814] the basic machinery of (multi)linear algebra to
produce notions of 1) covectors as the duals of vectors. At a point p on the man-
ifold, this is a linear map Tp(M) −→ R where Tp(M) is the tangent space at p,
a vector at p is a linear map T∗

p(M) −→ R where T∗
p(M) is the cotangent space

at p (the dual of the tangent space). 2) All the higher-rank tensors on the manifold:
rank (k, l) tensors at p are the multilinear maps from the product of k copies of
T∗

p(M) and l copies of Tp(M) to R. A collection of vectors, one at each p ∈ M,
constitutes a vector field over M; tensor fields are similarly defined. The more old-
fashioned formulation of the definition of a (k, l) tensor (cf. Chaps. 2 and 4) is not
in the above ‘coordinate-free’ language but rather in terms of components. These
transform according to

TĀ1 ... Āk
B̄1 ... B̄l

= LĀ1
A1 . . . LĀk

AkL
B1

B̄1
. . . LBl

B̄lT
A1 ...Ak

B1 ...Bl (D.3)

in passing between barred and plain coordinate systems; (2.20) is a simple subcase
of this.

As a further example, form fields [316] are the often encountered totally antisym-
metric downstairs-index subcase of tensors. p-volume is the top form that a p-space
can support. Areas (x ×y)3 in 2-d and scalar triple product volumes [x ×y · z] in

3-d both generalize to ∧p

I=1xI in the language of forms. Finally, a pseudotensor’s

transformation law additionally features the sign of the determinant of LĀ1
A1 . The

most commonly encountered such in Physics are pseudovectors alias axial vectors,
which arise from cross products.

Diffeomorphisms A diffeomorphism (see in particular [614]) is a map φ : M →
M that is injective, c∞ (or a bit rougher, e.g. ck), and has a an inverse map of
matching minimal standard of differentiability. In fact, in 1- to 3-d all homeomor-
phic smooth manifolds are additionally diffeomorphic. However, in d ≥ 4, there
are examples of pairs that are homeomorphic but not diffeomorphic, including the
famous exotic spheres (this is a much harder piece of mathematics; see e.g. [570]).

The passive notion of diffeomorphism concerns the coordinate transformation on
overlap between two charts, corresponding to the Jacobian matrix from xA around
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the point p to yA around φ(p). This involves representations of the same objects
in different coordinate systems. On the other hand, the active notion of diffeomor-
phism involves associating each point in a manifold with another through, at the
infinitesimal level, the Lie derivative (see below). This relates different entities on
M within the one coordinate system. Active and passive diffeomorphisms are math-
ematically equivalent [874]. However, the two differ in physical significance, as per
Chap. 10.

Integral Curves An integral curve (see e.g. [814]) of a vector field V in a man-
ifold M is a curve γ(ν) such that the tangent vector is Vp at each p on γ . It is
complete if γ(ν) is defined ∀ν ∈ R. A set of complete integral curves correspond-
ing to a non-vanishing vector field is called a congruence. This ‘fills’ a manifold or
region therein upon which the vector field is non-vanishing: the curves go through
all points therein.

Lie Derivatives Physics makes plentiful use of derivatives acting on vector fields.
Such are not straightforward to set up; the flat-space derivatives that one is accus-
tomed to entail taking the limit of the difference between vectors at different points.
However, in the context of differentiable manifolds, such vectors belong to different
tangent spaces. Whereas in R one can just move the vectors to the same point, there
is no direct counterpart of this procedure on a general manifold (cf. Fig. D.2.c).
The usual partial derivation is undesirable since it does not preserve tensoriality:
the mapping of tensors to tensors. On the other hand, it suffices to construct such a
notion of derivatives acting on vectors and acting trivially on scalars. This is because
the derivative’s action on all the other tensors can then be found by application of
the Leibniz rule.

The Lie derivative is tensorial, and directional in the sense of involving an addi-
tional vector field ξi along which the tensors are dragged. It is denoted by £ξ. Its
underlying dragging first principles are worth outlining next; see e.g. [207, 490, 814]
for further details in this regard.

There is a map construction between manifolds: φ : M → N, though in this book
we concentrate on the M → M case, as per Fig. D.3.a). This induces a push-forward
φ∗ : Tp(M) → Tφ(p)(M) which maps the tangent vector to a curve γ at p to that
at the image of the curve φ(γ) at φ(p). There is a corresponding pull-back φ∗ :
T∗
φ(p)(M) → T∗

p(M) which maps 1-forms in the opposite direction. Finally, φ∗T =
T defines a symmetry for the general tensor T.

First-principles considerations give the actions of Lie derivation on scalars and
vectors as the first equalities below; if required, consult e.g. [814] as regards passage
to the second ‘computational’ forms. For γ the integral curve of ξ through p inducing
a 1-parameter group of transformations φν , the Lie derivative with respect to ξ at p
of a scalar S is

{£ξS}p = lim
dν → 0

(
Sφdν (p) − Sp

dν

)
= {ξA∂AS}p. (D.4)
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Fig. D.3 a) Effect on a curve of mapping a manifold to itself. b) The associated induced push–
forward on the tangent vector to the curve. c) Decomposition of the first-principles construction of
the Lie derivative of a vector

For a vector V, it is

{£ξVA }p = lim
dν → 0

(VA
p − {φdν}∗VA

φ−dν (p))

dν

)
= {ξB∂BVA − ∂Bξ

AVB }p. (D.5)

One can then readily obtain the Lie derivatives for tensors of all the other ranks by
use of Leibniz’s rule (Ex III.16).

D.3 Affine Differential Geometry

To have a non-directional tensorial derivative, one can correct the partial deriva-
tive’s non-tensoriality by introducing an extra structure: the affine connection. This
is another non-tensorial object with components denoted by �A

BC, transforming as

�Ā
B̄C̄ = LĀ

ALB
B̄LC

C̄�
A

BC + LĀ
A1 LB

B̄ ∂BLA
C̄. (D.6)
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By this, the non-tensorial part of its transformation law compensates for that of the
partial derivative. The covariant derivative is the tensorial derivative obtained in this
manner; moreover, this now maps tensors to tensors with downstairs rank increased
by one. Let us denote the covariant derivative by DA in general, by Di in the spatial
version and by ∇μ in the spacetime version. It is just the partial derivative when
acting on scalars, but takes the form

DAvB = ∂AvB + �A
BCv

C (D.7)

when acting on vectors. For later use, let us note that in cases in which a manifold
happens to possess affine structure, its Lie derivatives can be recast in terms of
covariant derivatives. E.g. in the case of vectors,

£ξVA = ξBDAVA − DAξAVB. (D.8)

The affine connection may be interpreted as giving a notion of straightest possible
transport of vectors along curves: parallel transport. This holds true to the spirit of
Affine Flat Geometry being developed with parallelism at the forefront.

In Affine Geometry, the ‘locally straightest paths’ or affine geodesics may be
parametrized in terms of some ν so as to have the form

D ẋC/Dν := ẋADAẋ
C = ẍC + �C

ABẋ
AẋB = 0; (D.9)

here ˙ denotes ∂/∂ν. If one passes to a parameter μ(ν), the above geodesic equation
transforms to

μ̇2x′ADAx
′C = μ̇2 {x′ ′C + �C

ABx
′Ax′B } = −μ̈ x′C, (D.10)

where ′ denotes ∂/∂μ. This is the non-affine form of the geodesic equation; the stan-
dard form is preserved iff μ̈ = 0, i.e. under the linear transformations μ = Aν +B .
This is how Chap. 1’s freedom to choose tick-duration and calendar year zero for
time is retained in geometrical theories.

The following consequence of the non-tensorial transformation law of the so-
called affine connection is of importance for the foundations of GR. For each point, a
set of ‘normal coordinates’ can be found in which the affine connection is zero at that
particular point [814, 874]; the reader is encouraged to come up with a derivation of
this (Ex III.12) prior to consulting the given references.

Moreover, parallel transport along two paths generally depends on the order in
which the two paths are traversed (Fig. D.4.a). A combination of derivatives and
squares of the affine connection—the Riemann curvature tensor— can be associated
with this property of the transport of a vector WA. In terms of components with
respect to the usually employed (‘coordinate-induced’ [814]) basis, this takes the
form

RA
BCD := ∂C�

A
BD − ∂D�

A
BD + �E

BD�
A

EC − �E
BC�

A
ED. (D.11)
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Fig. D.4 a) Two different ways of transporting a vector wA. u, v parametrize 2 arbitrary curves
with tangents xA and yA respectively. b) For two nearby geodesics γ1, γ2 in a congruence, each
parametrized by λ, the connecting—alias Jacobi—vector field ZA is the tangent to the curve con-
necting equal-λ points. In the case depicted, additionally p and q are conjugate points

This object can be arrived at by considering

RA
BCDw

BxCyD = lim
	μ,	ν−→0

(
	WA

	μ	ν

)
. (D.12)

It also follows from the ‘Ricci Lemma’ (after mathematician Gregorio Ricci)

2D[ADB]WC = RC
DABWD. (D.13)

Finally, if one contemplates two neighbouring geodesics with initially-parallel tan-
gent vectors ẋA, one can arrive at the Riemann curvature tensor by considering the
relative acceleration

D2ZA/Dν2

of two neighbouring geodesics with connecting vector ZA (Fig. D.4.b). This gives
the so-called geodesic deviation equation

D2ZA/Dν2 = −RA
BCDẋ

BẋCZD. (D.14)

Geodesic deviation is moreover a nonlocal effect (a non-negligibly sized neighbour-
hood is required for this effect to manifest itself). Conjugate points are pairs of
points p, q which are linked by a nonzero Jacobi field existing that vanishes at both
p and q.

A more general and coordinate-independent definition of the Riemann curvature
tensor is (see e.g. [814])

R(X,Y)W := DYDXW − DXDYW + D[X,Y]W (D.15)

In fact (Ex III.14), it is necessary to exclude torsion

T (Y,Z) = DZY − DYZ − [Y,Z] (D.16)

with coordinate adapted basis components T A
BC := �A [BC] = 0 in order for it to

necessarily be curvature that underlies the symptoms of formulae (D.12)–(D.14).
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The Riemann tensor obeys RA
BCD = −RA

BDC and the (first) Bianchi identity
(after mathematician Luigi Bianchi) RA [BCD] = 0, whereas its derivatives are related
by the (second) Bianchi identity:

D[E|RA
B|CD] = 0. (D.17)

Finally, the Ricci tensor is RBD := RA
BAD; it is symmetric: RAB = RBA.

D.4 (Semi)Riemannian Manifolds

Riemannian Geometry [207, 814, 874] involves a further encoding of notions of dis-
tance and angle, which Affine Geometry does not possess. The metric tensor mAB

is the structure brought in for this purpose. This is usually taken to be symmetric,
non-degenerate and a function of the coordinates alone. In this case, 〈M,m〉 is a
Riemannian manifold. Genuine Riemannian metrics are those which are positive-
definite; those which are indefinite are termed semi-Riemannian. [These are also
known as Euclidean- and Lorentzian-signature metrics respectively.] Moreover,
semi-Riemannian Geometry loses the separation axiom of distance due to its metric
being indefinite. In the spacetime application this is desirable to model how ob-
servers perform measurements of both length and time. This indefinite case also
splits the orientability concept into separate time and space orientability concepts.

The geometrical interpretation of the Riemannian metric function is that, through
this, the metric defines the length along a path γ with tangent ẋA by

length :=
∫ ν2

ν1

√
mABẋAẋBdν =

∫ ν2

ν1

‖ẋ‖mdν =
∫

γ
‖dx‖m.

This is a local rendition of the Euclidean notion of distance (B.1). It amounts also
to the recovery of a metric in the metric space sense, in the form of a path metric,
which is the inf over all the geodesics joining the two points in question. N.B. also
that ‘length’ and ‘metric space notion of metric’ above strictly refer to the positive-
definite case. One can now use the ( · ) to ( · )m version of definitions (B.2)–(B.5).
Some applications involve an infinitesimal version rather than one which is inte-
grated over a finite range, as in e.g. ‘local angle’ in the (semi-)Riemannian geomet-
rical sense.

Examples of positive-definite metrics include 1) the flat metric δ on R
n, 2) the

(hyper)spherical metric (G.7) on S
n, and 3) the Fubini–Study metric (G.8) on CP

n.
On the other hand, examples of indefinite metrics include 4) the Minkowski met-
ric η of SR the 5) FLRW, 6) Schwarzschild and 7) Kerr–Newman metrics of GR
(Chap. 7), and 8) the Minisuperspace metrics of Appendix I.1. Appendix H further-
more considers infinite-dimensional examples.

In studying metric geometries, it can help to cast the metric in block-minimal
form. Whereas diagonal is the simplest example of block-minimal, not all metrics
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are, however, diagonalizable. E.g. the Kerr–Newman metric, the Fubini–Study met-
ric, the non-diagonal Bianchi IX metric [812] and the modewise slightly inhomoge-
neous metric (Fig. I.2) are not.

The metric and its inverse may be used to lower and raise indices on other tensors.
We denote the determinant of the metric by m and its inverse by nAB.

(Semi-)Riemannian Geometry has a metric connection (Christoffel symbol, after
mathematician Elwin Christoffel)

{ A
BC

} := 1

2
mAD {∂CmBD + ∂BmCD − ∂DmBC }. (D.18)

The corresponding metric geodesics—paths locally of extremal length—are param-
etrizable as

ẍA + { A
BC

}
ẋBẋC = 0. (D.19)

In (semi-)Riemannian Geometry all intrinsic properties follow from the metric:
one assumes that the affine connection is the metric connection,

{ A
BC

}= �A
BC. (D.20)

While Affine Geometry is built upon Euclid’s parallel postulate and Absolute Ge-
ometry discards this, none the less the two notions can readily coexist in Differential
Geometry through Riemannian Geometry carrying a metric connection that can be
cast in the affine connection’s role.

By the index-lowering use of the metric, one can now consider a version of the
Riemann tensor with all its indices downstairs: RABCD := mAERE

BCD which has the
additional symmetry property RABCD = RCDAB. One can also now obtain the Ricci
scalar R := mABRAB. In dimension p, the curvature tensors contain the following
amounts of independent pieces of information:

#RABCD = p2 {p2 − 1}
12

, #RAB = p{p + 1}
2

, #R = 1. (D.21)

This establishes which tensor suffices to describe intrinsic curvature in each dimen-
sion. I.e. R suffices in 2-d , RAB in 3-d and all of RA

BCD is required in all higher-d . It
also establishes whether the numbers of equations and unknowns make sense in dif-
ferent possible physical theories based on such geometrical objects. The irreducible
part of the information in RA

BCD that is not contained in RAB is the Weyl tensor
(after noted mathematician Hermann Weyl)

C A
BCD := RA

BCD − 2

p − 2

{
δA [CRD]B − mB[CRD] A

}− 2

{p − 1}{p − 2}δ
A [DmC]BR,

(D.22)
which inherits all the symmetry properties of the Riemann tensor.

The Einstein tensor

GAB = RAB − 1

2
R mAB (D.23)
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then has the following significant properties. Firstly, it is divergenceless by the con-
tracted Bianchi identity

DAGAB = 0, (D.24)

as used in the construction of the Einstein field equations (7.5). Secondly, it is a
symmetric (0, 2) tensor like the metric; this results in (7.5) being well-determined
as equations for the metric.

D.5 Some More General Metric Geometries∗

If however one does not assume equality (D.20), then the difference of the two con-
nections would constitute an additional tensor. This can in general be split into two
pieces: nonmetricity (covariant derivative of the metric) and contorsion (a linear
combination of torsion terms in the absence of the previous) [232]. Apart from al-
lowing these, other ways of having more complicated geometry are for the metric to
be non-symmetric or degenerate.

A further extension becomes apparent from rephrasing Riemannian Geometry as
following from a metric function

F :=
√

mABQ̇AQ̇B

by forming a metric according to

∂2 F2

∂Q̇A∂Q̇B
.

Now in this Riemannian case, this procedure just returns MAB. However, if F =
F(QA, Q̇A) is a more general homogeneous linear function of the velocities, then
further geometries ensue; this gives Finslerian Geometry [201] if non-degeneracy
continues to be respected. Examples of this include Riemann’s quartic geometry for

F = {mABCDQ̇
AQ̇BQ̇CQ̇D }1/4 (D.25)

and Randers geometry [201, 728] for

F =
√

mABQ̇AQ̇B + lCQ̇
C. (D.26)

In this book, these are not be considered as options for the geometrization of space
or spacetime, but they do occur at the level of configuration space geometry in
Sect. 17.2.
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D.6 Integration on Manifolds

At the level of Differential Geometry, the Riemann integral is first meaningful in
terms of forms [207, 606]. Integration on manifolds relies on being able to form
partitions of unity, which in turn is guaranteed by paracompactness. This includes
a generalization of both of the familiar Divergence and Stokes’ Theorems. One can
also define (n,m)-tensor densities of weight w at this level, as a further class of
geometrical object which, e.g. in components transform as

YĀ1 ... Ān
B̄1 ... B̄m

= (
√

det L)wLĀ1
A1 . . . LĀn

AnL
B1

B̄1
. . . LB1

B̄mYA1 ...An
B1 ...Bm.

(D.27)
At the level of Affine Geometry, one can furthermore re-express the forms version
of the above generalization in terms of the covariant derivative,

∫

∂V

A
A
d�A =

∫

V

DAA
A
dΩ.

Here is A
A

a (1, 0) vector density of weight 1; d�A and dΩ are the obvious (hy-
per)surface and (hyper)volume elements respectively.

Finally, at the level of Metric Geometry,
√|m| is a particularly significant scalar

density of weight 1. Now YA1 ...An
B1 ...Bm can be expressed as

√ |m|wTA1 ...An
B1 ...Bm

for TA1 ...An
B1 ...Bm an unweighted (n,m) tensor, i.e. density can be absorbed into

powers of
√|m|. In terms of this, Metric Geometry’s (hyper)volume is given by

V =
∫ √|m| dpx. (D.28)

D.7 Conformal Transformations, Metrics and Geometry

In the manifold setting [207, 874], conformal transformations continue to be local-
angle-preserving transformations. Consider next the base objects of one’s theory to
possess conformal weights: powers of some suitably smooth positive function which
is termed the conformal factor ψ. In particular, metrics scale as2

mAB −→ mAB := ψ2mAB. (D.29)

Conformal weights can be conceived of as a type of tensor transformation law, the
above metric scaling is then the vector case. Consequently, the inverse metric mAB

scales as ψ−2: a conformal covector, and
√

m as ψdim(m): a rank dim(m)/2 conformal
tensor. This points to conformal tensors’ rank taking values in R, rather than in N for
Cartesian tensors, or in N × N for Differential Geometry’s general curved tensors.

2Moreover, for some applications—such as the GR initial value problem—it is helpful to use pow-
ers other than 2 in this definition. Whereas in 1-d there are no angles to preserve, the notion of
conformal factor still makes sense, though it is now just a type of reparametrization.
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A special status is accorded to conformally invariant tensors and operators.
Moreover, some more composite objects conformally transform under more com-
plicated relations than power laws—involving derivatives of the conformal factor
as well. Since conformal invariants are rare, the objects which do transform under
power laws—conformal covariants—also merit further attention.

Two useful cases of more complicated transformation laws are [874] 1) that the
metric connection conformally transforms as

�C
AB −→ �

C
AB = �C

AB + 2δC
(AωB) − mABmCDωD, (D.30)

for ωD := ∂Dln ψ. Applying this to the affinely-parametrized geodesic equation,

uADAuB = uADAuB + 2uBuCωC − ‖u‖m
2ωB, (D.31)

so conformal transformations do not in general preserve geodesics. However, these
do preserve null geodesics, since nullness kills the first factor of the third term and
the second term merely encodes non-affineness of parametrization. 2) The Ricci
scalar R conformally transforms as

R −→ R = ψ−2{R − {p − 1}{2�ln ψ + {p − 2}|D ln ψ|2}}. (D.32)

On the other hand, the vacuum Maxwell equations take a conformally invariant form

[874]. Finally, the Weyl curvature tensor is conformally invariant: C
A

BCD = C A
BCD.

It being zero is useful as a diagnostic for conformal flatness in dimension ≥ 3.
Note that tensor rank in conformal Tensor Calculus is at most relative: there is

freedom in how one allots primary transformation laws. This includes being able to
swap tensor and co-tensor notions around, since these are just the signs of weights
in the conformal Tensor Calculus, and this sign is also part of the aforementioned
choice of convention. This means that each conformal Tensor Calculus representa-
tion involves making a choice of unit weight and of sign. We choose to approach
this by assigning the theory’s most basic nontrivially conformally covariant object
to be a covector. E.g. (D.29) can be taken to correspond to setting up the metric to
be a conformal covector for choice of unit weight +2. But the above freedom can be
used to allot the alternative scaling

mAB −→ mAB = ψ4/{p−2}mAB, (D.33)

which gives a useful simplification to the Ricci scalar’s conformal scaling

R −→ R = ψ4/{2−p}
{
R − 4

p − 1

p − 2
ψ−1 �ψ

}
. (D.34)

One application of this is in simplifying the conformally-transformed Hamilto-
nian constraint to the quasilinear elliptic PDE Lichnerowicz–York equation (21.7).
This criterion picks out the power 4 for the p = 3-d space of standard Geometrody-
namics. In close relation to (D.34),

�u − 1

4

p − 2

p − 1
R u (D.35)
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is a conformally covariant version of the Laplacian operator acting on a scalar field
u, provided that u itself scales with weight {2 − p}/2.

This Sec’s approach is ascribing validity to conformal equivalence classes of
geometries; see Appendix H.6 for more. Moreover, in the indefinite-signature case
the conformal structure can also be interpreted as the causal structure., by which the
conformal–scale split is also an isolation of the causal structure. This can already be
done in the case of SR, as per Chap. 4.

Finally, if  is constant, k, the transformation is known as a homothety alias
dilation. The metric is a homothety covector, under the convention that 2 powers of
k corresponds to covectors:

mAB −→ mAB := k2mAB. (D.36)

If just these conformal factors are allowed, one has the differentiable manifold ana-
logue of Similarity Geometry which preserves ratios of now Riemannian inner prod-
ucts covering both angles and ratios of magnitudes. Homotheties give rise to their
own simpler notion of homothetic tensors carrying homothetic weights ∈ R. Each
conformal invariant gives rise to a corresponding homothety invariant, and each
conformal covariant to a homothety covariant. Moreover, there are many further
homothety invariants and covariants due to ∂Aφ reducing to ∂Ak = 0. E.g. the met-
ric connection and the geodesic equation are homothetic scalars, whereas the Ricci
scalar is a homothetic vector:

R −→ R = k−2R. (D.37)

D.8 Exercises III. Basic Mathematics and Geometry

Exercise 0) Establish which of the natural numbers N, the integers Z, the ratio-
nals Q, the reals R and the complex numbers C are i) groups under each of the
usual + and × operations, ii) fields under both operations, iii) rings, and iv) count-
able.

Exercise 1) i) Check that projectors Pij = ninj and P̂ = | ψ 〉〈 ψ | are idempotent:
P 2 = P , and that the latter obeys P † = P as well, and understand the meanings
and implications of these relations. Explain geometrically how projectors are re-
lated to the notion of components of a vector and to the general reflection (B.8).
ii) Complete (1,0,0) and 1√

2
(0,1,1) to an orthonormal basis and find the corre-

sponding dual basis. iii) For v finite, prove that dual space v∗ is itself a vector
space, that dual bases are indeed bases, that v∗∗ and v are isometric as vector
spaces and that dim(v∗) = dim(v).

Exercise 2) a) Find Im and Ker for M : R3 → R
3 represented by the matrices with

all entries Mij zero except i) M33 = 1, ii) M13 = 1, iii) M22 = M33 = 1, and iv)
M11 = M22 = M33 = 1. b) Consider the exterior derivative d: a map: �p−1 −→
�p for �p the space of p-forms. Interpret Ker(d) and Im(d) in terms of closed and
exact forms, show that they are groups and that the (p− 1)th map’s Im is a normal
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Fig. D.5 Some collections of
subsets

subgroup of the pth map’s Ker. Evaluate the corresponding quotient groups in the
case of forms on R, R2, R/{0} and S

1.
Exercise 3) i) Show that Euclidean transformations preserve angles and distances,

and that similarity transformations preserve angles and ratios of distances. ii) Show
that special conformal transformations preserve angles but not ratios more gener-
ally. iii) Show that affine transformations in the plane preserve ratios of planar
cross-products of differences between vectors. iv) Show that Möbius transforma-
tions do not preserve lines, but find a sense in which they do preserve circles. Fi-
nally show that Möbius transformations preserve cross-ratios (defined in Fig. G.6).

Exercise 4) i) Prove that if ‖x − y‖ < ε, then ‖y‖ − ε < ‖x‖ < ‖y‖ + ε. ii) Prove
from the ε–δ definition of continuity that if f , g are continuous functions: R → R,
then so are f +g and fg. iii) Prove that any convergent sequence in R is a Cauchy
sequence.

Exercise 5) i) Prove that a subset U of R is open iff its complement Uc = R\U is
closed (using the definitions provided at the level of R). ii) Also show that the open
sets defined in this context obey the topology axioms. iii) Prove that the ε–δ and in-
verse image of an open set definitions of continuity are equivalent for f : Rn → R

m

and f mapping metric spaces to metric spaces, in which cases both definitions are
meaningful. [If stuck, use Fig. C.1.e) as a hint.] iv) Study Analysis until you under-
stand at least one proof for each of the Intermediate Value Theorem and the Mean
Value Theorem. v)† If proceeding to work through this book’s second track, then
also cover the Inverse Function Theorem, that once complex-differentiable implies
infinitely differentiable, and the converse of Ex III.4.iii) alongside understanding
its significance in the metric space and Hilbert space contexts.

Exercise 6) i) How many subsets does a set of n elements contain? How many dis-
tinct collections of subsets can be made from it? For n = 1,2,3, how many in-
equivalent (i.e. label-independent) collections are there? ii) Show that Fig. D.5.a) is
a topology and b) is not. Find all the indistinguishable topologies for iii) n = 2 and
iv) n = 3. v) Show that each of iii) and iv) form a lattice (defined in Appendix S.4).

Exercise 7) [Topological properties entering definition of manifolds] i) Show that
the full collection of subsets (the so-called discrete topology) formed from a finite
set X is Hausdorff and is the only Hausdorff topology thereupon. ii) Prove that all
metric spaces are Hausdorff and second-countable. iii) Show that in Appendix M’s
‘line with 2 origins’ is a locally Euclidean, second-countable counter-example to
Hausdorffness as claimed. iv) Show that Rd × R, for Rd the real line with discrete
topology, is Hausdorff, locally Euclidean but not second-countable. v) Finally give
an example of a space which is Hausdorff, second-countable but not locally Eu-
clidean.

Exercise 8) a) Use the open sets definition of continuity to demonstrate that the
continuous image of a compact set is compact. Deduce that compactness is a topo-
logical property. Also prove that closed subsets of a compact set are compact.
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[This only involves rearranging the obvious definitions.] b) Similarly demonstrate
that connectedness is a topological property. Also use the definitions to show that
path-connected ⇒ connected, and find a counter-example to the converse. c) Prove
that R and R

2 are not homeomorphic by considering what happens to each upon
removing a point. d) Use R and a suitable subset thereof to show that completeness
is not a topological property.

Exercise 9) What do each of the possible topological identifications of pairs of
edges of a square in R

2 give? Which of these spaces are orientable?
Exercise 10) [Spherical Geometry] a) Find the general mathematical form of the

great circles: the geodesics for S
2), and pick out the particular formulae for a

choice of principal axis’ equator and meridians. b) Demonstrate Appendix D.3’s
various interpretations of intrinsic curvature in the case of a sphere. E.g. prove that
it contains a spherical triangle with three right angles, and then determine the result
of carrying a ‘gyroscope’ vector around this triangle. Show additionally how that
two initially-parallel great circles thereupon converge, quantifying this in terms of
the geodesic deviation equation. Which points are conjugate to each other?

Exercise 11) [Conformal Differential Geometry] a) Show that the geodesic equa-
tion conformally transforms according to (D.31). Deduce that null geodesics and
consequently causal structure, are conformally invariant (then check against Ap-
pendix D.7). b)† Show that the equations of motion of RPM are analogously in-
variant under Appendix L’s PPSCT. c) Show that FLRW spacetimes are conformal
to (a piece of) Minkowski spacetime M

4. Apply this to construct the Penrose di-
agrams in Figs. 7.1.c)–d). d) Arrive at the Weyl tensor from the first principles
demand of a conformally-invariant curvature tensor in dimension ≥ 4.

Exercise 12) Derive Appendix D.3’s normal coordinates.
Exercise 13) In arbitrary dimension p, calculate the number of components of the

metric, Riemann tensor, Ricci tensor and Einstein tensor. Also show that the Weyl
tensor has p{p+ 1}{p+ 2}{p− 3}/12 components. What is the number of degrees
of freedom in the counterpart of GR in each of these dimensions? Deduce a major
difference in status of vacuum solutions between 2 + 1 and 3 + 1 GR.

Exercise 14) Each definition of intrinsic curvature in Appendix D.3 was under the
assumption of vanishing torsion. Work out what happens to each of the notions
involved in the presence of nonzero torsion.

Exercise 15) Use the Bianchi identity to establish a short proof of the closure of
classical GR’s constraints.

Exercise 16) i) Find the Lie derivative for the arbitrary (p, q) rank tensor ii) Show
that £ξhab = 2D(aξb) and that £ξ

√
h = √

hDaξa .
Exercise 17) i) Show that the surface of a cube is homeomorphic to the sphere in-

scribed inside it. ii) Show that the solid sphere is diffeomorphic to R
3.

Exercise 18)† [Simple examples of fibre bundles and Algebraic Topology] i) Pro-
vide explicit local charts, projections, transition functions, local sections and struc-
ture group for the Möbius strip tangent bundle of Fig. F.2.f). Which of the other
notions mentioned in Appendix F are nontrivial for this bundle but trivial for the
cylinder bundle? Which are nontrivial for S2?
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Exercise 19)† [Introduction to Symplectic Geometry] i) Derive the symplectic re-
formulation of the notion of Poisson bracket of Appendix J.9, and the local Dar-
boux Theorem and Poisson tensor properties of Appendix J.12. ii) Work through
Chap. 2 of [446] as regards the Symplectic Geometry of constraint surfaces.

Exercise 20)† Work out the geometry of R3d/Eucl(d) for d = 1,2,3, interpreted as
3-body problem reduced configuration spaces.

Exercise 21) Show that the GR momentum constraint Mi can be regarded as con-
formally covariant, and derive the Lichnerowicz–York equation (21.7).



Appendix E
Lie Groups and Lie Algebras

Lie groups g [354] are concurrently groups and differentiable manifolds; addition-
ally their composition and inverse operations are differentiable. Working with the
corresponding infinitesimal ‘tangent space’ around g’s identity element—the Lie
algebra g—is more straightforward due to vector spaces’ tractability, while very lit-
tle information is lost in doing so. For instance, the representations of g determine
those of g. More formally, a Lie algebra is a vector space equipped with a prod-
uct (bilinear map) |[ , ]| : g × g −→ g that is antisymmetric and obeys the Leibniz
(product) rule and the Jacobi identity

|[g1, |[g2,g3]| ]| + cycles = 0 (E.1)

∀g1, g2, g3 ∈ g. This an example of algebraic structure: equipping a set with a
second or further product operations. Particular subcases of Lie brackets include the
familiar Poisson brackets and quantum commutators.

Moreover, a Lie algebra’s generators (infinitesimal elements) τp obey (Fig. E.1)

|[τp, τq]| = Cr
pqτr, (E.2)

where Cr
pq are the corresponding structure constants.1 It readily follows that the

structure constants with all indices lowered are totally antisymmetric, and also obey

Co [pqC
r
s]o = 0. (E.3)

Next suppose that a hypothesis is made about some subset of the generators kk

being significant. Denote the rest of the generators by hh. On now needs to check
the extent to which the algebraic structure actually complies with this assignation
of significance. Such checks place limitations on the generality of intuitions and
concepts which hold for simple examples of algebraic structures. A general split

1If this role is played by functions instead, then one has strayed into mathematics more complicated
than that of Lie algebras; see Appendix V.6 if interested.
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Fig. E.1 a) A Lie algebra’s commutator. This is a comparison of two triples of objects resulting
from applying two transformations g1, g2 in either order to a common initial object 0. b) The even
more straightforward commuting subcase, for which the final objects 12 and 21 coincide as well A
lot of instances of a) and b) occur during investigation of the Problem of Time; these are rendered
easy to pick out among the book’s figures by all being drawn on lime-green egg-shaped spaces

algebraic structure is of the form

|[kk,kk′ ]| = Ck′ ′
kk′kk′ ′ +Ch

kk′hh, (E.4)

|[kk,hh]| = Ck′
khkk′ + Ch′

khhh′ , (E.5)

|[hh,hh′ ]| = Ck
hh′kk +Ch′ ′

hh′hh′ ′ . (E.6)

Denote the second to fifth right hand side terms by 2) to 5). 2) and 5) being zero are
clearly subalgebra closure conditions. 3) and 4) are ‘interactions between’ h and K.
The following cases of this are realized in this book.

I) Direct product. If 2) to 5) are zero, then g = K × h.
II) Semidirect product. If 3) alone is nonzero, then g = K� h.

III) ‘Thomas integrability’. If 2) is nonzero, then K is not a subalgebra: attempting
to close it leads to some kk are discovered to be integrabilities. Let us denote
this by K →© h. A simple example of this occurs in splitting the Lorentz group’s
generators up into rotations and boosts: the group-theoretic underpinning [354]
of Thomas precession as per the next Section and Ex IV.9.

IV) ‘Two-way integrability’. If 2) and 5) are nonzero, neither K nor h are subal-
gebras, due to their imposing integrabilities on each other. Let us denote this
by K ↔© h. In this case, any wishes for K to play a significant role by itself are
almost certainly dashed by the actual mathematics of the algebraic structure in
question.

Note that III) and IV) cover much more diversity of mathematical structure than I)
and II) do.

E.1 Examples of Lie Groups and Lie Algebras

Example 1) For Abelian Lie groups, the structure constants are all zero. Subcases
of this include Tr(d) and Dil(d)—which are both noncompact—and Rot(2) which
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is compact. The corresponding Lie algebras’ generators are

PA := − ∂

∂xA
, D := −xA ∂

∂xA
and L := y

∂

∂x
− x

∂

∂y
. (E.7)

Example 2) GL(v) and SL(v) are also Lie groups (non-Abelian for dim(v) > 1).
The corresponding Lie algebras are the general linear algebras gl(v) consist of
p × p matrices over F, and the special linear algebras sl(v), which are the zero-
trace case of the preceding. The real cases of these are of dimension p2 and p2 − 1
respectively. The generators for gl(p,R) are, very straightforwardly,

GAB := xA ∂

∂xB
, (E.8)

and those for sl(p,R) are the tracefree part of the preceding:

SAB := xA ∂

∂xB
− 1

n
δA

Bx
C ∂

∂xC
. (E.9)

Example 3) SU(p) and U(p) are Lie groups.
Example 4) SO(p) and O(p) are Lie groups.

For each of the pairs in Examples 2) to 4), the version with the S prefix is a Lie
subgroup of the other version. 3) share the Lie algebra su(p) := {A ∈ gl(p,C) |A+
A† = 0} of dimension p2 − 1 (special unitary algebras), and 4) share the Lie algebra
so(p) := {A ∈ gl(p,R) |A+AT = 0} of dimension p{p − 1}/2(special orthogonal
algebras).2 The latter has generators

MAB := xA ∂

∂xB
− xB ∂

∂xA
(E.10)

subject to the nontrivial commutation relation schematically of the form

|[M,M]| ∼ M. (E.11)

Moreover, some (especially smaller) Lie groups conceived of in different manners
coincide: so-called ‘accidental relations’. As a first example, Rot(2) is mathemati-
cally SO(2) = U(1) = SU(1). Thus so(2) = su(1) is Abelian; on the other hand, all
the other so(n) and su(n) are non-Abelian. so(3) has the alternating symbol εijk for
its structure constants. The 3-d case of (E.11) also simplifies via duality between
MAB and the usual form of for the 3-d angular momenta LC.

2O(p) is furthermore a double cover of SO(p): it has two elements per element of SO(p), re-
lated by a discrete reflection. For a Lie group g, the corresponding (universal) covering group
g̃ is simply-connected and such that ∃ a smooth homeomorphism: ρ : g̃ → g such that
g ∼= g̃ /kerρ. The corresponding Lie algebras then only see the connected component that con-
tains the identity, and so coincide for O(p) and SO(p).
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Example 5) the symplectic groups Sp(2p) := {M ∈ GL(2p,C) |MT
JpM = I} for

Jp given by (A.1), whose corresponding double covers are the metaplectic groups
Mp(2p). The symplectic algebras shared by Sp(2p) and Mp(2p) are sp(2p) :=
{A ∈ gl(2p) |A+ JpA

T
Jp = 0} of dimension p{2p + 1}.

The three preceding examples of families of Lie algebras, alongside the excep-
tional Lie algebras E6, E7, E8, F4 and G2 [326] comprise the only semisim-
ple Lie algebras over C. 3 Further accidental relations include su(2) = so(3) and
so(4) = so(3) × so(3). One can also view SO(p) as O(p)/Z2 and SU(p) as
U(p)/U(1). A final case used in this book is that, SO(3) = SU(2)/Z2, by which
SU(2) provides a double cover of SO(3).

Example 6) Eucl(p) and Sim(p) are some composite Lie groups of particular rele-
vance. These take semidirect product form; e.g. for Eucl(p),

|[M,P |] ∼ P, (E.12)

which signifies that P is a Rot(p)-vector. On the other hand, Rot(p)–Dil indepen-
dence is based upon rotation and dilation generators commuting: a direct product
split

|[M,D]| = 0
(|[L,D]| = 0 in 3-d and |[L,D]| = 0 in 2-d

)
. (E.13)

Let us finally note that the Tr(p)� Dil combination is based upon

[P ,D] ∼ P. (E.14)

Next, returning to Example 2), the sl(p,R) generators can be split into an anti-
symmetric part, corresponding to the SO(p) subgroup, and a tracefree symmetric
part

EAB := xA ∂

∂xB
+ xB ∂

∂xA
− 2

n
δAB x

C ∂

∂xC
. (E.15)

These are shears and Procrustean stretches (Fig. B.1); each of these are only non-
trivial for p ≥ 2. E.g. corresponding infinitesimal matrices for sl(2,R) are

( 1 0
0 −1

)
,

and
( 0 1

1 0

)
, and the infinitesimal rotation matrix

( 0 −1
1 0

)
. The corresponding genera-

tors are

x
∂

∂x
− y ∂

∂y
for Procrustean stretches and x

∂

∂y
+ y ∂

∂x
for shears. (E.16)

The additional trace part of sl(p,R) is just D.

3The E does not just stand for ‘exceptional’ but also comes from mathematicians using Ap :=
su(p+ 1), Bp = so(2p+ 1), Cp = sp(2p) and Dp = so(2p). See e.g. [343] for an account of how
the even and odd SO(n) indeed behave sufficiently differently to merit treatment as two separate
series. Also, simple Lie algebras are those which have nontrivial ideals. Semisimple Lie algebras
are those which are direct sums of simple Lie algebras.
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Example 7) The Heisenberg group Heis(p)—which occurs in particular in Quan-
tum Theory—adjoins instead an extra R

p to the Euclidean group. This has the
form Mom(p)� {Tr(p)� Rot(p)} = R

p
� {Rp � SO(p)}; see Chap. 39 for more

advanced mathematical commentary about this group.
Example 8) In Particle Physics, internal gauge groups are restricted to take the form

of a direct product of compact simple and U(1) subalgebras by the Gell-Mann–
Glashow Theorem [886]. Note in particular that the Standard Model’s SU(3) ×
SU(2)×U(1) lies within this scope.

Example 9) Further Lie groups and Lie algebras arise upon indefinite signatures
becoming significant through SR’s means of encoding of the distinction between
space and time. The full Lorentz group O(p,1) has four connected components
since both spatial and temporal reflections are involved. Its connected component
is the proper orthochronous Lorentz group Lor(p + 1) = SO+(p,1). The xt com-
ponents of MAB are boosts with generators

KA = t
∂

∂xA
+ xA ∂

∂t
. (E.17)

Since boosts are present, the Lorentz group is noncompact. Schematically,
SO(3,1) decomposes (E.11) into

|[J ,J ]| ∼ J, |[J ,K]| ∼ K, |[K,K]| ∼ K + J, (E.18)

the key Lie bracket being the last one by which the boosts are not a subalgebra.
Thomas precession (after physicist Llewellyn Thomas) refers to the rotation arising
in this manner from a combination of boosts.

Example 10) The Poincaré group Poin(p + 1) likewise has four connected com-
ponents to Poin+(p + 1)’s one. Generators for this are rotations, boosts, spatial
translations and temporal translations, ∂

∂t
. Equations (6.25)–(6.26) give its nonzero

Lie brackets; also clearly SO(p,1)’s Lie algebra can be read off as the subalgebra
arising by striking out Pμ.

E.2 Killing Vectors and Isometries

One of the situations in which Lie groups arise is as transformation groups act-
ing on manifolds M. See e.g. [207] for a basic account, or mathematician Shoshichi
Kobayashi’s treatise [560] for a detailed exposition including a wider range of trans-
formations in Differential Geometry.

In particular, isometries (in the geometrical, not metric space context) are M-
diffeomorphisms that additionally preserve the metric structure m. This is addition-
ally the T = m subcase of the aforementioned more general definition φ∗T = T of
symmetries for tensors T. Isometries take the infinitesimal form

εAB → εAB − 2D(AξB). (E.19)
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This exhibits some parallels with the transformations of Gauge Theory AA → AA −
∂A$ (Chap. 6), and is underpinned by the Killing equation (after mathematician
Wilhelm Killing): the first equality in

0 = £ξmAB = 2D(AξB) =: (Kξ)AB. (E.20)

The second equality here is a simple computation, whereas the final definition is for
Killing form (Kξ)AB or Killing operator K. (E.20)’s solutions are the Killing vectors
of 〈M,m〉.

Killing’s Lemma [874] is that

DADBξC = −RBCA
DξD. (E.21)

One straightforward application of this is in determining that the solution of
Killing’s equation for flat space (Rp or Mp+1) is the formula at the top of Fig. B.1.
B is now a 2-tensor that is annihilated by the metric. This means an antisymmetric
2-tensor in the case of Rp , corresponding to the p{p − 1}/2 rotations; it has an ad-
ditional symmetric piece in the case of Mp+1, corresponding to the p boosts. On the
other hand, the aA are the p (spatial) translations in the case of Rp , alongside the sin-
gle time translation in the case of Mp+1. This gives a total of o{o+ 1}/2 isometries;
o := p for Ro and := p + 1 for Mo; thus in particular 6 for o = 3 and 10 for o = 4.
In this way, one recovers that Eucl(o) arises as Isom(Ro) and Poin(o) as Isom(Mo).
Here Isom(〈M,m〉) := {φ ∈ Diff (M) |φ∗m = m} denotes isometry group; these
are demonstrated to all be Lie groups in e.g. [560]. Moreover, o{o + 1}/2 is the
maximal number [560, 653] of isometries that an o-dimensional M can possess,
and occurs more widely for the constant curvature spaces. So e.g. So also possesses
the maximal number; they are here {o + 1}-d rotations: Isom(So) = SO(o + 1).

E.3 Conformal and Homothetic Counterparts

The above further generalizes to the notion of conformal isometry [207, 874]: a dif-
feomorphism which additionally preserves the conformal metric structure φ∗m =
 2m for  2 a conformal factor function. It is also the T = m subcase of the more
general definition φ∗T =  2wT of a conformal symmetry with weight w of a ten-
sor T.

In this case, (E.20) generalizes to the conformal Killing equation

2 mAB = £ξmAB. (E.22)

Moreover, contraction determines that  = 1
o
DCξ

C, so (E.22) can be rewritten as

0 = 2D(AξB) − 2

o
DC =: L(ξ)AB. (E.23)
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This gives the infinitesimal taken by conformal isometries,

εAB → εAB − 2D(AξB) + 2

p
mABDCψC, (E.24)

and defines the conformal Killing form Lξ or conformal Killing operator L. (E.22)’s
solutions are the conformal Killing vectors of 〈M,m〉. The conformal Killing vec-
tor fields on manifolds also generate a Lie algebra ([560] is an advanced reference
covering this).

A homothety can now be understood to be a diffeomorphism that additionally
preserves the homothetic metric structure φ∗m = c2m. This is also the T = m sub-
case of the more general definition φ∗T = c2wT of a homothetic symmetry with
weight w of a tensor T. The homothetic Killing vectors solve the homothety equa-
tion

2 cmAB = £ξmAB. (E.25)

The infinitesimal form taken by homothety is

εAB → εAB + c2mAB. (E.26)

Finally, the homothetic Killing vector fields on manifolds also straightforwardly
generate a Lie algebra.

The example of flat space—whether Rp or Mp+1, with fAB as the portmanteau
metric for δAB and ηAB respectively—now splits into three cases. For o ≥ 3, ∂A∂Bφ =
0 follows as a straightforward integrability from mixed partial equality. By this, φ
terminates at linear order, giving, upon performing the final integration,

ξA = aA +BA
Bx

B + cxA + {2kBxA − kAxB }fBCx
C. (E.27)

c here parametrizes dilations.

ξA = aA + BA
Bx

B + cxA (E.28)

features as a subcase within, giving a similarity group Sim(p) for Rp , and Sim(p,1)
for Mp+1. The dimensionality is o{o + 1}/2 + 1. One can view (E.28) as being of
the form

‘complementary function + particular integral’

= {Killing operator kernel: formula atop Fig. B.1.}

+ {outcome of introducing the simple homothetic inhomogeneous term}.

Furthermore, for φ not constant kA arises as well. These correspond to special con-
formal transformations

xA −→ xA − kAx2

1 − 2 k · x + k2x2
(E.29)
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Fig. E.2 Decomposition of
special conformal
transformation into an
inversion, translation and
another inversion

formed from an inversion, a translation and then a second inversion (Fig. E.2).

CA := x2 ∂

∂xA
− 2xAx

B ∂

∂xB
. (E.30)

The conformal groups Conf (p) and Conf (p,1) arise for Ro and M
o respectively;

these are of dimension {o + 1}{o + 2}/2 (in particular 10 for o = 3 and 15 for
o = 4); they are in fact isometric to already-known orthogonal-type groups, e.g.
Conf (p) = SO(p+ 1,1). (E.27) can be viewed in terms of a larger particular integral
arising from the more complicated conformal inhomogeneous term.

An integrability of the form

|[C,P ]| ∼ M +D, (E.31)

causes the conformal algebra to be of the Thomas form (P,C)→© (M,D). I.e. a
translation and an inverted translation compose to give both a rotation (‘conformal
precession’) and an overall expansion. Elsewise, CA behaves much like PA does.

The o = 2 case is the most interesting. Here 2
o

= 1 in (E.23) paves the way to
terms cancelling therein, collapsing it to the Cauchy–Riemann equations (C.1) for
(u, v) = (ξx, ξy). These have an infinity of solutions: any complex-analytic function
f (z) will do.

Thus Conf (2) and Conf (1,1) are infinite-d Lie groups. Moreover, one can still
consider a finite subgroup of these: the Möbius group of ‘global’ conformal trans-
formations, or some subgroup of that.

Finally, the o = 1 case collapses as well. Preliminarily, Killing’s equation col-
lapses to dξ/dx = 0, so ξ = a, constant, so this case is subsumed within the for-
mula atop Fig. B.1. On the other hand, conformal Killing equation collapses to
dξ/dx = φ(x), amounting to reparametrization by a 1-d coordinate transformation
v = �(x)+a for� := ∫ φ(x)dx. This case is not subsumed within (E.27): Conf (1)
is also infinite-dimensional, albeit rather less interesting than its 2-d counterpart.
[1-d has no angles to preserve, though conformal factors can be defined for it none
the less; note also that m drops out of the 1-d conformal Killing equation.]
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E.4 Some Further Groups Acting upon R
p

The above three Sections can be viewed as introducing PA, MAB, D, SAB and CA

generators.

Example 11) Combining the first four of these (the second, third and fourth can
be jointly packaged as GAB), one arrives at the affine group Aff (p) := Tr(p) �
GL(p,R), corresponding to Affine Geometry [222, 644]. dim(Aff (p)) = p{p+ 1}.
The nontrivial Lie brackets for this are |[G,G]| ∼ G and

|[G,P ]| ∼ P, (E.32)

signifying closure of the GL(p,R) subgroup and that PA is a GL(p,R) vector.
Example 12) Dropping D from the preceding, the equi-top-form group Equi(p) :=

Tr(p) � SL(p,R), which corresponds to the eponymous geometry (equiareal in
2-d [222]). dim(Equi(p)) = p{p + 1} − 1. The nontrivial Lie brackets for this are
the S’s closing among themselves and

|[S,P ]| ∼ P. (E.33)

Note also that

|[Shear,Shear′]| ∼ Rotation (E.34)

by which the non-rotational parts of SL(d,R) cannot be included in the absence of
the rotations.

Moreover, the KA and GT
(AB) generators are not compatible with each other, as is

clear from

conformal transformations only preserving angles
whereas shears do not preserve angles. (E.35)

Thus there are two distinct ‘apex groups’: Conf (p) from including KA and Aff (p)
from including SAB. ‘Apex’ is used here in the sense that the other possibilities are
contained within as Lie subgroups. These include a number of subgroups not yet
considered (Fig. E.3).

E.5 Yet Further Examples of Lie Groups in Physics

Example 13) The Galileo and Carroll complements of Poin(4) in its aspect as a
kinematical group are considered in Ex IV.15.

Example 14) Isom(AdS) is considered in Ex IV.10, resulting in another interesting
accidental relation: Ex IV.17.
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Fig. E.3 Summary sketch, of groups including further groups acting upon R
d . These are arrived

at by adding generators as per the labelled arrows. Moreover, the group relations involved do not
permit all combinations of generators to be included. In particular, absences marked X are due to
integrability (E.31). Absences marked ∗ are due to integrability (E.34). Finally, absences marked
† are due to obstruction (E.35). Figures E.4 and G.5 then use a matching layout

E.6 Lie Representations

Representations of Lie groups have much practical relevance to Quantum Theory.
Representations are here Lie algebra homomorphisms ρ : g → GL(v) for the Lie
algebra being on a vector space v. These are required to preserve the Lie bracket:
ρ(|[g1,g2]|) = |[ρ(g1),ρ(g2)]|.

The Representation Theory of compact Lie groups has many parallels with finite
Representation Theory (e.g. through Example 2) of Appendix P.2), but the noncom-
pact case does not.

For Tp the generators of a brackets algebraic structure g with bracket operation
|[ , ]|,

|[Tp,VV]| = 0 (E.36)

produces an ‘associated algebra’ with respect to the same bracket operation.

Example 1) [of associated structure]. When the VV are formed from the generators
themselves, this amounts to forming the centre Z(uea), for uea the universal en-
veloping algebra of g. This has this name due to its encapsulating features which
are universal to all representations of the g in question. In this case, the resulting
VV are known as Casimirs [152, 205] (after physicist Hendrik Casimir). These play
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Fig. E.4 Following the preceding figure’s layout, we indicate the corresponding invariants. As
regards other cases in the figures, the parent potential for Conf (p) will continue to hold as a
subcase for the subgroups marked with an S, though these have a wider range of good quantities
and thus potentials and quantum wavefunctions

a prominent role in Representation Theory, with SU(2)’s total angular momentum
operator J 2 being the best-known such.

Example 2) [of Lie representations]. SO(3) has representations labelled by |l,m〉.
These can be viewed as a ladder. These representation labels can also be viewed
as tied to the eigenvalues of the Casimir J 2 (Ex IV.6): j{j + 1}, and the eigenvalue
of J3.

Example 3) [of Lie representations]. Wigner [908, 909] showed that this perspec-
tive usefully extends to the case of the representations of Poin(4). This case has
two quadratic Casimirs (Ex IV.7): P 2 and W 2 for

Wμ := 1

2
εμνρσM

νρP σ (E.37)

the Pauli–Lubański pseudovector. Making use of the isotropy subgroups involved
[885] and Ex IV.7, the massive particles are labelled by |m, l,Pμ,m 〉: mass, total
spin, momentum and spin’s 3-component. On the other hand, the massless particles
are labelled by |Pμ,λ 〉 for λ the helicity: component of angular momentum in the
direction of motion. From this perspective, spin has passed from being an added-on
label in Nonrelativistic QM to being an intrinsic part of Special-Relativistic QM’s
representations. Moreover these representations can here be taken to be the types
of particle featuring in the theory (massive or massless, of spins 0, 1/2, 1, . . . ).

Example 4) [of associated structure]. The observables or beables are a more gen-
eral class of examples, each associated to a constraint subalgebraic structure. In
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simpler cases, the latter is still a Lie algebra, though GR’s constraints are more
complicated: they form the Dirac algebroid (9.31)–(9.33).

E.7 Anticommutator Algebras

Some algebraic structures also involve anticommutators. These model fermionic
species; Sect. 6.2’s Dirac algebra is of this nature, and an even simpler example is

|[σi,σj ]|+ := σi, σj + σj , σi = δij

as obeyed by the Pauli matrices. See e.g. [316, 712] for an extensive ‘maths methods
for physicists’ treatment of these and of the ensuing notion of spinors. The latter
includes a brief account of these for curved as well as flat spacetime; for more
extensive consideration of spinors in GR, see e.g. [75, 232, 706, 814, 868]; the third
and fourth of these cover the Ashtekar variables application and the fourth and fifth
the Supergravity one. Let us end by noting that this Appendix’s coarse split of Lie
groups of types I) to IV) readily extends to Lie superalgebras as well [36].

E.8 Exercises IV. Groups and Lie Groups

Exercise 0) i) Give the action of S4 on the 4 vertices of the tetrahaedron and on
the three lines which join opposite pairs of its edges.

ii) Prove that the set of group orbits form a partition, that Stab(x) ≤ g, that free
group action can be re-expressed as Stab(X) triviality, and that points on the
same group orbit have conjugate stabilizers. Also prove the following.

Orbit-Stabilizer Theorem If g acts on a set X, there is a bijection between Orb(x)
and g/Stab(x) given by gx ↔ g Stab(x). Consequently |Orb(x)| = |g/Stab(x)|.
iii) Show that all subgroups of an Abelian group are normal and that Z(g)� g.

Find the normal subgroups ofD4, A4 and S4. Finally show that SO(d)�O(d)
and Tr(d)� Eucl(d).

Exercise 1) [Finite Representation Theory]

i) Show that all elements of g acting as the identity mapping of v produces a
rep, 1. [This is known as the trivial rep, and counts as one irrep of g.

ii) The character χ of a rep ρ is a map χ : g → F, g  → Trρ(g). Take as facts
that 1) the character table—with conjugacy classes for columns and characters
for rows—is square. 2) Essentially all information about finite group reps is
captured by the character Table 3) If ‖χ‖2 = 1, the corresponding rep is an
irrep, whereas if ‖χ‖2 = n > 1, this counts how many irreps the corresponding
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rep ρ is a direct sum of. Additionally for irreps, 〈χ,χ ′ 〉 = 1 if ρ = ρ′ and 0
otherwise, so characters are orthogonal. [Here,

〈χ,χ ′ 〉 := 1

|g|
∑
g∈g
χ(g)χ ′(g)

—an example of g-act g-all construct—and ‖χ‖2 is the corresponding norm.]
Show that S3 has 3 conjugacy classes, and a sign rep σ for which χ(σ) is the
sign of the permutation. Finally use orthogonality to finish off the character
table.

iii) Obtain the last rep above—ε2—by considering the obvious action of S3 on
the equilateral triangle, noting that this rep’s norm is 2, and deducing from
orthogonality that this rep is the direct sum of an already-known rep and a new
rep.

iv) Show that S4 has 5 conjugacy classes. Show that iii)’s means of finding ε2
produces an analogous ε3.

v) For reps ρ1 and ρ2, ρ1 ⊗ ρ2 is also a rep, though ⊗ in does not in general
preserve irreducibility, being capable of producing a direct sum of irreps. [This
is the tensor product method.] Show that ε3 ⊗ σ is a new irrep, and so finish
off the character table of S4 by orthogonality. (This question’s methods permit
many other finite group irreps to be found, though other often more efficient
methods exist [326].)

vi)† Justify the above uses of ⊗ and orthogonality at the level of modules.

Exercise 2) State the Jacobi identity in a wide enough range of contexts to prove the
following. i) The first-class, ii) observables, iii) conserved quantity, and iv) Killing
vector properties are preserved by the corresponding brackets. v) That given a
constraint algebraic structure, the corresponding notion of observables also closes
as an algebraic structure under the same type of brackets. vi) That [£U ,£V ]W =
£[U,V ]W . vii) Eq. (E.3), viii) Eq. (J.29), and ix) that if the Poisson tensor (J.28) is
invertible, then its inverse is a closed 2-form (defined in Appendix F.3).

Exercise 3) Find the centres of Dn, An, O(n) and SU(n).
Exercise 4) i) Give an action of a permutation group which has only one group orbit,

and another which has multiple such. ii) Show that if Z acts on R by translations
by integers, then the group orbit space R/Z = S

1. iii) What is the group orbit space
S
n/O(n + 1) for the obvious group action?

Exercise 5) Show that i) Dn = Cn � C2, ii) Eucl(d) = Tr(d) � Rot(d) = R
d
�

SO(d) and iii) Poin(d) = M
d
� SO(d − 1,1).

Exercise 6) [Lie Representation Theory] i) Show that SU(3) involves three different
sets of ladder operators, each of which individually takes the form familiar from
SU(2) in the context of angular momentum addition. ii) Establish that SU(3) has
a fundamental 3-irrep, and that 3 is now a distinct rep [unlike for SU(2), where
2 = 2]. iii) Show that 3 ⊗ 3 = 8 ⊕ 1, for 8 the adjoint irrep (as features in Gell–
Mann’s eightfold way) and 1 the trivial ‘singlet’ irrep. [The adjoint rep of g is a
map g −→ Aut(g).] Find another tensoring which gives rise to the irrep 10 which



698 E Lie Groups and Lie Algebras

also appears approximately in the flavour physics of hadrons. iv) What representa-
tions do each of the Riemann and Weyl tensors correspond to?

Exercise 7) [Thomas precession] i) Split the Mij generators into rotations Ji and
boosts Ki . ii) Consequently split up the Poincaré group Poin(4)’s commutation
relations, and deduce that composing two boosts produces a rotation. iii) Give an
order of magnitude estimate for the size of the precession in the case of atomic
spin–orbit coupling, as well as the size of this correction relative to the ‘naive’
spin–orbit coupling. iv) Show that upon setting Ai := {Ji + iKi}/2 and Bi :=
{Ji − iKi}/2, then each of these quantities close separately. Show similarly that
SO(4) ∼= SO(3)× SO(3).

Exercise 8) i) Prove that P 2 and W 2 [cf. Eq./ (E.37)] are quadratic Casimirs for
Poin(4). ii) Show that [Wμ,Wν] = i εμνρσW

ρP σ . While this is not immediately
an algebra, interpret it as a such for Pμ taking a definite value, noting the role
played here by stabilizers alias ‘little groups’. iii) Show that the stabilizer is SO(3)
in the case of massive particles and Eucl(2) for massless ones. iv) This provides
one motivation for working out the Representation Theory of Eucl(2). v) Deduce
the massive and massless reps of Poin(4), explaining the physical significance of
each of their labels.

Exercise 9) a) Prove Killing’s Lemma (E.21). b) Find Isom(Rp), Isom(Mp),
Isom(Sp), Isom(Schwarzschild), Isom(Kerr) and Isom(AdSp). c) Show that the
Killing operator and the conformal Killing operator are self-adjoint on � compact
without boundary. What are their kernels?

Exercise 10) i) For p ≥ 3, determine the commutation relations for Conf (p) corre-
sponding to R

p and Conf (p− 1,1) corresponding to M
p . ii) Reconcile (E.29) and

the given form for the special conformal transformation generators.
Exercise 11) Show that Isom(S2) < Isom(R3) and Isom(Schwarzschild), and that

Isom(M4) < Conf (p). Use these to further exemplify the splits in Appendix E.
Exercise 12) i) Obtain the commutation relations for SL(p,R), GL(p,R), Equi(p)

and Aff (p). ii) Show that everything in Fig. E.3 are subalgebras of Conf (p) or
Aff (p) and that shears do not close with special conformal transformations.

Exercise 13)† Extend the Killing vector notion to a suitable notion of Killing tensor.
Check that your notion is indeed nontrivially realized by the Kerr geometry.

Exercise 14) i) Show that Conf (3,1) is a symmetry group for Electromagnetism.
ii)† Why is relativity not based on this rather than on Poin(4)?

Exercise 15) i) Derive the commutations relations of the Galileo and Carroll groups
as suitable limits of the Poincaré group Poin(4). ii) Show that the Galileo group
has semidirect product form. iii)† Work through [354]’s account of the Lie group
contraction operation in passing from the Poincaré group to the Galileo Group.
iv)† Readers with both enthusiasm and some experience in Group Theory and Rep-
resentation Theory are also invited to find the Casimirs and the reps for the Galileo
group, and to compare these with the Poincaré group’s.

Exercise 16) i) Show that the Möbius group ∼= SO+(3,1), with corresponding uni-
versal covering group SL(2,C). ii) Deduce that if one SR observer detects circular
patterns in the sky, then these will appear circular to all other SR observers within
that model universe as well.
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Exercise 17)† Show that Isom(AdS5) ∼= Conf (3,1) and interpret this result.
Exercise 18)† i) Find commutation relations for i) Conf (2). ii) The Virasoro algebra

(see Appendix V) corresponding to Diff (S1).



Appendix F
More Advanced Topology and Geometry∗

F.1 Complex Manifolds

The notion of manifold carries over to the case in which the charts map to open
subsets of Cm. The maps involved here are usually complex-analytic, i.e. obeying
the obvious C

m extension of the Cauchy–Riemann equations (C.1) for C. E.g. S2

can be thought of as a complex manifold: the Riemann sphere, C ∪ ∞. This can be
arrived at by the stereographic projection of S2 onto C plus the point at infinity that
one pole is sent to. S2 can furthermore be viewed as the simplest complex projec-
tive space CP

1, whereas CPm constitute a 1-parameter family of further examples
of complex manifolds. These are the obvious complex analogue of RPm, i.e. now
the spaces of lines through the origin in C

m+1. The C
m+1 coordinates for these

are homogeneous coordinates, whereas inhomogeneous coordinates are formed by
dividing m of these by the remaining one. Since that is only defined for nonzero de-
nominator, these correspond to merely local coordinate charts. See e.g. [673, 891]
for a more detailed introduction to complex manifolds, [75, 386, 706, 707] for The-
oretical Physics applications and [560, 561] for more advanced results.

F.2 The Hodge-*

The Hodge-* (after mathematician William Hodge) is a type of form duality map. It
is between forms of two generally distinct ranks which add up to the dimension of
the underlying manifold, ∗ : �p −→ �n−p . This involves metric as well as orienta-
tion structure, and its specific form is also affected by the signature of the metric.

Example 1) In 3-d , the Hodge-* interrelates axial vectors and 2-forms; think for
instance of two common presentations of the magnetic field.

© Springer International Publishing AG 2017
E. Anderson, The Problem of Time, Fundamental Theories of Physics 190,
DOI 10.1007/978-3-319-58848-3
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Fig. F.1 a) Triangulation as an approximation. b) Homotopic triviality of the plane and homotopic
nontriviality of the torus T

2. The latter has two distinct types of noncontractible loops, marked
in the bolder ink, resulting in fundamental group π1(T

2) = Z2 × Z2. Spaces, maps, images and
kernels in homology and cohomology are depicted in c) and d) respectively. c) Triangulation by a
simplicial complex in the case of T2; see e.g. [68] for what rules this complies with. d) and e) are
useful in envisaging the nature of homology and cohomology

Example 2) In 4-d , the Hodge-* provides an involution1 of 2-tensors. 2-tensors Tμν
can accordingly be split into self-dual and anti-self-dual parts [707]:

T±
μν := 1

2

{
Tμν ± i

2
ερσ μνTρσ

}
. (F.1)

Consult e.g. [316, 606, 673] for further information about the Hodge-*; the second
of these references includes various further physical applications.

F.3 Algebraic Topology

2-manifolds can be triangulated; more generally a p-dimensional counterpart can
be represented as a simplicial complex (see e.g. [68, 613] for a definition). Fig-
ure F.1.c) gives an example of this, but consult the given references and [437] if
you require technical details of such. From a physical point of view, this could be
viewed either as a discretization of a manifold, or as an inherently discrete version
for which the manifold itself is an approximation.

The following constructs each associate series of groups and maps to a given
topological manifold (by which they constitute some basic Algebraic Topology).
These further structures are in turn useful in classifying topological manifolds.

1) For f , g functions on topological spaces X and Y respectively, a homotopy
[68, 613, 673] is a continuous deformation Θ : X × [0,1] → Y such that for
x ∈ X, Θ(x,0) = f (x) and Θ(x,1) = g(x). X is contractible if all loop paths

1An involution is a self-inverse function.
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therein are homotopic to a point. Considering the variety offered by continuously
deformable loops on a manifold more generally produces the homotopy groups;
these are a type of topological invariant. The fundamental group, denoted π1(X),
is the first such. This is trivial for S2 (Exercise!), whereas Fig. F.1.b) illustrates
the case of T2.

2) Homology. One can associate a chain complex Ci of Abelian groups to a
given topological space X. Successive members of this complex are related by
boundary operator homomorphisms ∂n : Cn → Cn−1. Next, boundaries are ele-
ments of Bn(X) := Im(∂n+1) whereas cycles are elements of Zn(X) := Ker(∂n).
∂n∂n+1 = 0 holds: ‘the boundary of a boundary is trivial’. It also immedi-
ately follows from the Cn being Abelian that all their subgroups are normal.
Thereby, it makes sense to define the nth homology group as the quotient group
Hn(X) := Zn(X)/Bn(X); this is a measure of the extent to which each im-
age is a subset of the subsequent kernel (Fig. F.1.c). All in all, homology is a
means of constructing topological invariants from cellular arrays [Fig. F.1.e) il-
lustrates a such] which approximate a given X. If interested in homology, see
e.g. [68, 437, 613] for worked examples of how some simple spaces’ homology
groups can be constructed.

3) Cohomology [490, 614, 673, 791] ensues instead in applications in which the
maps are taken to go in the opposite direction (Fig. F.1.c): so-called cochains
δn : Cn → Cn+1. Next, coboundaries are elements of Im(δn−1) := Bn(X),
cocycles are elements of Ker(δn) := Zn(X). Finally, the quotient Hn(X) :=
Zn(X)/Bn(X) is the nth cohomology group.

Example 1) The most commonly encountered type of cohomology evoked in The-
oretical Physics is de Rham cohomology [490, 673] (after Georges De Rham),
which is for a smooth differentiable manifold in the role of X. Here d is the exte-
rior derivative, so this example concerns closed and exact differential forms. These
are respectively those forms f for which df = 0 and those which can be written
as f = dg. d2 = 0 here means that all exact forms are closed. Poincaré’s Lemma
[207, 673] provides a partial converse to this, for the case in which the domain is
contractible.

Example 2) This book also involves the more general Čech cohomology [280, 451]
(after early 20th century mathematician Eduard Čech). Here a topological space τ
is modelled by use of open covers. This turns out to work well for

‘good covers’ := covers for which every open set and finite intersection

thereof are contractible. (F.2)

One next introduces the nerve N({UC }) of each cover {UC }, defined as the simpli-
cial complex which is built as follows.

i) Allotting 1 vertex per element UC of the cover.
ii) Allotting 1 edge per pair of open covers with non-empty intersection.
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iii) Continue through with this pattern to allotting 1 k-simplex per {k + 1}-fold of
open covers with non-empty total intersection. In this way, one arrives at

(Čech cohomology of τ )

= (simplicial cohomology of N({UC }) for {UC } of form (F.2)). (F.3)

This is an example of a model space being successful through manifesting prop-
erties of the underlying space. In this case, the cohomological operation passing
between open covers is refinement of open covers. Finally note that the Čech co-
homology coincides with [451] the de Rham one when the topological spaces are
additionally smooth differentiable manifolds.

See Appendices F.5, S.2, W.1, and W.3 for mention of further types of cohomol-
ogy.

Exact sequences are often a useful construct in topology [437]. Here each space
in the sequence is linked to the next by a morphism, and these morphisms are such
that the image of one map is equal to the kernel of the next map. Finally, short exact

sequences are of the form 0 → A
u→ B

v→ C → 0 for u injective and v surjective.

F.4 General and Fibre Bundles

Consider first topological spaces which project down continuously onto lower-d
topological spaces, π : E −→ B. Such can be viewed in reverse2 as higher-d bundle
total spaces E, each built over a lower-d base space B; π is a projection map. This
is the general bundle notion; see Fig. F.2.a)–c) and [490] for an outline and [464]
for an advanced account.

Suppose that one further introduces a local product structure, in which the total
space is made up of identical copies of a fibre space (alias just fibres) F, itself for
now regarded as a topological space. Then one has a topological-level fibre bundle;
see Fig. F.2.b), d) and [207, 490, 673, 675] for introductions and [464, 891] for ad-
vanced accounts. Moreover, from a global perspective, fibre bundles are in typically
‘twisted versions’ of product spaces, whereas, conversely, global product spaces are
the trivial cases of fibre bundles. Figures F.2.e)–f) are simple examples of these re-
spectively. The inverse image π−1(p) is the fibre Fp at p (Fig. F.2.b). That all fibres
are the same is mathematically encoded by Fp being homeomorphic to F, with extra
isomorphic equivalence if and when required.

In fact, fibre bundles are also taken to have a structure group g acting upon the
fibres F, by which they are denoted 〈E,π,B,F,g〉.

2Bundles were originally considered from a perspective of total space primality in the early 1930s
by mathematician Herbert Seifert. Whitney [902], however, switched attention to base space pri-
mality, meaning that B is an a priori known manifold M.
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Example 1) For the significant case of a principal fibre bundle p(M,g) alias g-
bundle, g and F coincide, so that g now just acts on itself. On the other hand, for
an associated fibre bundle, g acts on a distinct type of fibre F, giving a somewhat
more general and complicated structure.

Taking an open cover {UA } of B, each UA is equipped with a homeomorphism
φA : UA × F → π−1(UA). This is such that πφA sends (p, f)—for f a point on Fp—
down to p. φA is termed a local trivialization since its inverse maps π−1(UA) onto
UA × F which is a trivial product structure. Local triviality here is in reference to
globally nontrivial fibre bundles encoding information in excess of that in the also
globally trivial product space. Figures F.2.e)–f) are, in more detail of a Möbius strip
viewed as a nontrivial fibre bundle as compared to the cylinder viewed as a trivial
bundle. Both of these have circles for base spaces and line intervals for fibres. In this
case, the extra global information is the non-orientability. Moreover, our ongoing
definition of fibre bundle can furthermore be shown to be independent of the choice
of covering, so we do not enumerate this paragraph as part of the definition.

As a final structural input, consider UA and UB—an arbitrarily chosen pair of
open sets except that nontrivial overlap between them is guaranteed: UA ∪ UB �= ∅.
Somewhat simplify the notation according to φA(p, f) = φA,p(f), φA,p is the homeo-
morphism sending Fp to F. The transition functions tAB(p) := φ−1

A,pφB,p : F → F

corresponding to the overlap region as per Fig. F.2.b) are then elements of g.
φA and φB are moreover related by a continuous map tAB : UA ∪ UB → g accord-
ing to φA(p, f) = φA(p, tAB(pf)): Fig. F.2.d). Note that this is a bundle analogue of
the meshing condition for topological manifolds of Fig. D.1.b), exhibiting a number
of parallels with it.

Topological fibre bundle morphisms are continuous maps between fibre bun-
dles 〈E1,π1,B1, f1,g1 〉 and 〈E2,π2,B2,F2,g2 〉 that map each fibre F1 onto a
fibre F2.

A section alias cross-section of a topological fibre bundle is a continuous map in
the opposite direction to π , � : B → E such that π(�(x)) = x ∀x ∈ B. This is to
cut each fibre precisely once. N.B. that not all fibre bundles possess a global such;
whether they do is often insightfully expressible in cohomological terms [464] and
gives rise to the theory of characteristic classes (outlined in Appendix F.5).

The above definitions of fibre bundle—and of the corresponding morphisms and
sections—can furthermore be elevated to the case of differentiable manifolds, now
with smooth maps in place of continuous maps and diffeomorphisms in place of
homeomorphisms.

Example 2) Tangent space, cotangent space and the general space of tensors can be
thought of as tangent, cotangent and tensor bundles respectively.

Example 3) Gauge Theory can be formulated in terms of fibre bundles (using both
principal and more general associated fibre bundles); see e.g. [147, 207, 487, 673,
675] for details. This requires considering connections on fibre bundles. One can
now indeed interpret Gauge Theory’s potential Aμ as a connection, alongside cor-
responding notions of parallel transport and of covariant derivative Dμ.
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The space lp(M) of loops at a point p ∈ p(M,g): curves γ : [0,1] → M starting
and ending at p; these define transformations φγ : π−1(p) → π−1(p) on f = g. For
u ∈ p(M,g) such that u projects down to p [= π(u)] the holonomy group at u is
Holu := {g ∈ g |φγ(u) = ug, γ ∈ lp(M)}; it is a subgroup of g.

Finally, the field strength Fμν corresponding to Aμ indeed plays the correspond-
ing role of curvature.

The above references and [446] show how monopoles (Sect. 37.3), Gribov effects
(Sect. 37.4) anomalies (Sect. 49.3), and BRST Quantization (Sect. 43.1) can lucidly
be studied in fibre bundle terms. Spinors can be as well, in either flat [885] or curved
[814, 868, 874] spaces.

Finally returning to the unqualified notion of bundles, these can be viewed as a
generalization in which there need no longer be a notion of identical fibre at each
point of the base space. This is useful since assuming such identical fibres through-
out turns out to be a significantly restrictive assumption in some kinds of modelling
required by Theoretical Physics (see e.g. Appendix M).

F.5 Characteristic Classes, Indices and Morse Theory

Characteristic classes (see e.g. [464, 673]) describe obstructions to the presence
of global sections in fibre bundles.3 The examples below indicate that these arise
from Cohomology Theory. See Appendix W.1 for a further algebraic interpretation
of characteristic classes.

Example 1) For complex vector bundles over a real manifold M with f = C
p and

g = GL(p,C), the Chern classes are the 2q-forms that arise from the expansion of
det
(
I + i

2π F
)

for F the curvature 2-form corresponding to the bundle’s gauge con-
nection A. The pth Chern class is moreover an element of the {p + 1}th cohomol-
ogy group Hp+1(M,Z). Applications of this include Kinematical Quantization
and the theory of anomalies. Finally, the integrand in the Chern–Simons action
(38.4) of use in various approaches to spatially 2-d Gravitation is the character
associated with the second Chern class [673].

Example 2) For a tangent bundle on a manifold M, the Hr(M,Z2)-valued charac-
teristic classes are Stiefel–Whitney classes. If the first of these is nontrivial, it is a
global obstruction to M being orientable; if the second is, there is an obstruction
to M supporting spinorial structure.

Indices are a priori analytic entities, such as dim(ker(D)) − dim(ker(D†)) for D
a differential operator on some manifold M with adjoint operator D†. Moreover,
by Index Theorems these are additionally topological invariants. See e.g. [673, 674]
for an outline of the Atiyah–Singer Index Theorem that corresponds to the above

3This Section’s works are named in part after mathematicians Shiing-Shen Chern, James Simons,
Eduard Stiefel and Marston Morse.
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example of index; this is useful e.g. for a global perspective on anomalies (Epi-
logue III.B).

Finally, Morse Theory considers relations between functions on a space and
(topological notions of) ‘the shape’ of that space. This is based on consideration of
critical points and makes use of further types of cohomology; see e.g. [648, 674] for
introductions to this subject. The Morse functions are the particular Morse Theory
notion required for this book. These are characterized by their Hessians at each criti-
cal point: a function f is Morse if its critical points are isolated and non-degenerate.



Appendix G
Configuration Space Geometry: Mechanics∗

As well as applying the previous Appendix’s Topology and Geometry to modelling
each of space and spacetime in Part I, we next consider the further application to
configuration space q [598]: the space of generalized configurations Q for a physi-
cal system. This not only plays a significant role in Classical Dynamics but also un-
derpins Facet 2 of the Problem of Time—Configurational Relationalism—(Part II)
and Geometrical Quantization (Part III). See Appendix J for an outline of the also
useful notion of phase space, Phase.

This first Appendix on configurations and configuration spaces considers finite
flat-space based Mechanics examples to gain intuition. Some geometrical compli-
cations encountered in studying configuration space are then considered in Ap-
pendix M, whereas the Field Theory and GR cases of configuration spaces are in
Appendices H and N. Notions of distance on configuration spaces are considered in
Appendices G.4 (positive-definite q) and N.8 (indefinite q as per GR). This book’s
other main model arenas’ configuration spaces—the Minisuperspace subcase of GR
and inhomogeneous perturbations thereabout—are covered in Appendices I (unre-
duced) and N.10 (reduced).

The morphisms corresponding to q—i.e. the coordinate transformations of q—
are termed the point transformations Point(q). These straightforwardly induce the
transformation theory for the Lagrangian variables Q, Q̇ or the Machian variables
Q,dQ. Point also admits a time-dependent extension Pointt (termed rheonomic
point transformations to Point’s scleronomic ones [598]); this however lies outside
the main theme of this book.

G.1 (Relational) Mechanics Configuration Spaces

These models’ incipient notion of space is absolute space a(d) of dimension d . This
is usually taken to be Rd equipped with standard Euclidean inner product alias met-
ric. We consider constellations of N labelled (possibly superposed) material points
in R

d with coordinates qiI . (For simplicity, this book considers just the case of equal
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Fig. G.1 Coordinate systems for 3 particles in each of 1- and 2-d . a)–b) Absolute particle position
coordinates (q

1
, q

2
, q

3
). These are defined with respect to, where they exist, fixed axes A and a

fixed absolute origin O. c)–d) Relative inter-particle (Lagrange) coordinates r := {rIJ , I > J }.
Their relation to the qI is obvious: rIJ := qJ − qI . In the case of 3 particles, any 2 of these
form a basis; we use upper-case Latin indices A,B,C for a basis of relative separation labels
1 to n. No absolute origin enters their definition, but reference is still made to fixed coordinate
axes A. e)–f) Relative particle inter-cluster mass-weighted Jacobi coordinates ρ, which are more
convenient but still involve A. × denotes the centre of mass of particles 2 and 3

masses; see [37] for discussion of other cases.) The corresponding (relationally re-
dundant) configuration space q(N,d) is just RNd .

Appendices E.1–E.4 provide a number of g that act naturally on R
d , which

can subsequently be interpreted as physically redundant transformations acting on
q(N,d) = R

dN . See Fig. G.5 for the corresponding quotient spaces q(N,d)/g,
and Appendix M for quotient spaces more generally. Let us denote configuration
space dimension by k.1 Mirror image identifications are in some cases optional, and
in other cases obligatory due to being realized by rotations. See Figs. G.9 and G.11
for this, and also concerning the effect of considering indistinguishable particles;
both of these matters involve discrete operations being added or removed.

Relative space r(N,d) = q(N,d)/Tr(d) = R
nd for n := N − 1 (Sect. 14.1).

Relative Lagrange coordinates—some basis of relative inter-particle separation
vectors—are conceptually simple natural coordinates for this. Fig. G.1.c)–d) illus-
trate these for 3 particles in 1- and 2-d , though this notion indeed trivially extends to
arbitrary N and d . However, Fig. G.1.e)–f)’s relative Jacobi coordinates are more
mathematically convenient to work with. These are sets of n inter-particle (cluster)
separations chosen such that the kinetic term (or the corresponding arc element) is
diagonal. They are widely used in Celestial Mechanics [636] and Molecular Physics
[624]. The diagonal form for the kinetic matrix in relative Jacobi coordinates is
μijAB := μAδij δAB , for μA the corresponding Jacobi inter-particle cluster reduced

1In general this refers to the naïve or largest dimension, since the outcome of quotienting in general
produces strata with a variety of dimensions.
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masses μA. E.g. for the 3-body case,

μ1 = m2m3

m2 +m3
and μ2 = m1 {m2 +m3 }

m1 +m2 + m3
. (G.1)

We furthermore pass to mass-weighted relative Jacobi coordinates ρiA := √
μAR

iA.
The kinetic metric is now just an identity array with components δij δAB . The unit
mass-weighted relative Jacobi coordinates

niA := ρiA/ρ =: ρiA/√
I (G.2)

are also useful on some occasions. Here, I is the moment of inertia; ρ itself is
the configuration space radius (alias hyperradius [667] in the Molecular Physics
literature).

If absolute axes are also to have no meaning, the remaining configuration space
is

relational space R(N,d) := R(N,d)/Rot(d) [= q(N,d)/Eucl(d)]. (G.3)

This is of dimension k = nd—d{d − 1}/2 = d{2n + 1—d} /2; in particular, this
is N − 1 in 2-d , 2N − 3 in 2-d and 3N − 6 in 3-d . If, instead, absolute scale is
also to have no meaning, the configuration space is Kendall’s preshape space [539]
p(N,d) := r(N,d)/Dil = S

nd−1, with k = nd − 1. If both absolute axes and abso-
lute scale are to have no meaning, then the configuration space is Kendall’s [539]

shape space s(N,d) := q(N,d)/Sim(d). (G.4)

Since the dimension of this plays a recurring role in this book, we give a notation
for it,

k(N,d) := dim(s(N,d)) = dN − {d{d + 1}/2 + 1} = d{2n+ 1 −d}/2 − 1. (G.5)

In particular, this is N − 2 in 1-d , 2N − 4 in 2-d and 3N − 7 in 3-d . Finally note
that p(N,1) = s(N,1), since there are no rotations in 1-d .

The above quotient spaces are taken to be not just sets but also normed spaces,
metric spaces,, topological spaces, and, where possible, Riemannian geometries.
Their analogy with GR’s configuration spaces is explained in Fig. G.2.

Useful Lemma [Jacobi Pairs] Within the subgroups of the affine group, the number
of relational configuration spaces requiring independent study is halved, since each
version including translations is the same as the version excluding these but with
one particle more.

Proof These subgroups all admit the same trivial notion of taking out the centre of
mass. Moreover, the diagonal form in Jacobi’s relative ρA is mathematically iden-
tical to that of the mass-weighted point particles

√
mIq

I bar there being one ρA

less. �
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Fig. G.2 This Sec’s configuration spaces a) are useful model arenas for their GR counterparts b)
as defined in Appendices H and N

Fig. G.3 Following Fig. E.3, each g RPM’s invariants are indicated

We next take the form of the invariants of a geometry [Appendix B] and apply
these to q and ρ as is appropriate to one’s material point particle theory; these are
displayed in column 1 of Fig. G.3 and are further exposited in Fig. G.5]. These
serve as each corresponding Relational Particle Mechanics’ (RPM) potential func-
tional dependence, and end up being its quantum wavefunction dependencies as
well. Finally, the corresponding RPM configuration spaces are named in Fig. G.5.2

2See also Fig. E.3 for an outline of further subgroups of Conf (d), alongside indication of other
combinations of generators which fail to close as groups for the reasons stated. Also note that there
are no conformal RPM models in 1- or 2-d since a finite space cannot be quotiented by an infinite
group.
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Fig. G.4 Minimal relationally nontrivial units in spatial dimensions 1, 2 and 3 for each group
are indicated. The axis and ruler logos denote absolute orientation and absolute scale respectively.
zIJ := zJ − zI are relative particle positions in the complex plane, corresponding to absolute
particle positions zI .
Research Project 115)† Elucidate the topology and geometry of as many of these spaces as possible

The Jacobi pairs simplification moreover does not apply to the configuration
spaces of the RPMs corresponding to those further groups which include the spe-
cial conformal transformations Ci . This is due to the commutation relation (E.31),
which causes translations to cease to be trivially removable. Also contrast the con-
formal case’s pure angle information with the similarity case’s mixture of angle and
ratio information.

Some notions of 2-d relational configuration additionally admit a C formulation.
As well as the two components of Tr(2) being an obligatory pairing in this setting
(keep both or none), Rot(2) and Dil are also an obligatory pairing: as the modu-
lus and phase parts of a single complex number. The simplest notions of relational
configuration that admit a C formulation have configuration spaces forming the di-
amond array C

N , Cn, CPn, CPn−1 corresponding to quotienting out by none, one
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Fig. G.5 Corresponding relational configuration spaces [36]. The equalities given follow from the
Jacobi pairs Lemma

Fig. G.6 Complex suite of a) invariants and b) the corresponding groups. The expression at the
bottom is the cross-ratio, for zIJ := zI −zJ . The Möbius group has further subgroups amenable to
complex formulation that are not considered here. c) The one new kind of relational configuration
space here is cross-ratio space c(N,2)

or both of Tr(2) and Rot(2) × Dil. For sure, the case of Möbius Configurational
Relationalism can be modelled in the C formulation.

G.2 Picking out the Triangleland Example

From here on, we restrict attention to Euclidean and similarity configurations and
configuration spaces. Let us start with the latter, due to these being geometrically
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Fig. G.7 a) and b) are pure-shape and Metric Shape and Scale RPM configuration space di-
mensions k respectively. c) and d) are the corresponding topological manifolds ([37] summa-
rizes further topological results about RPM configuration spaces). While this gives 3 tractable
series—see [539], including for more about the ‘Casson diagonal’—only the two shaded columns
admit tractable metrics as well. Let us term 1-d RPM universe models N-stop metrolands since
their configurations look like underground train lines. We term 2-d RPM universe models N-a-gon-
lands since their configurations are planar N -sided polygons. The mathematically highly special
N = 3 case of this is triangleland, and the first mathematically-generic N = 4 case is quadrilater-
alland [28]. See [37] for the simpler RPM configuration spaces’ Algebraic Topology

simpler; furthermore they recur as subproblems within the former. Figure G.7.a)–b)
tabulates configuration space dimension k, so as to display inconsistency, triviality,
and relational triviality by shading. We follow this up identifying tractable topolog-
ical manifolds and metric geometries in Fig. G.7.c)–d) [18].

Also note that cases in which

q = H/g is a homogeneous space have more well-understood mathematics
(G.6)
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[475, 602, 633]; see Appendix M.1 for what a homogeneous space is; note also that
this result covers many RPM and GR configuration spaces.

Moreover, N -stop metrolands already possess notions of localization, clump-
ing, inhomogeneity, structure and thus structure formation. Contrast with how for
GR these notions only appear in much more complicated Midisuperspace models.
N -a-gonlands have not only distance-ratio structure but also relative-angle structure,
as well as the further Midisuperspace-like feature of nontrivial linear constraints. On
the other hand, for GR, linear constraints on the one hand, and localization, clump-
ing, inhomogeneity and structure on the other, are interlinked due to both following
from spatial derivatives being nontrivial. These two sets of notions can be treated
separately in RPMs, with 1-d RPMs then serving to study the former in isolation
from the latter.

The N -stop metroland shape space has the hyperspherical metric

ds2 =
n−1∑
p=2

p−1∏
m=1

sin2θmdθ2
p. (G.7)

These θp̄ coordinates are related to ratios of the ρA in the usual manner in which
hyperspherical coordinates are related to Cartesian ones [37].

The N -a-gonland shape space has the Fubini–Study metric [539]

ds2 = {{1 + ‖Z‖2
C }‖dZ‖2

C − |(Z · dZ)C |2 }/{1 + ‖Z‖2
C }2 (G.8)

where the C suffix denotes the C
n−1 version of inner product and norm, with Zp̄’s

indices running over n − 1 copies of C. Zp̄ = Rp̄ exp(iΦp̄)—a multiple C plane
polar coordinates version of ratios of the ρ

i
, where the Φp̄ are relative angles be-

tween ρ
A

and the Rp̄ are ratios of magnitudes ρA [37]. This metric is of constant
curvature.

N.B. that each of the above metrics is presented in standard coordinates for the
corresponding geometries (hyperspherical angles and inhomogeneous coordinates
respectively). Moreover, in the current RPM setting the physical meanings of these
coordinates can be traced back to the spatial coordinates describing the particles
themselves: see [37]. N.B. also that, as mechanical theories, RPMs have positive-
definite kinetic arc elements, which significantly differ from GR’s indefinite one.
[This book’s other principal model arenas—Minisuperspace and inhomogeneous
perturbations thereabout—however, inherit GR’s indefiniteness.]

Let us next introduce a generalized notion of cone over some topological mani-
fold M. This is denoted by C(M) and takes the form

C(M) = M × [0,∞)/ .̃ (G.9)

˜ here means that all points of the form {p ∈ M,0 ∈ [0,∞)} are ‘squashed’ or
identified to a single point termed the cone point, 0. At the metric level, given a
manifold M with a metric with line element ds, the corresponding cone has a natural
metric of the form

ds2
cone := dρ2 + ρ2ds2, (for ρ ∈ [0,∞) a ‘radial’ coordinate). (G.10)
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Fig. G.8 a) For 3 particles in 1-d , just use the magnitudes of the two ‘base’ and ‘median’ Jacobi
coordinates. b) For 3 particles in 2-d , use the magnitudes of the two Jacobi coordinates and define
Φ as the ‘Swiss army knife’ angle arccos

(
ρ1 · ρ3/ρ1ρ3

)
. This is a relative angle, so, unlike the ρ,

these three coordinates do not make reference to absolute axes A. Next, pure-shape coordinates are
the relative angle Φ and some function of the ratio ρ2/ρ1. In particular, Θ := 2 arctan(ρ2/ρ1) is
the azimuth to Φ’s polar angle. Finally, Z = R exp(iΦ) so as to make contact with the N -a-gon in
complex presentation

Relational space is just the cone over shape space [37]; this cone structure renders
clear the geometrical meaning of the scale–shape split for Metric Shape and Scale
RPM. Finally, C(s(N,1)) is just Rn.

For triangleland, the additional coincidence CP
1 = S

2 ‘doubles’ the amount of
geometric and linear methods available (and the spherical ones are both simpler and
better-known than complex-projective ones). Here, the Fubini–Study metric simpli-
fies to

ds2 = dZ2/{1 + |Z|2 }2 = dΘ2 + sin2Θ dΦ2 ; (G.11)

see Fig. G.8 for the meanings of these coordinates.
The scaled case is just the cone over the pure-shape case’s configuration space,

allowing for that case to be covered as well.

ds2 = dρ2 + ρ2 {dΘ2 + sin2Θ2dΦ2 }/4 = {dI 2 + I 2 {dΘ2 + sin2ΘdΦ2
2 }}/4I ;

(G.12)
C(s(3,2)) is also R

3, albeit not with the flat metric. It is, however, conformally flat
[37]: just apply the conformal factor 4I to the second form of (G.12). The coning
construct is moreover independent of which shapes it is being adjoined to, thus
constituting a striking examples of Sect. 14.5’s ‘heterogeneous addendum’.

The corresponding isometry groups include Isom(s(N,1)) = Isom(Sn−1) =
SO(n), Isom(s(N,2)) = Isom(CPn−1) = SU(n)/Zn [among which triangleland
is further distinguished by Isom(s(3,2)) = Isom(CP1) = SU(2)/Z2 = SO(3) =
Isom(S2)] and Isom(R(N,1)) = Isom(Rn) = Eucl(n).

Atomic and Molecular Physics provide a number of useful parallels for the spher-
ical configuration spaces [37]. On the other hand, N -a-gonlands can draw from [28]
Geometrical Methods, Shape Statistics, and the standard Representation Theory of
SU(N). Finally, The space ofN particles on S

1 is straightforwardly just Tn, whereas
the space of relational triangles on S

2 itself is hyperbolic 3-space H
3 [539].
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G.3 3-Particle Configuration Spaces in More Detail

Let us first consider the topological-level configurations. The only distinct 3-particle
shapes are the double collision D and the collision-less generic configuration. If the
particles are labelled, the D can furthermore be distinguished by which particle is
not involved in the collision.

If the dimension is low enough that configurations cannot be rotated into their
mirror images, a first modelling choice is whether the mirror images are to be
identified. A second modelling choice is whether the particles are to be labelled
or indistinguishable. These considerations combine to give four topological 3-stop
metrolands (Fig. G.9) and four topological trianglelands (Fig. G.11).

Consider next the metric-level configurations. 3 particles on a line now have con-
tinua of distinguishable non-D configurations. These include a further distinguished
notion of merger M: a configuration in which the third particle coincides with the
centre of mass of the other two: Fig. G.9.a). In configuration space, the M’s sit on
the mid-points of the arcs between adjacent D’s, so e.g. the most extensive 3-stop
metroland forms a ‘clock-face’.

Triangular configurations (Fig. G.10) include collinear configurations C isosceles
configurations I and regular configurations R as distinctive subcases. The last of
these are triangles for which Ibase = Imedian: equality of base and median partial
moments of inertia, or of the base and median lengths themselves in mass-weighted
coordinates.

At the level of the triangleland configuration space shape sphere, C is realized
as the equator great circle. This divides the shape sphere into hemispheres of clock-
wise and anticlockwise ordered triangles: Fig. G.10.b). There are 3 types for each of
isosceles I and regular R, corresponding to the 3 ways of labelling ‘base’ and ‘apex’.
These are all meridian great circles, alternating between being labelled I and R, and
evenly spaced out to form the pattern of the ‘zodiac’ or ‘orange of 12 segments’
(Fig. G.11.a). Each I divides the shape sphere into hemispheres of left and right lean-
ing triangles (Fig. G.10.c), and each R into hemispheres of sharp and flat triangles
(Fig. G.10.d). All 6 of these great circles intersect at the poles, which correspond to
the equilateral triangle configurations E (the orientation-reversed equilateral trian-
gle pole is denoted by E). These make for a very natural and significant choice of
poles for triangleland, as displayed in Fig. G.11.a). Also, C ∩ I is D at one end and
M at the other. On the other hand, C ∩ R has no further special properties, so we
denote these points by S for ‘spurious’. Finally note that C and E are labelling (or
clustering) independent notions, unlike I, R, D, M or S.

The overall pattern [37] is that of the 12-segmented orange cut in half perpen-
dicular to its segments, or of the zodiac additionally split into northern and southern
skies. This pattern is, due to its regularity, an example of a tessellation: a parti-
tion of a space into a number of equal shaped regions: the ‘tiles’. Faces, edges and
vertices therein being physically significant in the current context, one is really deal-
ing with a labelled tessellation (cf. the notion of labelled graph in Appendix A.6).
The 4-stop metroland sphere carries an even more elaborate tessellation based on
the cube–octahaedron group [37, 59]. Quadrilateralland—much more typical of an



G.3 3-Particle Configuration Spaces in More Detail 719

Fig. G.9 Topological-level configurations and configuration spaces for 3 particles (see [56, 57] for
more about these). The double arrows indicate topological identification. The less used k) and l),
corresponding to quotienting out A3 instead of S3, are simple examples of shape space orbifold
(S2/Z3) and stratified orbifold. Orbifolds play a significant role in Appendices M. The kinematic
geometry itself does not provide any reasons to excise the D points. However if the potential
function is singular at the D’s—as is the case for the Newtonian gravitational potential—then
mathematical study would often begin by excising the D’s. Finally, if the D’s in g) are excised, one
obtains the ‘pair of pants’ [664, 665]

N -a-gonland—is given a comparable configuration space analysis in [28]. Such tes-
sellations provide a useful ‘interpretational back-cloth’ for the study of dynamical
trajectories, probability distributions and quantum wavefunctions. This method was
originally applied in the Shape Statistics setting by Kendall [537]: his spherical
blackboard, cf. Fig. G.11.f).
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Fig. G.10 Metric level types of configuration for 3 particles in 1- and 2-d . ‘Tight’ is used here as
in ‘tight binary’ from Celestial Mechanics and Astronomy

Fig. G.11 3-particle configuration spaces in dimension ≥ 2 at the metric level. a) The sphere.
b) The lune of mirror image distinguishable configurations of indistinguishable particles. c) The
hemisphere with edge: a simple example of stratified manifold, which occurs in the spatially 3-d
version’s shape space. This corresponds to mirror image indistinguishable configurations of distin-
guishable particles. f) Kendall’s spherical blackboard [537], corresponding to both both particles
and mirror images being indistinguishable. Note that stratified manifolds play a significant role in
Appendices M and N, alongside Sect. 37.5’s deliberation of whether to excise, unfold or accept
strata, which is sketched out here as the variants in b), d), e), f), g) and h). Also note that e.g.
asymptotically flat GR has analogous additional discrete quotient distinctions corresponding to
whether to retain large diffeomorphisms [359]

In 2-d , mirror image identification is optional: a) and b) are both viable options.
In 3-d , however, rotation out of the plane sends one mirror image to the other, so
a) ceases to be a valid option. As regards stratification, 1-d has no capacity for
isotropy groups of different dimension. On the other hand, metric shape spaces for
2-d shapes avoid stratification issues. This is due to only involving SO(2) = U(1),
which acts in the same manner same on C and non-C configurations. However, in 3-
d the C have only an SO(2) subgroup of the SO(3) acting upon them, so stratification
ensues. In 3-d also, the inertia tensor has zero eigenvalues for the C, causing math-
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ematical complications (these prevent inversion of kinetic metric and lead to curva-
ture singularities). This gives one mathematical reason for excision (Fig. G.11.d),
along with a physical reason against this: the C are quite clearly physically accept-
able configurations.

A second option is to accept the stratification (Fig. G.11.c).
A third possibility is to unfold the equator, by introducing an extra angular co-

ordinate that parametrizes the hitherto unused rotation about the collinearity axis.
At the level of configuration space, this has the effect of blowing up the equator
into a torus: the ‘hemisphere with thick edge’ of Fig. G.11.e). However, within the
point-particle model setting, the value taken by this extra angular coordinate is not
physically meaningful, providing physical and philosophical reasons to not consider
this option.

As regards the corresponding relationalspaces, 3-stop metroland’s is trivially R
2;

indeed N -stop metroland’s is R
n. In each case it is entirely clear how to represent

an n-sphere within R
n. The nA play the role of Cartesian directions. However, what

plays this role for S2 within R
4? (Ex VI.10). In this case, there are four components

of nA; how does one relate these to an R
3? It turns out that R4 → S

3 → S
2 → R

3

handles this, where the second step is the ‘Hopf map’. In this manner, the ‘Hopf–
Dragt’ quantities [266, 513, 624] arise:3

drax := sinΘ cosΦ = 2n1n2 , cosΦ = 2{n1 ×n2 }3, (G.13)

dray := sinΘ sinΦ = 2n1n2 sinΦ = 2n1 · n2, (G.14)

draz := cosΘ = n2
2 − n2

1. (G.15)

These appear as ‘ubiquitous quantities’ [37] in studying the kinematics and the re-
lational dynamics of triangle configurations, and are indeed configurational Kuchař
beables for the triangleland RPM [32]. Using ρi = ρ ni , these quantities are also
available in scaled form:; denote these by Drai . The Hopf–Dragt quantities can be
interpreted as follows.

drax is a quantifier of ‘anisoscelesness’ aniso: departure from the underlying
clustering’s notion of isoscelesness, cf. anisotropy in Sect. I.1. Specifically, aniso
per unit base length in mass-weighted space is the l1 − l2 indicated in Fig. G.12.a):
the amount by which the perpendicular to the base fails to bisect it (which it would
do were the triangle isosceles).

dray is a quantifier of noncollinearity; this is actually clustering-independent
(alias ‘democracy invariant’ in Molecular Physics [624]). This is furthermore equal
to 4 × area (the area of the triangle per unit I in mass-weighted space), which is
lucid enough to use as notation for this quantity. In comparison, in the equal-mass

3‘Hopf’ is the name used in Mathematics and ‘Dragt’ in Molecular Physics, after mathematician
Heinz Hopf and physicist Alex Dragt respectively. nA := ρA/ρ: the normalized mass-weighted
relative Jacobi coordinates, which, by the normalization, are indeed pure metric shape quantities.
Finally, the 3-component in the first of these indicates the component in the fictitious third dimen-
sion of this cross product.
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Fig. G.12 a) sets up the definition of anisoscelesness quantifier. b)–d) interpret the three ‘Hopf—
Dragt’ axes in terms of the physical significance of their perpendicular planes

case

(physical area) = I
√

3

m
area. (G.16)

Finally, draz is an ellipticity, ellip: the difference of the two ‘normalized’ partial
moments of inertia involved in the clustering in question, i.e. that of the base and
that of the median. This is clearly a function of pure ratio of relative separations, in
contrast to aniso being a function of pure relative angle.
Θ itself is also a ratio variable. Moreover, that ellip is cosΘ subsequently enters

the mathematical study of triangleland (as the Legendre variable [220]). On the
other hand, Φ is the relative angle ‘rightness variable’ right corresponding to each
clustering. So, in contrast with the pure-ratio variable draz = ellip, drax = aniso
and dray = 4 × area provide mixed ratio and relative angle information. The ratio

information in both of these of these is a 2n1n2 =
√

1 − ellip2 factor. On the other
hand, the relative angle information is in the cosΦ and sinΦ factors.

Figure G.12.b) depicts Aniso, Ellip and Area as vectors in relationalspace, iden-
tifying which plane therein each is perpendicular to and which shape space hemi-
spheres this separates.

Maximal collisions are singular for 2- and 3-d RPMs. E.g. for scaled triangle-
land, the Ricci scalar is R = 6/I .

Pure-shape triangleland has the maximal three Killing vectors, the ‘axial’ ∂/∂Φ
now corresponding to invariance under change of relative angle. Scaled triangle-
land’s topologically and geometrically distinguished origin precludes ∂/∂ drai from
being Killing vectors but still admits the three draj ∂/∂ drai − drai∂/∂ draj . Plain
N -stop metroland and N -a-gonland avoid stratification issues due to SO(2) =
U(1)’s particular straightforwardness, whereas 3-d RPMs are not so fortunate.
Moreover, mirror image identified triangleland exhibits strata in both its shape space
(hemisphere with edge) and relationalspace (half-space with edge), whereas indis-
tinguishable particle versions of RPMs are examples of orbifolds.
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G.4 Notions of Distance on Configuration Spaces

Various such [37, 105, 240, 536, 539] can be built from the inner product and norm
corresponding to q’s kinetic metric 4 M

(Kendall Dist) = (Q,Q)M , (G.17)

(Barbour Dist) = ‖dQ‖2
M , (G.18)

(DeWitt Dist) = (dQ,dQ′)M . (G.19)

If there is additionally a physically irrelevant g acting upon q,

(Kendall g-Dist) = (Q· −→
gg Q′)M , (G.20)

(Barbour g-Dist) = ‖dgQ‖2
M and (G.21)

(DeWitt g-Dist) = (
−→
g dg Q,

−→
g dg Q′)M . (G.22)

g-all moves—such as integral, sum, average, inf, sup or extremum—can be applied,
after insertion of Maps if necessary (cf. Chap. 14). For instance (G.21) subjected to
the ×√

2W and integration maps before a g-all extremum move gives Best Match-
ing. This can furthermore now be recognized as a subcase of weighted path metric
construct (Appendix D.4). On the other hand, (G.22) differs from this in the ‘root–
sum or integral’ ordering manner of Sect. 17.2. (G.20) itself differs from the other
two cases in using a finite group action to the other two cases’ infinitesimal ones.
In another sense, it is (G.20) and (G.22)which are akin: these compare two distinct
inputs versus (G.21) working around a single input. There is a further issue with
‘comparers’: if M = M(Q), does one use Q1 or Q2 in evaluating M itself? This
situation does not arise in for Kendall’s shapes in R

n, but it does in DeWitt’s GR
context. DeWitt resolved this (Appendix N.8) in the symmetric manner: using Q1

and Q2 to equal extents.
See furthermore Appendix R as regards assessment of how good the best fit is.
In some cases, one might instead be able to work directly with, or reduce down

to, q/g objects, in which case there is no need for the above indirect construct. One
would then make use of the relational or reduced q geometry M̃ itself.

A further alternative to the above comparisons of two configurations themselves
is to performing intrinsic computations on each

ι : q −→ R
p, (G.23)

4This exists independently of whether it is contracted into velocities or changes; e.g. moment of
inertia is this metric contracted into mechanical configurations themselves. It only provides a norm
if it is positive-definite.
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and only then compare the outputs of these computations.5 In this case, one can
consider using norms in the space of computed objects that it is mapped into (the
p-dimensional Euclidean metric in the above example). Note however that the out-
come of doing this may well depend on the precise quantity under computation.
Also ι will in general has a nontrivial kernel; so the candidate ι-Dist would miss
out on the separation property of bona fide distances. If this separation fails, one
can usually (see e.g. [393]) quotient so as to pass to a notion of distance. [Moreover
occasionally this leaves one with a single object so that the candidate notion of dis-
tance has collapsed to a trivial one.] Also it is occasionally limited or inappropriate
to use such a distance if it is the originally intended space rather than the quotient
that has deeper significance attached to it.
ι can again be directly or indirectly g-invariant; indeed directness is one selec-

tion criterion amongst the vast number of possibilities for ι. Other selection criteria
include extendibility to unions of configuration spaces, ‘physical naturality’, and
recurrence of the structure used in other physical computations. E.g. a notion of
distance that is—or at least shares structural features with—an action, SM partition
function, entropy, or notion of information, or a quantum path integral.

5This is motivated e.g. by the preceding comparers failing to give distances when M is indefinite—
losing the non-negativity and separation properties of bona fide distance—which we know will
occur for GR. A range of candidate ι’s for the GR case are provided in Appendix N.8.
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Field Theory and GR: Unreduced Configuration
Space Geometry∗

H.1 Field Theory: Unreduced Configuration Space Geometry

Scalar Field Theory’s configuration space sca the a space of scalar field values φ(x)
Electromagnetism’s configuration space is a space �1 of 1-forms Ai (x).

Yang–Mills Theory’s configuration space is a larger space � of 1-forms APi (x).
[sca and �1 have implicit dependence (R3) in many of their more standard uses.]

In modelling the above in more detail, the square-integrable functions L2 provide
one starting point. One can furthermore pass to e.g. the Fréchet spaces of the next
Section, which are subsequently useful in curved-space and GR-coupled versions.
Here one has � dependence in place of R3.

H.2 From Hilbert to Banach and Fréchet Spaces

Consider the following ladder of increasingly general topological vector spaces
which are infinite-d function spaces [207, 522]. A Hilbert space Hilb is a com-
plete inner product space, a Banach space Ban is a complete normed space, and a
Fréchet space fre is a complete metrizable locally convex topological vector space
[426].1

Hilbert Spaces are the most familiar in Theoretical Physics due to their use
in linear-PDE Fourier Analysis and in Quantum Theory. Functional Analysis has
moreover also been extensively developed for Banach spaces [207] (this e.g. under-
lies Appendices’ J and L’s treatment of the Calculus of Variations). Major results
here are as follows; see [270] for details and proofs.

1) The Hahn–Banach Theorem.
2) The Uniform Boundedness Principle.
3) The Open Mapping Theorem.

1These are named after, respectively, mathematicians David Hilbert, Stefan Banach, and Maurice
Fréchet.

© Springer International Publishing AG 2017
E. Anderson, The Problem of Time, Fundamental Theories of Physics 190,
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1) is a case of Globalization by Extension of bounded linear functionals on sub-
spaces. Both 2) and 3) apply to continuous linear operators. 2) is self-descriptive,
whereas 3) involves surjective such operators being open maps (i.e. maps that pre-
serve the openness property of sets). 2) and 3) follow from Baire’s Category Theo-
rem concerning the topological space notion of density for complete metric spaces.
One consequence of the Open Mapping Theorem is that the Inverse Function The-
orem extends to Banach spaces. See e.g. [207] for the form taken by Calculus on
Banach spaces.

Treatment of GR configuration spaces moreover involves the even more gen-
eral Fréchet spaces. Let us first explain their definition. A topological vector space
is metrizable if its topology can be induced by a metric space metric which is
furthermore translation-invariant. This qualification is required since for topolog-
ical vector spaces, one uses a collection of neighbourhoods of the origin (vector
space 0). From this, translation (by the vector space + operation) establishes the
collection of neighbourhoods at each other point. A Hamel basis itself is a maximal
linearly-independent subset of v (this is one of various notions of basis in the case
of infinite-dimensional spaces). A base in a topological vector space v is a linearly-
independent subset b such that v is the closure of the linear subspace with Hamel
basis b.

A subset Y of a vector space v is convex if px + {1 − p}y ∈ Y ∀x, y ∈ Y,p ∈
[0,1]. A topological vector space v is locally convex [207] if it admits a base that
consists of convex sets. Fréchet spaces are moreover very naturally associated with
c∞ smoothness [426].

Let us finally note that many substantial results in Functional Analysis—in par-
ticular 1) to 3)—furthermore carry over from Banach spaces to Fréchet spaces [426].

On the other hand, we caution that there is no longer in general an Inverse Func-
tion Theorem here, though the Nash–Moser Theorem (after mathematicians John
Nash and Jurgen Moser) [426] is a replacement for this for a subclass of Fréchet
spaces. See footnote 2 for another application, and [426] as regards Calculus on
Fréchet spaces more generally.

H.3 Hilbert, Banach and Fréchet Manifolds

Topological manifolds’ local Euclideanness and ensuing R
p-portion charts extend

well to infinite-d cases, for which the charts involve portions of Hilbert, Banach
and Fréchet spaces. See e.g. [207, 426, 606] for accounts of Hilbert, Banach and
Fréchet manifolds respectively. Banach manifolds are the limiting case as regards
retaining a very wide range of analogies with finite manifolds. Fréchet manifolds
remain reasonably tractable [207], despite the loss in general of the Inverse Function
Theorem, as do Fréchet Lie groups [426].

Finite manifolds’ incorporation of differentiable structure also has an analogue in
each of the above cases. So e.g. one can consider differentiable functions and tangent
vectors for each, and then apply multilinearity to set up versions for tensors of any
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other rank (p, q) and symmetry type S. In particular, applying this construction
to a Fréchet manifold with tangent space fre(c∞) produces another Fréchet space
freS(p,q)(c∞).

H.4 Topology of Riem(�)

The space of Riemannian geometries Riem(�) can be modelled as an open positive
convexcone2 in the Fréchet space fresym(0,2)(c

∞) for sym(0,2) the symmetric rank-
2 tensors.

Riem(�) can furthermore be equipped [301] with a metric space notion of
metric, Dist; this can additionally be chosen to be preserved under Diff (�). Thus
Riem(�) is a metrizable topological space. Consequently Riem(�) obeys all
the separation axioms—including in particular Hausdorffness—and it is also para-
compact. Riem(�) is additionally second-countable [363], and has an infinite-
dimensional analogue of the locally Euclidean property as well; consequently a
single type of chart suffices in this case. In this manner, Riem(�) is a manifold
that is infinite-dimensional in the sense of Fréchet(c∞).

H.5 Riem(�) at Level of Geometrical Metric Structure

Infinite-d manifolds can be equipped with connections and metrics [207]. In the
dynamical study of GR, Riem(�) is usually taken to carry the infinite-dimensional
indefinite Riemannian metric provided by GR’s kinetic term, i.e. the inverse DeWitt
supermetric Mabcd of (8.18). More generally, one might consider other members of
the family of ultralocal supermetrics [358, 552]

Mabcd
β := √

h{hachbd − w habhcd}. (H.1)

These split into 3 cases: the positive-definite w < 1/3, the degenerate w = 1/3, and
the indefinite (heuristically {− − + + + + +}∞) w > 1/3. Ultralocality readily
permits these to be studied pointwise; the more problematic degenerate case is usu-
ally dropped from such studies. Pointwise, these supermetrics arise from positive-
definite symmetric 3 × 3 matrices (hab at that point. The 6-d space of these is math-
ematically [358] sym+(3,R), which is diffeomorphic to the homogeneous space

GL+(3,R)/SO(3) ∼= R+ × R
5. (H.2)

2This is a Linear Algebra characterization of a space s [301, 729], that is not itself linear but obeys
s + s ⊂ s and ms ⊂ s for m ∈ R+ . See [301] for more on this and for consideration of why
Fréchet spaces are appropriate. Do not confuse this use of ‘cone’ with Appendix G’s topological
and geometrical uses.
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This is the full Minisuperspace; it occurs in Strong Gravity as well [716, 717].
The spatial 3-metric can furthermore be decomposed into scale and unimodular

(unit-determinant) parts according to

hab = h1/3uab for uab := h−1/3hab. (H.3)

The pointwise unimodular (unit-determinant) metrics form the 5-d space3

SL+(3,R)/SO(3) ∼= R
5. (H.4)

Ultralocality also implies that these pointwise structures uplift to Riem(�) and
CRiem(�), as per Sect. 43.3. The scale-free part gives rise to 8 Killing vectors and
the scale part to a homothety [358]. The corresponding local Riemannian Geometry
for this was studied by DeWitt [237], including the form taken by the geodesics.
This exhibits various global difficulties: curvature singularities and geodesic incom-
pleteness [874].

H.6 Conformal Variants

The conformal transformations Conf (�) are smooth positive functions on �. These
form an infinite-d Lie group; moreover this is Abelian under pointwise multiplica-
tion. They can be decomposed according to Conf (�) = Dil× VPConf (�) for con-
stant scaling Dil and VPConf (�) the global-volume preserving conformal trans-
formations.

The subsequent quotient is conformal Riem4 CRiem(�) := Riem(�)/Conf (�).
This was first considered by DeWitt [237], who showed it to be simpler and better-
behaved than Riem(�) at the level of Metric Geometry. This is based firstly on
his observation [237] that it is the scale part of the GR configuration space metric
which causes the indefiniteness. CRiem(�) itself is positive-definite; the natural
supermetric thereupon is

Uabcd := uacubd , (H.5)

and this is the basis of bona fide notions of distance. Secondly, geodesics are better-
behaved upon CRiem(�) as compared to Riem(�).

On the other hand, {CRiem + V}(�) ’s metric is ‘−{+ + + + +}3∞’, which is de
facto, rather than just pointwise, hyperbolic. The—direction here corresponds to a
global scale variable, such as indeed the global spatial volume, or the cosmological
scalefactor a when applicable.

Moreover, many of the configuration spaces have physically-significant singular
points both for GR and for RPMs. In particular, a = 0 corresponds to the Big Bang

3This is the Minisuperspace counterpart of the CRiem(�) detailed in the next Section.
4This has also been termed ‘pointwise conformal superspace’ [305]; Chap. 21.4 explains this
change of nomenclature.
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and I = 0 to the maximal collision of Mechanics; these are furthermore analogous
through both involving scale variables.

Finally, quotienting out conversely Dil alone from Riem(�) gives avpRiem(�)
configuration space: ‘volume-preserving Riem(�)’.

H.7 GR Alongside Minimally-Coupled Matter

This case is useful through including fundamental-field second-order minimally-
coupled bosonic matter. The redundant configuration space metric now splits ac-
cording to the direct sum [835]

M = Mgrav ⊕ Mmcm. (H.6)

We use ψZ to denote fundamental-field second-order minimally-coupled bosonic
matter, consisting of blockwise disjoint species ψz, with z ∈ Z. It is usually addi-
tionally assumed that M is independent of the matter fields. This example covers
e.g. minimally-coupled scalars, Electromagnetism, Yang–Mills Theory and scalar
Gauge Theories, in each case coupled to GR.

In the case of a minimally-coupled scalar field, we denote this configuration
space by RIEM(�).5 The (undensitized) metric on this takes the blockwise form
M(h) := ( 1 0

0 M(h)
)

and M(h) the GR configuration space metric itself. [This imme-
diately extends to the case of N minimally-coupled scalar fields.]

Similar considerations apply throughout to extending CRiem(�), {CRiem +
V}(�) and vpRiem(�).

H.8 Spaces of Affine Connections

The affine level of structure presents a first ‘single-floor’ versus ‘tower’ ambiguity
in the sense of Epilogue II.C’s nomenclature.

In the single-floor case, if only affine connections are taken to contain physically
meaningful information, so q = aff(�), what dynamics do these support? This
question can additionally be asked if only ‘Weyl connections’ —connections which
carry out parallel transport up to conformal transformation—are involved, for which
q = caff(�).

In the tower case, one can consider what happens if the spatial affine con-
nection is dynamical independently from the metric. This corresponds to q =
Riem(�)×aff(�), and is to be addressed by varying connections separately, rather
than presupposing that the affine connection involved is the metric connection.

5We generally use the capped version of a GR configuration space to denote further inclusion of a
minimally-coupled scalar field.
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I.1 Minisuperspace: Homogeneous GR

These were introduced in Chap. 9; we now consider a wider range of examples of
homogeneous models than in Part I due to the possibility of nontrivial anisotropy.
These models are classified by the isometry groups Isom(〈�,h〉) of their spatially
homogeneous surfaces.1 This leads to two cases according to whether Isom(〈�,h〉)
acts ‘simply transitively’ (meaning freely and transitively). If this does not apply,
it turns out that [812] there is a single case: SO(3) × R acting upon the cylindrical
3-space S2 × R, giving the Kantowski–Sachs model. The other case gives the family
of Bianchi models. The I being Lie groups, they are in turn characterized by the
form of their structure constants. They are subdivided according to

Ckik = 0 for class A and �= 0 for class B. (I.1)

A finer classification of Ckij yields a subdivision into Bianchi models labelled by I
to IX [812]. The general case’s spatial metric can be represented as

ds2 = hij dωidωj (I.2)

for 1-forms dωk obeying d2ωk = Ckij dωi ∧ dωj .

Example 1) The spatially closed S
3 isotropic case has spatial metric ds2 =

a(t)2ds2
S3 (⊂ Bianchi IX).

Example 2) The Kasner universes (⊂ Bianchi I) have

ds2 = t2p1dx2
1 + t2p1dx2

1 + t2p1 dx2
1 (I.3)

such that the exponents obey p1 + p2 + p3 = 1 and p2
1 + p2

2 + p2
3 = 1.

1See Appendix N.3 as regards isotropy and isometry turning out to have equivalent groups.
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Fig. I.1 a) Visualization of diagonal anisotropy in 2-d . b) Non-diagonal anisotropy allows for the
hypersurface to be ‘twisted’ as well. In 3-d , there are 2 independent anisotropic stretches and 3
twistings. c) The diagonal Bianchi IX model’s potential well

Example 3) Diagonal Bianchi IX models have spatial metrics

ds2 = exp(2{−Ω + β+ + 3
√

3β− })dΩ2 + exp(2{−Ω + β+ − 3
√

3β− })dβ2+
+ exp(2{−Ω − 2β+ })dβ2− (I.4)

on S
3. These models are potentially of great importance through being conjectured

to be the generic GR behaviour near cosmological singularities [125]. These also
have a nontrivial potential term of a specific form inherited from the densitized GR
Ricci scalar potential term,

V = exp(Ω){V (β)− 1}, for (I.5)

V (β) = exp(−8β+)
3

− 4 exp(−2β+)
3

cosh (2
√

3β−) + 1

+ 2 exp(4β+)
3

{cosh(4
√

3β−)− 1}, (I.6)

which is an open-ended well of equilateral triangular cross-section (Fig. I.1.c). For
small anisotropies, this takes the approximate form

V (β) � 8{β2+ + β2− } = : 8‖β‖2 (I.7)

(the lower orders of its Taylor series cancel).
Example 4) The Taub model is the β− = 0 subcase of the preceding.

To explain the above notation, and to characterize the types of anisotropic config-
urations in GR more generally, Misner [656] parametrized anisotropy—a type of GR
shape variable—by writing the pointwise spatial tracefree metric uab = hab/h

1/3 as
exp(2β)ab for βab a tracefree symmetric matrix. In the case of uab diagonal,
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βab = diag(β1, {√
3β2 − β1 }/2,−{√

3β2 + β1 }/2). (I.8)

These are related to β± by β1 = β+ + √
3β−, β2 = β+ − √

3β−. Figure I.1 provides
a simple conceptual outline of the meaning of anisotropy for a 2-d hypersurface.

In the homogeneous case the configuration spaces Riem, CRiem + V,
superspace and Cs + V coincide as Minisuperspace, Mini. On the other hand,
CRiem,vpRiem, Appendix N.7’svpsuperspace, and Cs coincide as Anisotropy-
space, ani, which is yet another example of pure shape space.

As regards configuration space geometries, for diagonal Bianchi class A, Mini =
M

3 with configuration space metric

ds2 = −dΩ2 + dβ2+ + dβ2−. (I.9)

The corresponding ani = R
2, with shape metric

ds2 = dβ2+ + dβ2−. (I.10)

Moreover, the Taub solution has M2 and R restrictions of these. For the isotropic
case, one has R and a point instead.

Example 5) Upon inclusion of a single minimally-coupled scalar field, we use the
corresponding capitalized notation MINI and aNI. In the diagonal Bianchi IX
case, MINI = M

4 and aNI = R
3, going up to 3 + p and 2 + p in place of 4 and

3 for p minimally-coupled scalar fields.

I.2 Perturbations about Minisuperspace:
Unreduced Formulation

As regards incipient (redundant) configuration variables, the 3-metric and scalar
field are expanded as [419]

hij (x, t) = exp(2Ω(t)){Sij (t)+ εij (x, t)},

φ(x, t) = N−1
{
φ(t)+

∑
n,l,m

fnlm Qn
lm(x)

}
.

(I.11)

Sij is here the standard hyperspherical S3 metric, whereas εij are inhomogeneous
perturbations of the form

εij =
∑
n,l,m

{√
2

3
anlmSijQ

n
lm + √

6bnlm {Pij }n
lm

+ √
2{co

nlm {So
ij }n

lm + ce
nlm {Se

ij }n
lm } + 2{do

nlm {Go
ij }n

lm + de
nlm {Ge

ij }n
lm }
}
. (I.12)
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The superscripts ‘o’ and ‘e’ for stand for ‘odd’ and ‘even’ respectively. We subse-
quently use n indices as a shorthand for nlm. Let xn be a collective label for the 6
gravitational modes per n an, bn, cn and dn, and yn for these alongside the fn. The
yn are all functions of just the coordinate time (which is also label time for GR) t .
The Qn(x) are the S

3 scalar (S) harmonics, So
i n(x) and Se

i n(x) are the transverse
S

3 vector (V) harmonics, and the Go
ij n(x) and Ge

ij n(x) are the transverse traceless

S
3 symmetric 2-tensor (T) harmonics. The Sij n(x) are given by DjSi n + DiSj n

(for each of the suppressed o and e superscripts). The Pij n(x) are traceless objects
given by Pij n := DjDiQn/{n2 − 1} + SijQn/3.N := √

2/3π/mPl is a normalization
factor.

Additionally, the relational formulation’s differential of the frame auxiliary is
expanded as

∂Fi = exp(Ω)
∑
n,l,m

{
dknlm {Pi}n

lm/
√

6 + √
2{dj o

nlm {So
i }n

lm + dj e
nlm {Se

i }n
lm }
}

(I.13)

for Pi n := DiQn/{n2 − 1}. The frame expansion coefficients djn, dkn—collectively
denoted by dun—are also functions of t alone. The relational formulation differs
from [419] not only in using this distinct formulation of the auxiliary but also in
not having a primary lapse to expand. This is because the lapse is not held to have
meaningful primary existence, so it is not to be an independent source of pertur-
bations. Consequently the relational formulation has one family of coefficients less
than Halliwell–Hawking’s (their gnlm).

Let us next compare these modewise and SVT splits with the variables encoun-
tered in the triangleland model arena. The scaled triangle has a scale–shape split
(G.12); this bears some resemblance to the homogeneity–inhomogeneity split of
GR, with a closer still resemblance to that in the vacuum case. The pure-shape tri-
angle has a further geometrically meaningful split into θ (ratio) and φ (relative an-
gle) variables (G.11). However, due to the presence of the ‘spherical polar’ sin2θ π2

φ

combination, this does not factorize the kinetic arc element (or consequently the
Hamiltonian) into polar and azimuthal terms. Consequently, this does not exhibit an
analogue of the SVT split itself. On the other hand, the N -a-gon has n − 1 ratios–
relative angle pairs (encoded as CPn−1’s well-known copies of C). Looking at these
pairs individually bears some parallel to modewise considerations (probing a large
N -a-gon by looking at constituent triangles). RPM perturbations about a Minisu-
perspace model [46] bear further resemblance but still fall short of having an SVT
split.

In the vacuum case, the SIC redundant configuration space is Riem0,1,2(S3);
the 0, 1 and 2 subscripts refer to the orders in perturbation theory that feature
in it. This is the 1 + 6 × {countable ∞} space of the scale variable alongside
the xn. In the minimally-coupled scalar field case, the redundant configuration
space is RIEM0,1,2(S

3). This is the 2 + 7 × {countable ∞} space of the scale
variable, homogeneous scalar field mode and the yn. The first form in Fig. I.2
displays the latter for one mode to second order overall in yn, dyn. By (H.6),
RIEM0,1,2 = Riem0,1,2(S

3) ⊕ sca0,1,2(S
3), where sca denotes the scalar field



I.2 Perturbations about Minisuperspace: Unreduced Formulation 735

Fig. I.2 a) Slightly Inhomogeneous Cosmology (SIC)’s configuration space metric [35]. The
heavy dot denotes ‘same as the transposed element’ since metrics are symmetric. N.B. this is
the blockwise corrections’ configuration space metric rather than the full one. Moreover, metric
variables enter the scalar field sector but scalar field variables do not enter the gravitational sector.
This is well-known and held to secure freedom to ‘add in’ scalar fields in cosmological modelling

configuration space. Thus the former configuration space can readily be read off
the figure as a sub-block.

Next introduce the transiently convenient variable

An := − 3

2

{
a2

n − 4

{
n2 − 4

n2 − 1
b2

n + {n2 − 4}c2
n + d2

n

}}
. (I.14)

This is the gravitational sector configuration space volume correction term: the first
perturbative correction to the expansion of the configuration space metric determi-
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nant (I.15).

M = exp(27Ω)

512

{n2 − 4}3

n2 − 1

{
1 − 6a2

n + 2

3
An

}
. (I.15)

On the other hand, the vacuum case’s determinant is, exactly,

M = exp(21Ω)

128

{n2 − 4}3

n2 − 1

{
1 + 3a2

n + 5

3
An

}
. (I.16)

This enters the study though being the sole coupling to the Minisuperspace degrees
of freedom Ω and φ. Moreover, in some ways (I.14) resembles the relational trian-
gle’s ellipticity variable n2

2 − n1
2 (G.15): both are emergent ubiquitous groupings,

quadratic and a difference comparison. Rather than comparing median and base par-
tial moments of inertia, An compares the amount of one of the scalar gravitational
modes against that of the other gravitational modes. One distinction is that An is
not based on a traceless quadratic form, which ties the ellipticity to the commuting
element of SU(2); Sect. 30.5 comments on a further distinction.

Blockwise-simplifying coordinates can subsequently be found. First notice
(through the ‘arrow-shaped’ sparseness in the gravitational block) that the scale
degree of freedom couples solely to the perturbative volume correction terms An.
Indeed, the gravitational sector’s off-diagonal terms can be written in the form
dAndΩn up to a constant. Furthermore, introducing a new ‘straightener’ variable
[34].

Ωn = Ω −An/3 (I.17)

removes the gravitational sector’s off-diagonal terms, giving the second form of
the metric in Fig. I.2. [The other transformations therein are just rescalings b′

n :=√
n2 −4
n2 −1

bn and c′
n := √

n2 − 4 cn.]
If one is considering multiple n’s, the mode-summed version of the straightener

variable is [789, 872]

Ω̃ = Ω −
∑
n

An/3. (I.18)

The above q geometry for SIC is neither flat nor conformally flat. For xn small,
the corresponding Ricci scalarR has no singularities away from the Big Bang. In the
minimally-coupled scalar field case, ∂/∂φ and ∂/∂fn are Killing vectors for SIC’s
q geometry. This corresponds to the ‘adding on’ status of scalar fields at this level.
Additionally, ∂/∂Ω is a conformal Killing vector. All of these results are unaffected
by passing to multiple scalar fields or to the vacuum case. It remains unknown if
this SIC configuration space has further (conformal) Killing vectors.

Let us next introduce scale-free spaces of inhomogeneities for these model are-
nas. Use wn as a collective label for the 5 positive-definite gravitational modes bn,
cn, dn, and zn for the 6 positive-definite modes wn and fn. CRiem2(S3) is the space
of the wn, which is straightforwardly just R5. Thus it has the obvious 15 Killing
vectors built from the Cartesian rescalings of the wn coordinates 5 ∂/∂wW

n and 10
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wW
n ∂/∂w

W′
n − wW′

n ∂/∂w
W
n . On the other hand, CRIEM0,1,2(S3)—the space of ho-

mogeneous scalar field modes φ alongside the zn—is neither flat nor conformally
flat.

Let us introduce Modespace as the space of the xn. This is M6 and thus it has 21
Killing vectors: 6 ∂/∂xX

n , 10 wW
n ∂/∂w

W′
n −wW′

n ∂/∂w
W
n and 5 wW

n ∂/∂an + an∂/∂w
W
n .

Positive modespace Modespace+ in this case just coincides with CRiem2(S3). Let
us also introduce MODESPACE(S3) as the space of the xn. This is M7 and thus it
has 28 Killing vectors: 7 ∂/∂yY

n , 15 zZ
n∂/∂z

Z′
n − zZ′

n ∂/∂z
Z
n and 6 zZ

n∂/∂an + an∂/∂z
Z
n .

Finally, MODESPACE+ is the space of the zn. This is R6 and thus has 21 Killing
vectors: 6 ‘∂/∂zZ

n ’ and 15 zZ
n∂/∂z

Z′
n − zZ′

n ∂/∂z
Z
n .

N.B. that this Sec’s analysis readily extends to the case of multiple minimally-
coupled scalar fields.



Appendix J
The Standard Principles of Dynamics (PoD).
i. Finite Theory

This and the next two Appendices support Facets 1 to 4 of the Problem of Time.
Consult [371, 598] as preliminary reading if unfamiliar with this material.

J.1 Lagrangians and Euler–Lagrange Equations

Consider for now a finite second-order classical physical system [371, 598] ex-
pressed in Lagrangian variables Q,Q̇ (named after the great mathematician Joseph-
Louis Lagrange). All dynamical information is contained within the Lagrangian
function L(Q,Q̇, t). The most common form this takes is

L = T − V (Q, t) for T := ‖Q̇‖2
M/2, (J.1)

where ˙ = ∂/∂t . Next apply the standard prescription of the Calculus of Variations to
obtain the equations of motion such that the action

S =
∫

dt L (J.2)

is stationary with respect to the Q. This approach considers the true motion between
two particular fixed endpoints e1 and e2 alongside the set of varied paths about this
motion (subject to the same fixed endpoints). It gives rise to the Euler–Lagrange
equations,

d

dt

{
∂L

∂Q̇A

}
= ∂L

∂QA
(J.3)

(named in part after another great mathematician, Leonhard Euler).
These equations simplify in the three special cases below, two of which involve

particular types of coordinates. Indeed, one major theme in the Principles of Dy-
namics is judiciously choosing a coordinate system with as many simplifying coor-
dinates as possible.

© Springer International Publishing AG 2017
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1) Lagrange multiplier coordinates mM are such that L is independent of ṁM,

∂L

∂ṁM
= 0.

The mM-Euler–Lagrange equations then simplify to

∂L

∂mM
= 0. (J.4)

2) Cyclic coordinates are such that L is independent of cY itself,

∂L

∂cY
= 0,

but features ċY: the corresponding cyclic velocities. The cY Euler–Lagrange
equations then simplify to

∂L

∂ċY
= constY. (J.5)

3) The energy integral type simplification. If L is free from the independent vari-
able t ,

∂L

∂t
= 0,

then one Euler–Lagrange equation may be supplanted by the first integral

L − Q̇A ∂L

∂Q̇A
= constant. (J.6)

Suppose that we can

solve 0 = ∂L

∂mM
(QO, Q̇O,mM) as equations for the mM. (J.7)

Note that these equations come from 1), and that QO denotes the system’s other
coordinates which are not multipliers. Moreover, solvability is not in general guar-
anteed. Firstly, (J.7) can on occasion be not even well-determined due to some of
the mM being absent from the equations (e.g. Sect. 19.7) or due to some equations
not being independent. Secondly, it is also possible for (J.7) to admit no solution
(or only a non-real solution which cannot be applied physically, or a solution that
is not in closed form [37]). In the absence of these pathologies, we can pass from
L(QO, Q̇O,mM) to a reduced Lred(Q

O, Q̇O), which is known as multiplier elimina-
tion.
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J.2 Conjugate Momenta

These are defined by

PA := ∂L

∂Q̇A
. (J.8)

Explicit computation of this for (J.1) gives the momentum–velocity relation

PA = MAA′Q̇A′
. (J.9)

The definition of PA enables further formulation of the preceding Section’s sim-
plifications. Now the preliminary condition in deducing the multiplier condition is
ṖY = 0, the cyclic coordinate condition is

PY = constant, (J.10)

and the energy integral is

L− Q̇APA = constant. (J.11)

J.3 Noether’s Theorem

The configurational transformation

QA → Q′A = QA + ε 	QA

is a symmetry of the Lagrangian if it causes the Lagrangian to remain unchanged
modulo a time derivative,

L → L + ε θ̇ .

A quantity C is conserved if

dC

dt
= 0.

Noether’s Theorem (after mathematician Emmy Noether) is then that conserved
quantities correspond to symmetries. More specifically, the conserved quantity C
corresponding to a given symmetry’s 	QA is

C := PA	Q
A − θ. (J.12)

E.g. energy, momentum and angular momentum conservation can be viewed in
this manner (Ex II.4).
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J.4 Legendre Transformations

Suppose we have a function F(yW, vV) and wish to use

zW := ∂F

∂yW

as variables in place of the yW. To avoid losing information in the process, we have
to apply a Legendre transformation (named after 18th and 19th century mathemati-
cian Adrien-Marie Legendre). In this way, we pass to a function

G(zW, v
V) = yWzW − F(yW, vV). (J.13)

Moreover, Legendre transformations are symmetric between yW and zW: if one de-
fines

yW := ∂G

∂zW
,

the reverse passage yields

F(yW, vV) = yWzV −G(zW, v
V).

In particular, if our function is a Lagrangian L(Q,Q̇), we may wish to use some of
the conjugate momenta PA as variables in place of the corresponding Q̇A.

J.5 Passage to the Routhian

As a first example of Legendre transformation, start from a Lagrangian with cyclic
coordinates cY,L(QX, Q̇X, ċY), and exchange the ċY for the corresponding momenta
using (J.10). This is passage to the Routhian (after 19th century mathematician Ed-
ward Routh)

R(QX, Q̇X,pcY, t) := L(QX, Q̇X, ċY, t)− P cY ċ
Y. (J.14)

It amounts to treating the cyclic coordinates as a separate package from the non-
cyclic ones; this can be a useful trick, most usually in the context of simplifying the
Euler–Lagrange equations.

We proceed by the cyclic velocities analogue of multiplier elimination, known as
Routhian reduction. This is based upon being able to

solve constY = pY = ∂L

∂ċY
(QX, Q̇X, ċY) as equations for the ċY. (J.15)

Unlike in the corresponding multiplier elimination, these are not just to be sub-
stituted back into the Lagrangian. One additionally needs to apply the Legendre
transformation (J.14), thus indeed passing to a Routhian rather than to a naïve re-
duced Lagrangian. Moreover, the pathologies with (J.7) have counterparts here as
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well [e.g. Example 5) of Sect. 17.2]. If the above reduction can be performed, we
can furthermore use the status of the cyclic momenta as constants (J.10) to free a
dynamical problem from its cyclic coordinates. I.e. this completes the correspond-
ing part of the integration of equations of motion. Finally note that the passage from
Euler–Lagrange’s action principle with no explicit t dependence to Jacobi’s action
principle (Sect. 15.2) is a subcase of Routhian reduction.

J.6 Passage to the Hamiltonian

A second example of Legendre transformation is passage to the Hamiltonian (after
the great mathematician and physicist William Rowan Hamilton). In this case, one
replaces all the velocities Q̇A by the corresponding momenta PA:

H(Q,P , t) := PAQ̇
A −L(Q,Q̇, t) (J.16)

The variables Q, P are subsequently termed Hamiltonian variables; considerations
of whether such a replacement is entirely possible are postponed to Sect. J.15. For
instance, for the Lagrangian (J.1),

H = ‖P ‖2
N/2 + V (Q, t). (J.17)

This book concentrates on the t-independent notion of Hamiltonian. The equations
of motion are Hamilton’s equations,

Q̇A = ∂H

∂PA
, ṖA = − ∂H

∂QA
; (J.18)

in the t-dependent case, these are supplemented by

−∂L
∂t

= ∂H

∂t
.

For the Lagrange multiplier coordinates, half of the corresponding Hamilton’s
equations collapse to just

∂H

∂mM
= 0. (J.19)

On the other hand (J.6) becomes H = const in the t-independent case.
N.B. that further motivations for the Hamiltonian formulation include its admit-

ting a systematic treatment of constraints due to Dirac ([250, 446] and Sect. J.15),
and its greater closeness to Quantum Theory.

J.7 Passage to the Anti-Routhian∗

The next Appendix requires consideration also of passage to the anti-Routhian

A(QX,P X, ċY, t) := L(QX, Q̇X, ċY, t)− PXQ̇
X. (J.20)
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Fig. J.1 a) Completion of an elsewise well-known Legendre square by introducing an an-
ti-Routhian that is the diametric opposite of the Routhian in terms of which variables it swaps
by Legendre transformation. I.e. it makes the same split into cyclic coordinates and other coor-
dinates, but converts the other piece’s velocities to momenta. See Fig. Q.1 for the well-known
thermodynamical Legendre square counterpart. b) Lattice structure of subgroups of Principles of
Dynamics morphisms of varying generality

This still involves treating the cyclic coordinates as a separate package, albeit now
under the diametrically opposite Legendre transformation. This completes the ‘Leg-
endre square’ whose other vertices are L, H and R (Fig. J.1.a). Passage to the anti-
Routhian turns out to also be a useful trick; a minor use is in Sect. J.15, whereas the
major use is in the next Appendix.

J.8 Further Auxiliary Spaces∗

The Lagrangian and Hamiltonian variables respectively form the tangent bundle
T(q) and cotangent bundle T∗(q) over q. From a geometrical perspective, the
Legendre transformation for passage to the Hamiltonian is thus a map from T(q)
to T∗(q).

The Routhian and the anti-Routhian tricks can now be seen to both come at a
price. A first part of this price is geometrical: using these requires slightly more com-
plicated mixed cotangent–tangent bundles over q: T(q̌)× T∗(C) for the Routhian
and T∗(q̌) × T(C) for the anti-Routhian. C is here the subconfiguration space of
cyclic coordinates and q̌ is the complementary subconfiguration space of the QX.
The second and third parts of the price to pay are in Sects. J.10 and J.13.

J.9 Corresponding Morphisms

The transformation theory for Hamiltonian variables is more subtle than that of the
Lagrangian variables’ Point (Appendix G). This in part reflects the involvement of

PAQ̇
A (J.21)

due to its featuring in the conversion from L to H .
Starting from Point, one can have the momenta follow suit so as to preserve

(J.21) [598]; these transformations indeed preserve H . On the other hand, starting
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from Pointt induces gyroscopic corrections to H [598]; this illustrates that H itself
can change form. More general transformations which mix the Q and the P are also
possible. These are however not as unrestrictedly general functions of their 2k argu-
ments as Point’s transformations are as functions of their k arguments. A first case
of these are the transformations which preserve the Liouville 1-form (after mathe-
matician Joseph Liouville)

PAdQA (J.22)

that is clearly associated with (J.21). These can again be time-independent (termed
scleronomous) or time-dependent in the sense of parametrization adjunction of t
to the Q (termed rheonomous). Again, the former preserve H whereas the latter
induce correction terms [598]. These are often known as contact transformations,
so we denote them by Contact and Contactt respectively.

More generally still, preserving the integral of (J.22) turns out to be useful for
many purposes [598]. At the differential level, this corresponds to (J.22) itself being
preserved up to an additive complete differential dG for G the generating function.
In this generality, one arrives at the canonical transformations alias symplectomor-
phisms, once again in the form a rhenonomous group with a scleronomous subgroup.
We denote these by Cant and Can respectively; see Fig. J.1.b) for how this Sec’s
groups fit together to form a lattice of subgroups.

Note that whereas arbitrary canonical transformations do not permit explicit rep-
resentation, infinitesimal ones do.

Finally applying Stokes’ Theorem to the integral of (J.22) reveals a more basic
invariant: the bilinear antisymmetric symplectic 2-form [70]

dPA ∧ dQA. (J.23)

We denote this by ω with components ωKK′ where the K indices run over 1 to 2k.
This subsequently features in bracket structures (see e.g. two Section further down).

J.10 Morphisms for the (Anti-)Routhian∗

Concentrating on the t-independent case that is central to this book, the morphisms
for the Routhian formulation are Point(q̌) × Can(C). Moreover, the latter piece
is usually ignored due to the cY being absent and the pcY being constant. For the
t-independent anti-Routhian formulation, the morphisms are Can(q̌) × Point(C).
These more complicated morphisms are the second price to pay in considering
Routhian or anti-Routhian formulations.
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J.11 Poisson Brackets

The Poisson bracket (after noted mathematician Siméon Poisson) { , } of quantities
F(Q,P ) and G(Q,P ) is given by

{F ,G} := ∂F

∂QA

∂G

∂PA
− ∂G

∂QA

∂F

∂PA
. (J.24)

In terms of these, the equations of motion are

{PA,H } = ṖA, {QA,H } = Q̇A. (J.25)

Furthermore, for any F(Q,P , t), the total derivative

dF

dt
= {F ,H } + ∂F

∂t
,

so if F does not depend explicitly on t , the intuitive conserved quantity condition

0 = dF

dt
becomes {F ,H } = 0 . (J.26)

See Sect. 2.13 for some simple and yet significant examples of Poisson brackets.
A further example follows from the canonical transformation

H −→ H + ∂S

∂t

for which the new momentum is E. The conjugate to E is a notion of time
T empus = T empus(Q,E, t), in the sense of there being an energy–time Poisson
bracket

{Tempus,E} = 1; (J.27)

this is a classical precursor of Energy–Time Uncertainty Principles. (J.27) is the
more general form of energy–time Poisson bracket; moreover, for a conservative
system, T empus simply reduces to the calendar year zero adjusted external back-
ground time, t − t (0).

Finally, Phase space Phase [70] is the space of both the Q and the P as
equipped with { , } (or the underlying symplectic form ω).

J.12 Poisson Manifolds ∗

Basic examples of Phase are often (for simple quadratic ‘bosonic’ theories) in the
form of a cotangent bundle equipped with a Poisson bracket. More generally, Phase
is geometrically a symplectic manifold, which is a type of Poisson manifold [70,
142, 154, 610]. The difference between these two notions is that the second permits
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degenerate ω. This generalization plays a significant role in constraint and reduction
applications below. These types of manifolds have no local invariants along the lines
of Riemannian manifolds’ curvature. This can be seen from the trivial form—in
which ω is based on (A.1)’s Jp—always being locally attainable due to Darboux’
Theorem (after mathematician Gaston Darboux) [70, 614].

Moreover, not all manifolds admit a symplectic structure. For instance, even-
dimensionality and orientability are required. In the case of closed manifolds, non-
trivial second de Rham cohomology group is also required [614]; this precludes e.g.
any sphere other than S

2 from possessing a such.
The Hamiltonian vector field is XH := {H , }. This can be viewed as a time

derivative, a form, or a Lie derivative £XH . Moreover, being path-connected by seg-
ments of the integral curves (Appendix D.2) corresponding to XH forms an equiva-
lence. The corresponding equivalence classes constitute symplectic leaves (parallel-
ing Chap. 31’s treatment of the leaves in foliations). For a Poisson manifold, each
leaf carries a natural symplectic structure that is preserved by the XH. Thus symplec-
tic manifolds are additionally a structure which recurs within the theory of Poisson
manifolds [610].

We finally require the Poisson tensor C whose components are denoted by CKK′

with K taking values from 1 to 2k. This is such that the Poisson bracket can be
re-expressed as

{F ,G} = CKK′
∂KF ∂K′G. (J.28)

P is therefore antisymmetric and obeys

εKK′ ′ K′ ′ ′CKK′
∂K′CK′ ′ K′ ′ ′ = 0 (J.29)

due to the Jacobi identity. Now clearly ω = C−1 in cases in which such an inverse
exists, but since it does not always, C is in general a distinct concept. See e.g. [154,
205] for further applications of C.

J.13 Peierls Bracket∗

A brackets structure can in fact already be built at the Lagrangian tangent bundle
level, for all that it is somewhat more complicated than the Poisson bracket. This
is the Peierls bracket (after physicist Rudolf Peierls) [242, 292, 703]; it is more
complicated through its construction involving Green’s functions; its explicit form
is not required for this book.

The third part of the price to pay if one uses a Routhian or anti-Routhian is
that the mixed cotangent–tangent bundle nature of the variables requires in general
mixed Poisson–Peierls brackets.
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J.14 Hamilton–Jacobi Theory

If one carries out the replacement

PA −→ ∂S

∂QA

in H , one obtains the Hamilton–Jacobi equation, whose most general form is

∂S

∂t
+ H

(
Q,

∂S

∂Q
, t

)
= 0. (J.30)

This is to be solved as a PDE for the as-yet undetermined Hamilton’s principal func-
tion S(Q, t). As a particular subcase, if the Hamiltonian is itself time-independent,
one can use S = χ(Q) − Et as a separation ansatz. Here χ is Hamilton’s charac-
teristic function, which obeys

H

(
Q,

∂χ

∂Q

)
= E. (J.31)

As well as being computationally useful on some occasions [598], the Hamilton–
Jacobi formulation is close to the semiclassical approximation to Quantum Theory
and the Semiclassical Approach to the Problem of Time and Quantum Cosmology.
See [598] for more about Hamilton–Jacobi Theory.

J.15 Hamiltonian Formulation for Constrained Systems

Passage from Lagrangian to Hamiltonian formulation can be nontrivial. The Legen-
dre (transformation) matrix

ΛAA′ := ∂2L

∂Q̇A∂Q̇A′

(
= ∂PA′

∂Q̇A

)
(J.32)

—named by its latter form being associated with the Legendre transformation—is
in general non-invertible, so the momenta P cannot be independent functions of
the velocities Q̇. In the case of the action with purely-quadratic kinetic term, the
Legendre matrix is just the kinetic matrix MAA′ ; more generally, it is the metric
corresponding to the Lagrangian metric functional. Constraints are relations

CC(Q,P ) = 0 (J.33)

between the momenta P by which these are not independent. Constraints arising at
this stage indicates thatΛAA′ can be nontrivial: degenerate (thus not even Finsler) or
singular. This is quite a general type1 of constraint considered by Dirac.

1As well as the main text’s development, these are also restricted in being scleronomous equality
constraints, rather than rheonomous constraints. Inequality constraints are also excluded from this
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The Euler–Lagrange equations can be rearranged to reveal the explicit presence
of the Legendre matrix,

Q̈A′ ∂2L

∂Q̇A′
∂Q̇A

= ∂L

∂QA
− Q̇A′ ∂2L

∂QA∂Q̇A′ . (J.34)

The above noninvertibility additionally means that the accelerations are not uniquely
determined by Q, Q̇. Bergmann termed constraints arising from the above non-
invertibility of the momentum–velocity relations primary. On the other hand, he
termed constraints which require input from the variational equations of motion
secondary [250, 446]. Constraints arising from the propagation of existing con-
straints using the equations of motion are an intuitively valuable case of this, though
see below for limitations on this way of thinking. Let us index primary and sec-
ondary constraints by P and S respectively. The constraints H and E illustrate that
the primary-secondary distinction is artificial insofar as it is malleable by change of
formalism: Example 5) of Sect. 24.8.

Dirac introduced the concept of weak equality ≈, meaning equality up to additive
functionals of the constraints. ‘Strong equality’, on the other hand, means equality
in the usual sense.

Dirac also gave a distinct classification of constraints into first-class constraints
(indexed by F): those whose classical brackets with all the other constraints van-
ish weakly. Second-class constraints are then simply defined by exclusion: as those
which are not first-class. The classical brackets involved in the definition are ab
initio the Poisson brackets, though we shall see that this can change during the pro-
cedure. For the purpose of counting degrees of freedom, it is also useful to note that
first-class constraints use up two each whereas second-class constraints use up only
one [446].

Dirac began to handle constraints by appending them additively with Lagrange
multipliers to a system’s incipient or ‘bare’ Hamiltonian, H . If one additively ap-
pends a formalism’s primary constraints using a priori any functions F of the Q

and P , Dirac’s generic ‘starred’ Hamiltonian H ∗ := H + F PCP is formed. On the
other hand, Dirac’s total Hamiltonian is HTotal := H + uPCP, where the uP are now
regarded as unknowns. One begins to consider

ĊP = {CP,H } + uP′ {CP, CP′ } ≈ 0. (J.35)

The Dirac Algorithm [250] then involves checking whether a given set of constraints
implies any more constraints or any further types of equation. The equations arising
in this manner can be of five types.

treatment. Holonomic constraints—are ones which are integrable so as to admit a formulation as
C = F(Q, t) = 0. This is a useful characterization in considering constraints. Note furthermore
that, aside from non-integrability, a further way in which constraints can fail to be holonomic is
if they are inequality constraints. Dirac’s treatment, on the one hand, solely considers equality
constraints, and, on the other, says nothing about whether these are to be integrable. Moreover,
Sects. 39.4 and 43.3 show that Fundamental Physics indeed manifests inequality constraints.
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0) Inconsistencies.
1) Mere identities—equations that reduce to 0 ≈ 0, i.e. 0 = 0 modulo constraints.
2) Equations independent of the Lagrange multiplier unknowns, which constitute

extra secondary constraints.
3) New constraints arise, such that previously known constraints are demonstrated

to be in fact second-class, by being second-class with these subsequently en-
countered constraints.

4) Relations amongst some of the appending Lagrange multipliers functions them-
selves. These are a further ‘specifier equation’ type of equation, i.e. a specifica-
tion of restrictions on the Lagrange multipliers.2

Lest 0) be unexpected, let us supply a basic counter-example to Principles of Dy-
namics formulations entailing consistent theories. For the LagrangianL = q̇+q , the
Euler–Lagrange equations read 0 = 1. If 0) occurs, the candidate theory is inconsis-
tent. One then either simply gives up on it or one modifies the incipient Lagrangian
to pass to a further theory for which this does not happen. Let us call equations of
type 1) to 4) the ‘consistent equations’ arising from the Dirac Algorithm. Moreover,
since type 1) are equations with no new content, call types 2) to 4) the ‘nontrivial
consistent equations. This is a generalization from considering the set of constraints
to considering the set of constraints and specifier equations arising alongside them
in the Dirac Algorithm.

The Dirac Algorithm is to be applied recursively until one of the following three
conditions holds.

Termination 0) One has an inconsistent theory due to a case of 0) arising.
Termination 1) One has a trivial theory due to the iterations of the Dirac Algorithm

leaving the system with no degrees of freedom.
Termination 2) Completion: the latest iteration of the Dirac Algorithm has produced

no new nontrivial consistent equations, indicating that all of these have been found.

If type 2) arises, handle this by defining ‘Q = P + S’ as indexing the constraints
obtained so far, and restart with a more general form for the problem,

ĊQ = {CQ,H } + uP{CQ, CP} ≈ 0. (J.36)

Indeed, it may be necessary to run the Dirac Algorithm over multiple cycles.
Next suppose that we are handling a set of unknown functions uP. These are of

the form [250] uP = UP + V P: a split into a complementary function3 V P = vZV P
Z

2Dirac introduced such entities on p. 14 of [250]; his terminology is ‘imposes a condition’. The
term ‘fixing equations’, as in e.g. ‘lapse fixing equation’, is often used for them in Numerical
Relativity. However, this usage is a subcase of gauge-fixing, nor does all gauge-fixing involves
specification of Lagrange multipliers. E.g. (6.19) need not be interpreted in this way. On these
grounds, the distinct name ‘specifier equations’ is used in this book.
3I.e. the general solution of the corresponding homogeneous system, with Z indexing the number
of independent solutions involved.
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and a particular solution UP. V P obeys

V P{CC, CP} ≈ 0 (J.37)

where vA are the totally arbitrary coefficients of the independent solutions indexed
by A. This done, Dirac additionally defined the ‘primed Hamiltonian’ H ′ := H +
UPCP, which can be viewed as appending by a determined mixture of free and fixed
Lagrange multipliers. Dirac finally defined HExtended := H + uPCP + uSCS.

We next consider the limitations on thinking in terms of propagating existing
constraints. This misses out—or fails to properly identify and handle—second-class
constraints and specifier equations. This is especially relevant since many standard
quantum procedures are based on just first-class constraints remaining by this stage.
This usually entails classical removal of any other nontrivial consistent entities
which feature in the original formulation. Four different approaches to this are as
follows.

Procedure A) Replace the incipient Poisson brackets with Dirac brackets [250]; this
removes second-class constraints.

Procedure B) Extend Phase with further auxiliary variables so as to ‘gauge-unfix’
second-class constraints into first-class ones [121, 446].

Procedure C) Classically reduce out the entities in question.
Procedure D) Some approaches make use of gauge-fixing prior to quantizing.

Whereas A) and B) are systematically available, C) is not, though it is solvable for
this book’s RPM and SIC examples. As regards D), at least in the more standard the-
ories of Physics, first-class secondary constraints can be taken to arise from variation
with respect to mathematically disjoint auxiliary variables. Furthermore, the effect
of this variation is to additionally use up part of an accompanying mathematically-
coherent block of variables that elsewise contains partially physical information.
Some constraints are regarded as gauge constraints; however in general exactly
which constraints these comprise remains disputed. Moreover, it is agreed upon that
second-class constraints are not gauge constraints; all gauge constraints use up two
degrees of freedom. Dirac [250] conjectured a fortiori that all first-class constraints
are gauge constraints,4 so that using up two degrees of freedom would conversely
imply being a gauge constraint. See however Counter-example 4) of Sect. 24.8).
One feature of Gauge Theory is an associated group g of transformations that are
held to be unphysical. The above-mentioned disjoint auxiliary variables are often in
correspondence with such a group. Gauge-fixing conditions FH may be applied to
whatever Gauge Theory (though one requires the final answers to physical questions
to be gauge-invariant).

As regards removing second-class constraints prior to quantizing, it is fortunate
that systematic procedures exist for freeing one’s theory of second-class constraints.

4This is in Dirac’s sense of Gauge Theory [247, 250]: concerning data at a given time, so ‘gauge’
here means data-gauge. Contrast this with Bergmann’s perspective [133] that Gauge Theory con-
cerns whole paths (dynamical trajectories), so ‘gauge’ there means path-gauge.
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Fig. J.2 The in general noncommuting square of Legendre transformations (horizontal) and re-
ductions (vertical)

Passage to the Dirac brackets replaces the incipient Poisson brackets with

{F ,G}∗ := {F ,G} − {F , C i}{C i, C i′ }−1{C i′ ,G}. (J.38)

Here the −1 denotes the inverse of the given matrix whose i indices run over con-
straints that are irreducibly second-class [250, 446]. The classical brackets role ini-
tially played by the Poisson brackets is then taken over by the Dirac brackets.

Second-class constraints can also always in principle5 be handled locally by
thinking about them instead as ‘already-applied’ gauge fixing conditions that can be
recast as first-class constraints by adding suitable auxiliary variables. By this proce-
dure, a system with first- and second-class constraints extends to a more redundant
description of a system with just first-class constraints.

Moreover, each of procedures A) to D) render it clear that whether a theory ex-
hibits second-class constraints is in fact a formalism-dependent statement. Also note
as regards procedure D) that the square in Fig. J.2 does not in general commute (see
e.g. [514]).

Finally, a further useful form for actions is

S =
∫

dλ{Q̇APA − HTotal } =
∫

dλ{Q̇APA − aQuad −mGGaugeG }, (J.39)

where the second equality is but a common specialization.

J.16 (Anti-)Routhian Analogue of the Legendre Matrix∗

With the passage to the Hamiltonian being affected by whether the Legendre matrix
is invertible, we should consider whether passage to the (anti-)Routhian is affected
as well. The Legendre matrix for the Routhian is

ΛYY′ := ∂2L

∂ċY∂ċY′ ,

which is zero by (J.5), so this matrix is an relatively uninteresting albeit entirely
obstructive object. The corresponding expressions for acceleration are similarly en-
tirely free of reference to the cyclic variables. On the other hand, the Legendre

5This statement follows [446], though we have added the caveat ‘locally’ since gauge-fixing con-
ditions themselves are not in general global entities.
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matrix for the anti-Routhian is

ΛXX′ := ∂2L

∂Q̇X∂Q̇X′ ,

which is in general nontrivial. One can then base a theory of primary constraints
on this rather than on the usual larger (J.32). The smaller anti-Routhian trick is the
observation that the acceleration ofQX is unaffected by the cyclic variables. I.e. one
can take (J.34) again with index X in place of A since the further terms involving the
cyclic variables arising from the chain rule are annihilated by (J.5).

J.17 Symplectic Treatment of Constrained Systems∗

Given a type of constraint, one can furthermore consider the surface within Phase
that is characterized by that type of constraint holding. See e.g. [142] for the primary
constraint surface picked out by the form of the Legendre map; secondary constraint
surface is an uncommon subject, but see e.g. [797]. The main thrust of this approach,
however, involves first-class and second-class constraint surfaces. See e.g. [152] and
for various approaches to these using basic Symplectic Geometry. This includes
viewing the Dirac bracket geometrically as a more reduced formulation’s notion of
Poisson bracket (see e.g. [797] for details), and is both physically insightful and
mathematically fruitful.

J.18 Constraint and Beables Algebraic Structures∗

The set of constraints in one’s possession is entered into ones notion of bracket to
form a constraint algebraic structure c. This may enlarge one’s set of constraints, or
lead to one adopting a distinct type of bracket. If inconsistency is evaded, the even-
tual output is an algebraic structure for all of a theory’s constraints, symbolically

{CF, CF′ }final = CF′ ′
FF′ CF′ ′ . (J.40)

In some cases, the CF′ ′
FF′ are a Lie algebra’s structure constants, whereas in other

cases—in particular for GR, they are a Lie algebroid’s structure functions. See Ap-
pendix V.6 for more about algebroids, and Fig. 24.7 about the lattice LC of con-
straint algebraic substructures.

It is now also natural to ask which quantities B(Q,P ) form zero brackets with a
constraints that form a closed algebraic structure:

{CC, B}‘ = ′ 0, (J.41)

where ‘ = ′ denotes whichever kind of equality (strong, weak, . . . ). The entities obey-
ing this condition are observables or beables; these are explored further in Chap. 25.
More generally, let |[ , ]| denote whichever type of bracket is used to define observ-
ables or beables (e.g. this includes also quantum commutators).
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Lemma 1 Notions of beables can only be meaningfully associated with closed
constraint algebraic (sub)structures [32].

Proof Suppose B commutes solely with a set of CC which is not closed, i.e. it does
not include some of the |[CC, CC′ ]|. However, the Jacobi identity with one B and two
C as entries and making two uses of (25.1) gives

|[BB, |[CF, CC′ ]| ]| = −|[CF, |[CF′ ,BB]| ]| − |[CF′ , |[BB,CF]| ]| ≈ 0, (J.42)

which is a contradiction. Thus such a |[CC, CC′ ]| in fact has to be included among
the quantities B commutes with. �

Lemma 2 The B close under whichever |[ , ]| is used to define them:

|[BB, BB′ ]|‘ = ′ 0. (J.43)

Proof Take the Jacobi identity with two B and one C as entries

|[CF, |[BB, BB′ ]| ]| = −|[BB, |[BB′ ,CF]| ]| − |[BB′ , |[CF,BB]| ]|‘ = ′ 0, (J.44)

and make two uses of (25.1). This yields that |[BB, BB′ ]| obeys (25.1) as well. �

Note moreover that the beables algebraic structure b can be an algebra

|[BB, BB′ ]| = CB′ ′
BB′BB′ ′, (J.45)

or an algebroid

|[BB, BB′ ]| = CB′ ′
BB′(Q,P )BB′ ′ . (J.46)

Compare also the rather more familiar case of the Casimirs (Appendix E.6) as a
model of associating an algebraic structure with a given algebraic structure via a
commutativity condition.

Useful Lemma 3 If B are beables, then so are the functionals F[B ].

Proof The PDE for the beables is linear, so (O.8) applies. �

Corollary [Composition Principle] In the case of multiple functional dependency
restrictions applying, the composition of these restrictions applies. See Sect. 25.7
for examples.

Since classical beables equations are of this form, classical beables form a very
sizeable algebraic structure of functions. This also renders ‘basis beables’ a use-
ful concept. These are a spanning set of linearly independent beables, so that the
contents of one’s theory can be described entirely in terms of them. A common
case is for dim(reduced Phase) = 2{k − g} Kuchař basis beables to be required,
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where k = dim(q) and just g constraints—all first-class linear—involved. See e.g.
Sect. 25.7 and [28, 37] for RPM examples of ‘basis beables’, and Sect. 30.5 for
modewise SIC examples.

Finally, see Chaps. 24 and 25 for more features of, and types of, constraint and
beables algebraic structures.

J.19 Hamilton–Jacobi Theory in Presence of Constraints

Suppose that one’s system has first-class constraints CD(Q; P ) other than an ‘energy
equation’. Then the corresponding Hamilton–Jacobi equation—whether (J.30) or
an incipiently timeless (J.31) which already takes into account the presence of an
‘energy equation’ constraint—is supplemented by

CD

(
Q,

∂χ

∂Q

)
= 0. (J.47)

J.20 Classical Brackets Extended to Include Fermions∗

Mixtures of bosonic and fermionic species can be accommodated by introducing
physicist Roberto Casalbuoni’s brackets [198]

{F ,G}C := ∂F

∂QA

∂G

∂PA
− (−)εF εG ∂G

∂QA

∂F

∂PA
. (J.48)

Here εS the Grassmann parity of species A (+ for bosons and—for fermions). This
bracket also readily generalizes to field-theoretic form. It obeys the Grassmannian
generalization of the Jacobi identity,

{ {F ,G}C,J }C(−1)εF εJ + cycles = 0. (J.49)



Appendix K
The Standard Principles of Dynamics. ii. Field
Theory

K.1 Classification of Field-Theoretic Versions of the Principles
of Dynamics

There are multiple versions of this:

1) Newtonian Field Theory [313, 371].
2) SR Field Theory in flat spacetime form.
3) Field Theory in curved spacetime.
4) GR Field Theory of curved spacetime (possibly alongside other fields).

The last three also come in space–time split form, as is useful for Dynamics, con-
servation, Canonical Approaches and the eventual onset of equal-time commutation
relations. On the other hand, the spacetime form has less structures to consider: there
are no separated out velocities or momenta, and consequently no notions built upon
these such as cyclic coordinates, Routhians or Hamiltonians. Finally, Sect. J.15 and
J.18’s consideration of constraints and beables carry over well to space–time split
field theoretic use.

The book’s main applications are scalar Field Theories and Electromagnetism—
in both the SR and the GR setting—and vacuum GR itself. All of these are consid-
ered in both spacetime and space–time split forms. These examples partly account
for the selection of material presented below. Another application is the inherent in-
terest of the change in status of conservation laws and Noether’s Theorem in passing
from SR to GR This is tied to notions of energy acquiring a more subtle and as yet
less fully understood status in GR.

K.2 SR Spacetime Version

Actions are here of the functional form

s=
∫

d4xL(Xμ,ημν; ψZ(Xμ)], (K.1)
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which is furthermore taken to be restricted to some Lorentz-invariant combination;
see Chap. 6 for examples. Varying with respect to ψ gives the Euler–Lagrange equa-
tions, which are now of the form

∂μ

{
δL

δ ∂μψZ

}
= δL

δ ψZ
. (K.2)

(K.2) is restricted to the case of second-order theories; (6.8) is a first-order example.
Lagrange multiplier coordinates continue to make sense in Field Theory; they

are now in general functions of �X. Their Euler–Lagrange equation collapses to

δL
δψZ

= 0. (K.3)

Multiplier elimination continues to make sense as well. Moreover this can now be
far more complicated due to the possibility of derivative operators acting on the
multipliers. I.e. this is now in general a PDE problem rather than an algebraic one;
see Chap. 18 for examples.

Consistency Counter-example 2) to SR or Lorentz invariance guaranteeing con-
sistency. Let L = F +m�G� , for F and G� , � = 1 to p all functionally-independent
Lorentz-invariant scalars for a theory with less than p degrees of freedom, and
vector-valued Lagrange multiplier m� .

Finally, Noether’s Theorem perseveres in the following form. For

ψZ → ψ′Z = ψZ + ε 	ψZ

preserving L modulo a divergence,

L → L′ = L + ε ∂μθμ,

jμ := δL
δ ∂μψZ

δψZ − θμ
(K.4)

is then conserved, i.e. obeys the flat spacetime conservation law

∂μjμ = 0.

Ex II.4 contains some examples.

K.3 Space–Time Split SR Version

The split action is of the form

s :=
∫

dt
∫

d3xL :=
∫

dt
∫

d3x{T − V}.
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The corresponding split Euler–Lagrange equation is

−∂t
{

δL
δ ψ̇Z

}
+ ∂a

{
δL

δ ∂aψZ

}
= δL

δψZ
. (K.5)

The E–B form of the Maxwell equations (8.4), (3.2) is an example of such.
On occasion, some of the (K.5) will collapse to multiplier equations (K.3), with

multiplier elimination in general following the preceding Sec’s lead. Furthermore,
in the split case there is also a clear-cut notion of cyclic coordinate, for which (K.5)
collapses rather to

δL
δψ̇Z

= C(xa) (K.6)

The momenta are now

π
ψ
A := δL

δ ψ̇A
. (K.7)

Straightforward analogues of passage to the Routhian and to the Hamiltonian then
hold; also phase space and the symplectic approach remain available for Field The-
ory [142].

It is well-known that a current jμI satisfying ∂μjμI = 0 has corresponding con-
served charge

QI =
∫

�

d�μjμI =
∫

t=const
d3x j0I , (K.8)

in accord with Noether’s Theorem. This includes the case of energy

E =
∫

d3x E0

being straightforwardly conserved modulo introduction of the corresponding mo-
mentum flux Pi . What is less widely known is this result’s dependence on
Minkowski spacetime M

n possessing a timelike Killing vector, which affects gen-
eralizations as per two Secs down.

The Hamiltonian itself is

H(x,πψ ; ψ] := πψ
A ψ̇A − L(x, ψ̇; ψ]. (K.9)

The field-theoretic Poisson bracket requires smearing,1 and takes the form

{F,G} :=
∫

R3
d3x

{
δF
δQA

δG
δPA

− δF
δPA

δG
δQA

}
. (K.10)

1In general, we use (CW |AW) := ∫ d3x CW(x; ψ, h]AW(x) (an ‘inner product’ notation) for the smear-
ing of a W-tensor density-valued constraint CW by an opposite-rank W-tensor smearing with no
density weighting: AW. ψA are the matter fields involved.
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The Legendre matrix is now

$ZZ′ = δ2L
δ ψ̇Zδ ψ̇Z′

.

Constraint classification, the Dirac bracket, the extended approach and Dirac’s Al-
gorithm carry over to Field Theory. See Chap. 6 for Electromagnetism and Yang–
Mills Theory as simple examples of this.

Notions of observables and beables carry over to Field Theory; so do constraint
and beables algebraic structures. Useful Lemma 3 on beables continues to hold
when beables are determined by an FDE instead of a PDE.

The general field-theoretic Hamilton–Jacobi equation is

∂S
∂t

+ H
(
t, x,

δS
δψ

; ψ
]

= 0. (K.11)

For time-independent H, S(x, t; ψ] = χ(x; ψ] − Et separates this out, leaving an
equation

H
(
x,

δχ
δψ

; ψ
]

= E (K.12)

to be solved for Hamilton’s characteristic function, χ. If first-class constraints CD

(other than H) are present, the preceding is to be supplemented by

CD

(
x; ψ,

δχ
δψ

]
= 0. (K.13)

K.4 Curved Spacetime and GR Versions

Actions on curved spacetime are of the form

s=
∫

d4xL(Xμ; gμν,ψ
Z ], (K.14)

furthermore making use of a generally covariant combination. The ‘in curved space-
time’ version of this involves just variations with respect to ψ. The GR version—
(7.7) plus matter terms—additionally involves variations with respect to g, from
which the Einstein field equations follow as the corresponding Euler–Lagrange
equations. It then follows that GR adds further field equations, whereas involving
curved space can itself lead to such as Curved Geometry factors in integrals and the
absence of Killing vectors.

Consistency Counter-example 3) to GR or spacetime General Covariance guar-
anteeing consistency. Repeat Counter-example 2)’s multiplier construction but now
with spacetime generally covariant objects.
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K.5 Space–Time Split GR Version

We next consider the ADM action (8.17); for inclusion of scalar fields and Elec-
tromagnetism, see Sect. 18.11; Chap. 32 touches upon canonical treatment of more
general matter fields, with references. GR’s own momenta are (8.21), whereas the
other field momenta are

πψ
Z := δL

δψ̇Z
. (K.15)

Sect. K.3’s versions of multiplier coordinates, cyclic coordinates, multiplier elim-
ination, Routhian reduction and passage to the Hamiltonian carry through. ADM
lapse α and shift βi are now examples of multiplier coordinates, with ties to Chap. 8
and 18. The bare GR Hamiltonian is zero, though of course there are constraints H
and Mi , giving Sect. 24.3’s total Hamiltonian.

Noether’s Theorem carries over to stationary spacetimes [205]; therein time
translation symmetry continues to imply energy conservation. Stationary space-
times are however nongeneric. Once this restriction is dropped, conservation and
energy both become rather more involved and unsettled notions within GR’s Ein-
steinian Paradigm of Physics [242, 370]. In more detail, if ξA is Killing and uA is
the tangent to a geodesic γ , then C = ξAuA is constant along γ . This is because
uBDBC = uBuADBξA + ξAuBDBuA = 0 by ξA Killing and uA geodesic. Moreover,
this is only enough to stipulate a conserved quantity if it is compatible with the
theory’s further structures (e.g. potentials in Mechanics). By this, not all isometries
carry over to conserved quantities. On the other hand, conformal Killing vectors cor-
respond to conserved quantities along null (but not in general timelike) geodesics.

In a heuristic sense, the divergence of the Einstein tensor takes the place of
the notion of conservation law [370]. The energy–momentum–stress tensor is the
variational derivative of the action with respect to the metric (7.8). One format
for considering conservation laws in a GR format involves adding gravitational
energy–momentum–stress pseudotensors2 to the matter’s energy–momentum–stress
tensor. This is so as to form some notion of conserved quantity, at least in some
regime. However, general relativists have a number of issues with such approaches
[799, 823, 824, 874]. The Bel–Robinson tensor (after relativists Lluís Bel and Ivor
Robinson) is a gravitational analogue of how Tμν is constructed from Fμν in Elec-
tromagnetism, now making use of the Weyl tensor instead:

Tμνρσ := Cμργ δCνγ σ δ + C∗
μργ δC∗

ν
γ
σ
δ. (K.16)

Indeed, out of (especially localized) energy being a contentious issue in GR, numer-
ous energy candidates have been proposed (cf. this book’s consideration of numer-
ous time candidates). In fact, the two may be expected to bear some relation to each
other, through ‘time and energy being conjugate quantities’ (see Sect. 35.7).

2This is meant here in a distinct sense from that of Appendix D.2’s.
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The Poisson bracket is now

{F,G} :=
∫

�

d�

{
δF
δhij

δG
δpij

− δF
δpij

δG
δhij

}
. (K.17)

The GR constraints are first-class (and both secondary in the ADM formulation).
The algebraic structure formed by the GR constraints is the Dirac algebroid (9.31)–
(9.33). The lapse fixing equations (21.30)–(21.31) are examples of field-theoretic
specifier equations.

Finally, the Peres alias Einstein–Hamilton–Jacobi equation is the FDE

∥∥∥∥
δS
δh

∥∥∥∥
M

2

+ R − 2Λ = 2ε (= 0 in vacuo). (K.18)

The Hamilton–Jacobi form of the accompanying GR momentum constraint is the
FDE

−2 hjkDj
δS

δpik
= Ji (= 0 in vacuo). (K.19)



Appendix L
Temporal Relationalism Implementing
Principles of Dynamics (TRiPoD)∗

L.1 Finite-Field Theoretic Portmanteau Notation

It is straightforward (Exercise!) to fold the previous Appendix’s finite and ‘split
curved spacetime field’ presentations into Chap. 18’s portmanteau form. This is
based on the suite of analogous calculi (up to the subcase of Fréchet in Appendix H).

The current Appendix summarizes the subsequent Temporal Relationalism im-
plementing (TRi) reformulation of the Principles of Dynamics in portmanteau form.
See [44] for an account of the finite case.

L.2 Jacobi–Mach Formulation

We continue to restrict our treatment to second-order physical systems, and now
work in the absence of time at the primary level, as per Chap. 15. Consequently,
there is no derivative with respect to time and thus no notion of velocity Q̇A at the
primary level. Instead, we use change in configuration d∂QA due to being open to
resolving primary-level timelessness through Mach’s Time Principle: with a sec-
ondary notion of time to be abstracted from change. Thus in TRiPoD, Machian
variables Q,d∂Q supplant the usual Principles of Dynamics’s Lagrangian variables
Q, Q̇.

All dynamical information is now contained within the Jacobi arc element
d∂J (Q,d∂Q), which has supplanted the time-independent Lagrangian L (Q, Q̇). The
action s is itself an unmodified concept: it is already in TRi form, albeit now
additionally bearing the relation s = ∫ d∂J to the TRiPoD formulation’s Jacobi
arc element d∂J . There is clearly also no primary notion of kinetic energy; this
has been supplanted by the kinetic arc element d∂s given by (15.7). Moreover,
d∂J = √

2W d∂s for W (Q) the usual potential factor, so the kinetic and Jacobi arc
elements are related by a conformal transformation. In terms of d∂J , Dynamics has
been cast in the form of a geodesic principle [98], or, in terms of d∂s as a para-
geodesic principle [659].

© Springer International Publishing AG 2017
E. Anderson, The Problem of Time, Fundamental Theories of Physics 190,
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We next apply the Calculus of Variations to obtain the equations of motion such
thats is stationary with respect to the Q. See Sect. L.3 for comments on the particu-
lar form taken by this variation. The resulting equations of motion the ‘Jacobi–Mach
equations’,

d∂
{

δ∂ d∂J
δ∂ d∂QA

}
− δ∂ d∂J

δ∂QA
= 0, (L.1)

in place of the usual Principles of Dynamics’s Euler–Lagrange equations.
The Jacobi–Mach equations also admit three simplified cases.

1) Lagrange multiplier coordinates mM ⊆ QA are such that d∂J is independent of
d∂mM,

δ∂ d∂J
δ∂ d∂mM

= 0.

The corresponding Jacobi–Mach equation is

δ∂ d∂J
δ∂mM

= 0. (L.2)

2) Cyclic coordinates cY ⊆ QA are such that d∂J is independent of cY,

δ∂ d∂J
δ∂cY

= 0,

while still featuring d∂cY: the corresponding cyclic differential.1 The correspond-
ing Jacobi–Mach equation is

δ∂ d∂J
δ∂ d∂cY

= constY. (L.3)

3) The energy integral type simplification. d∂J is independent of what was previ-
ously regarded as ‘the independent variable t’, whereby one Jacobi–Mach equa-
tion may be supplanted by the first integral

d∂J − δ∂ d∂J
δ∂ d∂QA

d∂QA = constant. (L.4)

Suppose further that the equations corresponding to 1)

0 = δ∂ d∂J
δ∂mM

(QO,d∂QO,mM) can be solved for mM.

One can then pass from d∂J (QO,d∂QO,mM) to a reduced d∂Jred(QO,d∂QO): mul-
tiplier elimination.

1To avoid confusion, note that ‘cyclic’ in ‘cyclic differential’ just means the same as ‘cyclic’ in
cyclic velocity. So nothing like ‘exact differential’ or ‘cycle’ in Algebraic Topology—which in de
Rham’s case is tied to differentials—is implied here.
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Configuration–change space and configuration–velocity space are conceptually
distinct presentations of the same tangent bundle T(q). Formulation in terms of
change d∂QA can furthermore be viewed as introducing a change covector. This is
in the sense of inducing ‘change weights’ to Principles of Dynamics entities, analo-
gously to how introducing a conformal factor attaches conformal weights to tensors.
For instance, d∂s and d∂J are change covectors as well. On the other hand, s is a
change scalar: an entity which remains invariant under passing from the standard
Principles of Dynamics to TRiPoD, due to their being already-TRi.

TRiPoD’s formulation of momentum is

PA := δ∂ d∂J
δ∂ d∂QA

, (L.5)

which is a change scalar as well.

L.3 Free End Notion of Space Variation

Suppose a formulation’s multiplier coordinate m is replaced by a cyclic velocity c
[20, 64] or a cyclic differential d∂c [37, 38]. The zero right hand side of the multi-
plier equation is replaced by f (notion of space alone) in the corresponding cyclic
equation. However, if the quantity being replaced is an entirely physically mean-
ingless auxiliary, in the cyclic formulation, the meaninglessness of its values at the
end notion of space becomes nontrivial. I.e. free end notion of space variation alias
variation with natural boundary conditions) [166, 220, 313, 598] is the appropriate
procedure. This is a portmanteau of free end point variation for finite theories, and
free end spatial hypersurface variation for Field Theories.2 Such a variation imposes
more conditions than the more usual fixed-end variation does: three conditions per
variation,

δ∂ d∂J
δ∂gG

= d∂pG, alongside pG |end = 0. (L.6)

Case 1) If the auxiliaries gG are multipliers mG, (L.6) just reduces to

pG = 0,
δ∂J

δ∂mG
= 0

and redundant equations. So in this case, the end notion of space terms automat-
ically vanish by applying the multiplier equation to the first factor of each. This
holds regardless of whether the multiplier is not auxiliary and thus standardly var-
ied, or auxiliary and thus free end notion of space varied. This is because this
difference in status merely translates to whether or not the cofactors of the above

2To be clear, ‘free end’ here refers to free value at the end notion of space rather than the also quite
commonly encountered freedom of the end notion of space itself.
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zero factors are themselves zero. Consequently the free end notion of space sub-
tlety in no way affects the outcome in the multiplier coordinate case. This probably
accounts for the above subtlety long remaining unnoticed.

Case 2) If the auxiliaries gG are considered to be cyclic coordinates cG, (L.6) re-
duces to

pG |end−NOS = 0 (L.7)

alongside

ṗG = 0 (or equivalently d∂pG = 0)

⇒ pG = C(notion of space), invariant along the curve of notion of space.
(L.8)

C(notion of space) is now identified as 0 at either of the two end notion of space
(L.7). Since this is invariant along the curve of notions of space, it is therefore zero
everywhere. So (L.8) and the definition of momentum give

δ∂L

δ∂ ċG
:= pG or equivalently

δ∂d∂J
δ∂d∂cG

= 0.

In conclusion, the above free end point notion of space working ensures that the
cyclic and multiplier formulations of auxiliaries in fact give the same variational
equation. Thus complying with Temporal Relationalism by passing from encoding
one’s auxiliaries as multipliers to encoding them as cyclic velocities or differentials
is valid without spoiling the familiar and valid physical equations.

Note that a similar working [20] establishes that passage to the Routhian for an
auxiliary formulated in cyclic terms reproduces the outcome of multiplier elimina-
tion for that same auxiliary formulated in terms of multipliers.

L.4 TRi Legendre Transformation

One can now apply Legendre transformations that inter-convert changes d∂QA and
momenta PA.

Example 1) Passage to the d∂-Routhian

d∂R(QX,d∂QX,PY
c ) := d∂J (QX,d∂QX,d∂cY)− Pc

Yd∂cY. (L.9)

d∂-Routhian reduction furthermore requires being able to

solve constY = δ∂ d∂J
δ∂ d∂cY

(QX,d∂QX,d∂cY) as equations for the d∂cY.

This is followed by substitution into (L.9). One application of this is the passage
from Euler–Lagrange type actions to the geometrical form of the Jacobi actions,
now done without ever introducing a parameter; another is Chap. 16’s reduction
procedure.
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Example 2) Passage to the d∂-anti-Routhian,

d∂A (QX,PX,d∂cY) = d∂J (QX,d∂QX,d∂cY)− Pc
Xd∂QX. (L.10)

A subcase of this plays a significant role in the next Section.
Example 3) Passage to the d∂-Hamiltonian,

d∂H (Q,P) = PAd∂QA − d∂J (Q,d∂Q). (L.11)

The corresponding equations of motion are in this case d∂-Hamilton’s equations

δ∂ d∂H
δ∂PA

= d∂QA,
δ∂ d∂H
δ∂QA

= −d∂PA. (L.12)

L.5 TRi-Morphisms and Brackets. i

Suppose we are to keep no cyclic differentials. The usual q morphisms apply, ex-
cept that specifically Point rather than Pointt is involved. Also, the Liouville 1-form
(J.22) and the symplectic 2-form (J.23) are already TRi and thus are change 1- and
2-forms respectively. As the inverse of the latter, the Poisson tensor C is recast as a
change 2-tensor d∂−2D.

Temporal Relationalism also requires use of Can rather than Cant in the d∂-
Hamiltonian formulation.

The Poisson bracket portmanteau (24.2) is already-TRi in form, provided that the
smearing variables in the field-theoretic case take TRi-smeared form,

{F ,G } :=
∫

�

d�

{
δF

δQA

δG

δPA
− δF

δPA

δG

δQA
.

}
(L.13)

Finally, Phase is already-TRi, since all of Q, P and the Poisson bracket are.

L.6 d∂A-Hamiltonians and Phase Spaces,
and TRi Dirac-Type Algorithms

The Legendre matrix encoding the non-invertibility of the momentum-velocity re-
lations is now supplanted by the d∂−1-Legendre matrix change vector

d∂−1$AA′ := δ∂2d∂J

δ∂ d∂QAδ∂ d∂QA′

(
= δ∂PA′

δ∂ d∂QA

)
(L.14)

which encodes the non-invertibility of the momentum-change relations. The TRi
definition of primary constraint then follows in parallel to how the usual definition
of primary constraint follows from the Legendre matrix, with secondary constraint
remaining defined by exclusion.
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For example, Dirac’s argument that Reparametrization Invariance implies at least
one primary constraint is now recast in the TRi form of Sect. 15.6’s Lemma 5. The
specific form of the primary constraint is, of course, Chronos.

The next idea in building a TRi version of Dirac’s general treatment of con-
straints is to append constraints to one’s incipient d∂-Hamiltonian not with Lagrange
multipliers—which would break TRi—but rather with cyclic differentials. In this
way, a d∂A-Hamiltonian is formed; the ‘A’ here stands for ‘almost’, though the
d∂A-Hamiltonian is also a particular case of d∂-anti-Routhian. Moreover, the d∂A-
Hamiltonian d∂A symbol has an extra minus sign relative to the d∂-anti-Routhian
d∂A symbol. This originates from the definition of Hamiltonian involving an overall
minus sign where the definitions of Routhian and anti-Routhian have none. Fur-
thermore, in the current context, all the cyclic coordinates involved have auxiliary
status and occur in best-matched combinations. [In the event of a system possessing
physical as well as auxiliary cyclic coordinates, one would use a ‘partial’ rather than
‘complete’ anti-Routhian.]

The equations of motion are now d∂A-Hamilton’s equations

δ∂d∂A
δ∂ PA

= Q̇A,
δ∂d∂A
δ∂ QA

= −ṖA, (L.15)

augmented by

δ∂ d∂A
δ∂ d∂cG

= 0

Let us finally note that Appendix J.15’s comment about using the anti-Routhian’s
own Legendre matrix carries over to the d∂-anti-Routhian, and thus also to the further
identification of a subcase of this as the d∂A-Hamiltonian.

Examples of the above TRi-Dirac appendings are, firstly, the starred d∂A-
Hamiltonian d∂A ∗ := d∂A + d∂f PCP for arbitrary functions of Q,P now represented
as cyclic differentials d∂f (Q,P). Secondly, the total d∂A-Hamiltonian d∂ATotal :=
d∂A + d∂uPCP, where d∂uP are now unknown cyclic differentials.

The next issue to arise is the counterpart of the bracket expression in (J.36).
The Best Matched form of the action now ensures the constraints are of the form
C(Q,P alone), because for these

passage from d∂Q to P absorbs all the d∂gG. (L.16)

This is the previously advertised major (d∂-)anti-Routhian trick.
In the case in hand, CC = C(QA,PA alone) means that the chain-rule expansion

d∂CC = δ∂ d∂CC

δ∂ QA
d∂QA + δ∂ d∂CC

δ∂PA
d∂PA

applies. So by (L.15),

d∂CC = {CC,d∂ATotal} = {CC,d∂A } + d∂uP{CC, CP}. (L.17)
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Fig. L.1 a) Almost-Hamiltonian subcase of Fig. J.2’s Legendre square. b) then elevates this square
to fully TRi form in terms of d∂-Legendre transformations that dually switch momenta and changes.
These are between change covectors: d∂J , d∂R, d∂A , d∂H , the information-preserving extra terms
now being subsystem Liouville forms, which were always change covectors. Routhians go to
d∂-Routhians; there is no need for ‘almost’ in this case since Routhians are already allowed to con-
tain velocities, and so already include almost-Routhians as a subset. c) and d) exhibit the choices
by which the total Hamiltonian, A-Hamiltonian and d∂A-Hamiltonian arise. The starred, primed and
extended versions follow suit

Next let this be solved for unknown cyclic differentials under d∂uP = d∂UP + d∂V P:
the split into the cyclic differential complementary function d∂V P = vZd∂V P

Z and the
cyclic differential particular solution d∂UP. Also the primed d∂A-Hamiltonian d∂A ′ :=
d∂A + d∂UPCP, where d∂UP are now the cyclic differential particular solution part of
d∂uP Finally, the extended d∂A-Hamiltonian d∂AExtended := d∂A + d∂uPCP + d∂uSCS. See
Fig. L.1 for some context. Phase is now replaced by A-Phase and d∂A-Phase;
these are all types of bundle twice over: cotangent bundles and g bundles.

Since only the Poisson bracket part acting on the constraints, the definitions of
first- and second-class remain unaffected, as are the Dirac bracket and the extension
procedure.

Moreover, Dirac’s Algorithm is now supplanted by the TRi-Dirac Algorithm. As
regards the five cases this is capable of producing at each step, in any combination,
equation types 0), 1) and 3) are as before. On the other hand, equation types 2) and
4) are now phrased in terms of cyclic differentials.

Finally, this book also makes use of the following formulations for actions.

s=
∫∫

�

dλd�{Q̇APA − ATotal } =
∫∫

�

dλd�{Q̇APA − İQuad − ċGGaugeG }
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=
∫∫

�

d�{d∂QAPA − d∂ IQuad − d∂cG ShuffleG }

=
∫∫

�

dtemd�

∫
{∗QAPA − Quad − ∗cGGaugeG }. (L.18)

L.7 TRi-Morphisms and Brackets. ii)

Suppose there are now cyclic differentials to be kept, or which arise from the TRi-
Dirac Algorithm. The morphisms are now a priori of the mixed type Can(T∗(q))×
Point(g). Also the brackets here are a priori of the mixed Poisson–Peierls type:
Poisson as regards QA,PA and Peierls as regards d∂gG.

(L.16) implies that, as regards the constraints, Can(T∗(q))× Point(g) reduces to
just Can(T∗(q)) and the mixed brackets reduce to just Poisson brackets on QA,PA.
The physical part of the d∂A-Hamiltonian’s incipient bracket is just a familiar Pois-
son bracket. This good fortune follows from the d∂A-Hamiltonian being a type of d∂-
anti-Routhian, alongside its non-Hamiltonian variables absenting themselves from
the constraints due to the best-matched form of the action.

L.8 TRi Constraint Algebraic Structures and Beables

The algebraic structure of the constraints is unaffected by passing to TRi form: same
constraints and same brackets for the purpose of acting on the constraints. This is
modulo a minor and physically inconsequential point of difference in formulation
of the smearing in the field-theoretic case.

Whenever any of Dirac’s Hamiltonians are equivalent, the same applies to A-
and d∂A-variants. This includes definitions based on cases of (25.1) as well as the
particular δ∂DEs to solve for specific examples, since those are based on the same
constraints and the same brackets. As per the end of the previous Section, there re-
mains a minor point of difference in formalism of the smearing in the field-theoretic
case.

L.9 TRi Hamilton–Jacobi Theory

This is to be a t-independent version corresponding to a totally constrained d∂A-
Hamiltonian. In such a case, only the constraints themselves feature. Moreover,
(L.16) implies that this retains the form familiar from the standard Principles of
Dynamics’ t-independent totally constrained Hamiltonian case. Thus the close par-
allel to the Semiclassical Approach is also inherited by TRiPoD.

The TRi Hamilton–Jacobi formulation then consists of

Chronos

⌊
Q,

δ∂χ
δ∂Q

⌋
= 0, (L.19)
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with allowed extra dependence on a meaningful constant such asE for Mechanics or
Λ for (Minisuperspace) GR. N.B. Hamilton’s characteristic function χ is a change
scalar. In the case of nontrivial g which has been confirmed to act as a gauge group
on the configurations, this is supplemented by

Gauge
⌊

Q,
δ∂χ
δ∂Q

⌋
= 0. (L.20)

Research Project 116) The Problem of Time strategies require an even wider range
of Hamilton–Jacobi Theory formulations than in [598]’s foundational account of
Mechanics. Provide a suitable treatise.

L.10 TRiPoD End-Summary

Each entity of Fig. L.2 in the left leg is supplanted by the mirror image entity on
the right leg. Moreover, the middle leg is unaffected: its entities are the ‘already
Temporally Relational’ parts of the standard Principles of Dynamics. This mostly
consists of change scalars. The new right leg is powered by the free end notion of
space variation of Sect. L.3. The text further refines classification of the right and
middle leg’s entities by homothety weight. N.B. the few asymmetries between the
left and right leg: the heavy arrows indicate time assumed versus Machian emergent
time, and the right leg does not make use of Lagrange multipliers. Finally, explic-
itly time-dependent structures such as time-dependent Lagrangians, time-dependent
Hamiltonians, Pointt and Cant have no TRi counterparts.

L.11 Parageodesic Principle Split Conformal Transformations

Splitting the relational arc element d∂J into ‘kinetic’ and ‘potential’ factors is in
fact a nonunique procedure: d∂ s̃ = {W / }{ d∂s} will also do. The general such
split means that one is dealing with a parageodesic principle, so we term the
above re-representation a parageodesic principle splitting conformal transforma-
tion (PPSCT). Its first factor involves an ordinary conformal transformation of the
kinetic arc element d∂s; consequently the corresponding kinetic metric scales as a
conformal vector. This is now paired with the second factor compensatingly scaling
as a conformal covector,

W −→ W = W / 2. (L.21)

Also, ∗ is a PPSCT-covector by applying the above to the combination (15.21).
This reveals that ∗ is in fact highly nonuniquely defined, at least at this stage in the
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Fig. L.2 The Temporal Relationalism implementation of the Principles of Dynamics (TRiPoD).
The powers of d∂ displayed in the red leg indicate the change-tensor rank of each entity. Parts II
and III’s subsequent TRi figures are picked out by their matching blue, white and red ‘tricol-
ore’ convention, with white for already-TRi and the blue entities requiring supplanting by the red
TRi-implementing ones

argument.3 I.e. integrating,

d∂ tem −→ d∂ t
em =  2dtem. (L.22)

3So as to not confuse ‘tem(JBB) as features in the previous literature’ [37, 98] and the PPSCT-covector
explained in the current Appendix, we denote the latter by �t. One can also think of this as N, İ, ∂I
scaling as PPSCT-vectors.
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Now clearly from the invariance of the action, performing such a transformation
should not (and does not) affect the physical content of one’s classical equations of
motion.4

Next, the conjugate momenta are PPSCT-invariant:

PB = MAB ∗gQA = MAB ∗gQA = PB. (L.23)

Thus PPSCT concerns, a fortiori, q rather than Phase. Moreover, Quad is a PPSCT-
covector; in this way, Misner’s conformal covariance of H—underlying his sub-
sequent adoption of conformal operator ordering—is recovered from ‘zeroth prin-
ciples’ that are none other than Temporal Relationalism. In cases with nontrivial
Configurational Relationalism, the above arc elements pick up Best Matching cor-
rections and Shuffle constraints, which are conformally invariant. The total d∂A-
Hamiltonian is PPSCT-invariant as well. Finally, the Liouville form PAQ̇A is PPSCT-
invariant, so that the form (L.18) for the action is also indeed PPSCT-invariant.

4A more complicated 3-part conformal transformation (M,W ,∗) −→ (M,W ,∗) =
( 2M, −2W , −2 ∗) can also be pinned upon the Euler–Lagrange form of the action,
though this would have been harder to find without having seen (L.21) first.
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Quotient Spaces and Stratified Manifolds∗∗

We already mentioned in Appendix A.2 that quotienting only works on some occa-
sions in Group Theory, i.e. quotienting out normal subgroups. The current Appendix
illustrates that quotienting mathematical structures is, more generally, a rather sub-
tle business, with both limitations on scope of applicability and non-preservation of
a number of mathematical properties. This and the next Appendix further support
Facet 2 of the Problem of Time: Configurational Relationalism.

M.1 Quotienting out Groups: Further Useful Notions

For g an element and H a subgroup of a group g, then gH := {gh |h ∈ H} is a (left)
coset, and the corresponding (left) coset space is the set of all of these. The quotient
of the action of a group g on a space s, denoted by s/g, is the set of all group
orbits, which (suitably equipped) is termed the group orbit space, O. Work through
Ex IV.4 for some simple examples of this.

A smooth manifold equipped with a transitive smooth action of a Lie group is
termed a homogeneous space. Readers may wish to convince themselves that Sn

and CP
n can be thought of in this manner.

M.2 Quotient Topologies

Let us next consider quotienting a topological space by an equivalence relation,
〈X, τ 〉/ ,̃ so as to produce the corresponding quotient topology [613, 672].

N.B. that this does not in general preserve a number of topological properties,
including in particular none of the three manifoldness properties. A simple counter-
example to preservation of Hausdorffness is as follows. Let X = {(x, y) ∈ R

2 |y =
0 or 1} with the obvious topology, and (x, y) ∼ (z,w) iff either (x, y) = (z,w) or
x = z �= 0: the line with two origins which cannot be separated. As regards non-
preservation of dimension, quotienting is capable of decreasing or increasing topo-
logical dimension. Whereas the decreasing case is obvious, space-filling curves [68]
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Fig. M.1 a) Cones are an example of orbifold; the apex is an orbifold point. b) Notion of charts
for an orbifold N obtained by identifying the two perpendicular arrows at p in the manifold M,
whereby some of the orbifold charts are quarter-spaces Rn++ q is the quotient map corresponding
to taking out g, and o is the group orbit map. c) Orbits Ox and slices Sx . d) A manifold with
boundary. e) Whitney’s umbrella. Its strata are the blue origin, yellow handle, green spoke, and the
grey remainder. f) Supports the definition of local compactness. g) A differential space

provide examples of it increasing. Quotienting can furthermore produce dimension
varying from point to point in its quotient; Appendix G already presented simple
examples of this. Moreover, in the physical examples below, Hausdorffness and
second-countability are often retained, so quotienting here leads to entities which
are ‘2/3 of a manifold’.

Quotienting does preserve connectedness, path connectedness and compactness
(see [613]), albeit not simple connectedness (e.g. passage to nontrivial universal
covering group) or contractibility (e.g. R2/Dil = S

1). Moreover, if s/g arises by a
group g acting on a space s freely and properly, then s/g is Hausdorff [614]. One
application of this result is in guaranteeing the mathematical tractability of 1- and
2-d RPM shape spaces.

M.3 Orbifolds

Orbifolds [229, 386] are locally quotients M/g following from a properly discon-
tinuous action of a finite Lie group g on a manifold M. This construction can more-
over be applied to equipped manifolds such as (semi-)Riemannian manifolds. Orb-
ifolds are more general than manifolds, since quotients do not in general preserve
manifoldness; consequently some orbifolds carry singularities.

M itself admits an open cover UC. Each constituent UC furthermore possesses
an orbifold chart: a continuous surjective map φC : VC → UC for UC open ⊆ R

p:
for p = dim(M) and where VC and φC are invariant under the action of g. In
Fig. M.1.b), it is more convenient to use a map πC in the opposite direction. One
can moreover define a notion of meshing between such charts, and finally a notion
of orbifold atlas in close parallel to that for manifolds.

The everyday notion of cone can be thought of as a simple example of orbifold
(Fig. M.1.a). Another is Fig. G.9.k), in the context of a 3-body problem configu-
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ration space. More generally, orbifolds are common in N -body problem configu-
ration spaces, indeed including the generalized sense of cone that applies to rela-
tional spaces. The 2-d N -body problem’s simplest shape spaces CP

n−1 are often
best thought of as complex manifolds. There is indeed a notion of complex orb-
ifold as well as of real orbifold, in parallel to how there are real and complex man-
ifolds [673]. Elsewhere in Theoretical Physics, many of the orbifolds which are
well-known to occur in String Theory are also complex; in particular, these arise
in the study of Calabi–Yau manifolds [229, 386]. Furthermore, some simpler mod-
els of this last example are closely related to the preceding one, though both being
discrete quotients of CPk spaces [37].

M.4 Quotienting by Lie Group Action, and Slices

For the action of a Lie group g on a space X (e.g. a manifold M), the generalized
slice Sx at x ∈ X is a manifold transverse to the group orbit Ox ; see e.g. [466]. This
generalizes the fibre bundle notion of local section to the case involving compact
transformation groups in place of principal bundles. (The corresponding generaliza-
tion of the fibre bundle notion of local trivialization—Appendix F.4—in this setting
is termed a tube [466].)

The slice can be taken to exist in the above compact case. However, in other cases
one can occasionally prove Slice Theorems to this effect (Appendices N.1 and N.4).
Of subsequent relevance below, the Implicit Function Theorem enters these proofs.
A slice Sx gives a local chart for X/g; thus the slice notion—when available—is a
significant tool for the study of the corresponding group orbit spaces O.

Slices Sx carry information about the amount of isotropy of points near x [466].
Let us illustrate ‘amount of isotropy’ using Appendix G’s examples. Whereas 2-d
mechanical configurations have just the one isotropy group SO(2), 3-d ones have
3 possible isotropy groups: id, SO(2) and SO(3). These have corresponding orbits
of the form SO(3), S2 and 0 respectively. This correspondence follows from the
isotropy group also being known as the stabilizer group, and well-known relations
between orbits and stabilizers. Multiple dimensions of isotropy groups point to mul-
tiple dimensions of orbits. Thus group orbit spaces O are not in general manifolds—
entities of unique dimension—but rather collections of manifolds that span various
dimensions. This motivates consideration of further generalizations of manifolds as
follows.

M.5 Stratified Manifolds

Manifolds are in general insufficient for the purpose of studying physical reduced
or relational configuration spaces q/g. We have already seen that these more gen-
erally produce unions of manifolds of in general different dimensions. Moreover,
some cases of further physical relevance—such as reduced configuration spaces in
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Mechanics and GR, and group orbits spaces in Gauge Theory—‘fit together’ ac-
cording to some fairly benevolent rules. The constituent manifolds are here known
as strata, and each collection that ‘fits together’ in this manner is known as a strati-
fied manifold .

Historically, the first formulation of stratified manifolds was of differentiable
stratified manifolds by Whitney [904] (also reviewed in [905]). Subsequently, noted
mathematician René Thom formed a theory of stratified topological manifolds as
an arena for dealing with singularities [846].1 Thom [847] additionally showed that
every stratified space in the sense of Whitney is also one of his own stratified spaces
and with the same strata.

Let X be a topological space that is not presupposed to be a topological manifold.
Suppose that this can be split according to X = Xp ∪ Xq [905]. Here Xp := {p ∈
X,p simple}, dimp(X) = dim(X) where ‘simple’ means ‘regular’ and ‘ordinary’,
and Xq := X − Xp. Proceed to consider a recursion of such splittings, so e.g. Xq

can furthermore be split into {Xq }p and {Xq }q. Then setting M1 = Xp, M2 = {Xq }p,
M3 = {{Xq }q }p etc. gives X = M1 ∪ M2 ∪ . . . ,dim(X) = dim(M1) > dim(M2) >

· · · , where each MI I = 1,2, . . . is itself a manifold. The point of this procedure
is that it partitions X by dimension. Moreover, X is only a topological manifold if
this is a trivial partition: involving a single piece only. On the other hand, a strict
partition of a topological space is a (locally finite) partition into strict manifolds.
[A manifold M within a m-dimensional open set U is U-strict if its U-closure M :=
U − ClosM and the U-frontier M − M are topological spaces in U.]

A set of manifolds in U has the frontier property if, for any two distinct such, say
M and M′,

if M′ ∩ M �= ∅, then M
′ ⊂ M and dim(M′) < dim(M). (M.1)

A partition into manifolds is itself said to have the frontier property if the corre-
sponding set of manifolds does.

Finally, one definition of a stratification of X [905] is as a strict partition of X
which has the frontier property. The corresponding set of manifolds are known as
the strata of the partition.

The variant that Fischer [301] found in studying superspace(�) is based on the
inverse frontier property. This is (M.1) under interchange of primed and unprimed
quantities, which feeds into the corresponding notion of inverted stratification. An-
other occasionally useful [759] property is the regular stratification property,

MI ∪ MJ �= ∅ ⇒ MI ⊆ MJ ∀ I, J ∈ j, (M.2)

where j denotes the set of strata.
Whitney [905] also established that a locally finite partition of X with the frontier

property is a stratification. Moreover, for each stratum M, M − M is the union of

1The well-known Catastrophe Theory [71] also originates from these authors’ works. While this
also concerns singular manifolds, it is largely a distinct topic from stratified manifolds.



M.5 Stratified Manifolds 779

the other closed strata in M. Indeed, any strict partition of a manifold X admits a
refinement which is a stratification into connected strata. Take this as a brief indica-
tion that refinements of partitions—a type of ‘graining’—plays a role in the theory
of stratified manifolds.

Simple examples include the following.

Example 0) Manifolds are single-piece stratified manifolds.
Example 1) Appendix D.1’s examples of manifolds with boundary can furthermore

be interpreted as stratified manifolds. Here the manifold and its boundary are the
two constituent strata, the former possessing the full dimension whereas and the
latter is of codimension C = 1. Figure 37.5 illustrates the types of chart for a par-
ticular case of this. Intervals with one or both endpoints regarded as distinct are the
simplest subexamples of this.

Example 2) Manifolds with corners. These have, in addition to the previous exam-
ple’s strata, the C = 2 strata that are the corners themselves. Some but not all [713]
of these are stratified manifolds.

Example 3) Cones are stratified manifolds. E.g. for the cone over a compact mani-
fold, the apex and the remainder are the strata.

Example 4) Simplicial complexes are stratified manifolds [713].
Example 5) Whitney’s umbrella in Fig. M.1.e).

Since nontrivial stratified manifolds have strata with a range of different dimensions,
clearly the locally Euclidean property of manifolds has broken down, and with it the
standard notions of charts and how to mesh charts together. These notions still ex-
ist for stratified manifolds, albeit in a more complicated form (see Fig. 37.5). Also,
in general losing Hausdorffness and second-countability leaves stratified manifolds
‘further down’ than topological manifolds in the diagram of the levels of structure.
Moreover, this book considers in any detail only Hausdorff second-countable strat-
ified manifolds, i.e. spaces which are ‘2/3rds of a manifold’.

Since Whitney, stratified manifolds have additionally been equipped with differ-
entiable structure (see e.g. [798]). Furthermore, individual strata being manifolds,
some are metrizable. Additional Riemannian metric structure on stratified spaces is
considered by e.g. mathematician Markus Pflaum [713] (Kendall [539] also makes
use of this level of structure). Pflaum furthermore sets up a definition of geodesic
distance along such lines. His work is also a good source to learn about the mor-
phisms corresponding to stratified manifolds.

Moreover, stratified manifolds and fibre bundles do not fit well together due to
stratified manifolds’ local structure varying from point to point. Three distinct strate-
gies to deal with this are outlined in Sect. 37.5. Among these, relational consider-
ations point to the strategy of accepting the stratified manifold. In turn, this points
to seeking a generalization of Fibre Bundle Theory, for which Sheaf Theory (Ap-
pendix W.3) is a strong candidate.

Let us end by noting that stratified orbifolds also make sense, and indeed occur
in the study of configuration spaces: the 3-d case of Fig. G.11.f).
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M.6 Locally Compact Hausdorff Second-Countable (LCHS)
Spaces

Local Euclideanness has been lost, but we consider another local property which
also confers much control and understanding on the type of Analysis involved.
A topological space 〈X, τ 〉 is locally compact [613] if each point p ∈ X is contained
in a neighbourhood Kp ⊆ X (Fig. M.1.f).

In particular, these include manifolds, and the outcome of the coning construc-
tion. Many of Appendix G’s configuration spaces from Mechanics are consequently
included.

Furthermore, LCHS spaces are rather well-behaved from an Analysis point of
view. LCH spaces have a number of Analysis results in common with complete
metric spaces, including an analogue of Baire’s Category Theorem (Appendix H.2).
See [614] for a first account of further nice Analysis properties of LCHS spaces.

M.7 Differential Spaces and Stratifolds

A differential space is a pairing (X, c) of a topological space X and a function space
c equipped with algebraic structure; furthermore, the functions f ∈ c act on X.

Example 1) The c generalizes the standard use of smooth functions in elementary
real Differential Topology.

Example 2) Sikorski spaces [798] (after mathematician Roman Sikorski) are a
prominent, historically early and quite general example of such a pairing. Here
X is any topological space and c is a certain type of subalgebra of the continuous
functions X → R. For instance, mathematical physicist Jedrzej Śniatycki [798]
considers the pairing of a type of LCHS manifold with Sikorski spaces. This is
the most advanced program as regards providing differential geometric structures
thereupon (e.g. use of Marshall forms).

Example 3) Stratifolds are differential spaces more recently considered by mathe-
matician Matthias Kreck [570]. These are also rather well-behaved, in part because
the X half of the pair is LCHS. Moreover, the c half of the stratifold’s pair receives
a sheaf interpretation (outlined in Appendix W.3).

Example 4) Pflaum pairs LCHP stratified manifolds (where the P stands for ‘para-
compact’) with sheaves. These generalize LCHS stratified manifolds because
LCHS implies paracompactness. Paracompactness is a desirable property to keep
because it protects standard notions of integration (and thus of integral forms of
laws and of variational principles). Also (W.1) simplifies some aspects of Haus-
dorff paracompact spaces.

M.8 Further Stratified Spaces from the Principles of Dynamics

If q is stratified, then so are T(q) [713] and the symplectic version of T∗(q) [514].
This is currently available for Pflaum and Śniatycki’s treatments, but not for Kreck’s.



Appendix N
Reduced Configuration Spaces
for Field Theory and GR∗∗

N.1 Gauge Group Orbit Spaces

Gauge Theory does not only involve a configuration space of connections Con, but
also a gauge group g acting thereupon. This is a Lie group. In the more usual cases
such as Electromagnetism and Yang–Mills Theory, it acts internally. In this way,
�1/g arise as reduced configuration spaces (more concretely, as group [alias here
gauge] orbit spaces O). Fibre Bundle Theory supports this to some extent, firstly
through principal bundles with the above g entering as both structure group and
fibres. Secondly, a wider range of associated fibre bundles with g as structure group
and distinct fibres, permit modelling of gauge fields coupled to a number of further
(gauged) fields can be modelled. On the other hand, the group orbit space itself is in
general heterogeneous, and thus not amenable to fibre bundle description. Moreover,
due to the group action in question being smooth and proper,1 gauge orbit spaces
O have the separation property—and thus are in particular Hausdorff—as well as
second-countable, metrizable and paracompact. See e.g. [564, 759, 775] for more on
the topology and geometry of gauge orbit space, and the corresponding symplectic
spaces, including in terms of stratified manifolds. Some particular theorems of note
here are as follows.

Gauge Theory’s Slice Theorem [564] The action of the gauge group on space �1

of Ai admits a slice at every point; this applies in a principal fibre bundle setting.

Gauge Theory’s Stratification Theorem [564] The decomposition of �1/g by
group orbit type is a regular stratification.

Let us end by noting that L2 mathematics suffices for the above workings, though
one can uplift to more general function spaces [759] including so as to attain com-
patibility with the GR case below.

1A map is proper [613] if the inverse map of each compact set is itself compact.
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N.2 Loops and Loop Spaces for Gauge Theory

Another approach involves Wilson loop variables (after physicist Kenneth Wilson);
these contain an equivalent amount of information to the connection variables Ai .
Such a formulation is already meaningful for Electromagnetism; this amounts to
modelling the space of transverse Ai for which the Gauss constraint has already
been taken into account. In this case, the Wilson loop variables are of the form

HA(γ) := exp

(
i

∮

γ
dxiAi (x)

)
(N.1)

for γ a loop path. The somewhat more involved Yang–Mills Theory version of Wil-
son loop variables take the form

HA(γ) := Tr

(
P exp

(
ig

∮

γ
dxiAiI (x)g

I (x)

))
, (N.2)

for g group generators gI and path-ordering symbol P . HA(γ) are indeed holon-
omy variables in the sense of fibre bundles [673]; see [330] for an extensive (if
nonrigorous) development of the theory of these.

The curves in question can be taken to be continuous and piecewise smooth, and,
for now, to live on R

3. In fact, equivalence classes of curves are required [330].
If modelled in this way, the corresponding loop space is a topological group. It

is not however a Lie group, though it is contained within a Lie group: the so-called
extended loop group. See [330] for a more detailed account.

N.3 Topology of g= Diff(�)

Diff (�) can be modelled using fre(1,0)(c∞) [301], which matches the way pre-
sented of modelling Riem(�). A fortiori, diffeomorphisms are commonly modelled
in terms of Fréchet manifolds, a fortiori as Fréchet Lie groups [426].

Next consider the group action Diff (�)× Riem(�) → Riem(�). The group
orbits of this are Orb(〈�,h〉) = {φ∗h |φ ∈ Diff (�)}. If two metrics—points in
Riem(�)—lie on the same group orbit, they are isometric. In this manner, the
Diff (�) group orbits partition Riem(�) into isometric equivalence classes [301].
The corresponding stabilizers Stab(〈�,h〉) = {φ ∈ Diff (�) |φ∗h = h} constitute
the isotropy group Isot (〈�,h〉). Moreover, Isot (〈�,h〉) coincides with [301]
Isom(〈�,h〉); let us mark this by using I (〈�,h〉) to denote this coincident entity.
The Lie algebra corresponding to this is isomorphic to that of the Killing vector
fields of 〈�, h〉. An interesting result here is that I (〈�,h〉) is compact if � is [653].
Finally, since I (〈�,h〉) comes in multiple sizes, there are multiple dimensions of
the corresponding group orbits, pointing to the group orbit space not being a mani-
fold.
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N.4 Topology of superspace(�)

Fischer showed that superspace(�) = Riem(�)/Diff (�) [301] can be taken to
possess the corresponding quotient topology. superspace(�) additionally admits a
metric space metric of the form [301]

Dist([h1 ], [h2 ]) := inf
φ ∈ Diff (�)

(
Dist(φ∗h1, φ

∗h2)
)
. (N.3)

In this manner, superspace(�) is a metrizable topological space and thus obeys
all the separation axioms and thus in particular Hausdorffness; it is also second-
countable [301]. Thus Superspace is ‘2/3rds of a manifold’ in the sense of Ap-
pendix M.

However, unlike Riem(�), superspace(�) fails to possess the infinite-dimen-
sional analogue of the locally-Euclidean property. Wheeler [899] credited renown
American mathematician Stephen Smale with first pointing this out. Fischer [301]
subsequently worked out the detailed structure of superspace(�) as a stratified
manifold. In particular, the appearance of nontrivial strata occurs for � that ad-
mit metrics with non-trivial I (〈�,h〉). In these cases Diff (�) clearly does not act
freely upon these metrics. Rather, the superspace(�) quotient space is here a strat-
ified manifold of nested sets of strata ordered by dim(I (〈�,h〉)).2 Indeed, Fischer
[301] tabulated the allowed isometry groups on various different spatial topologies.
In this way, superspace(�) is not itself a manifold.

A further useful concept is the degree of symmetry of �,

deg(�) := sup
h∈Riem(�)

(
dim(I (〈�,h〉))). (N.4)

Fischer [301] listed 3-manifolds with deg(�) > 0, and, in collaboration with math-
ematical physicist Vincent Moncrief, [304, 305] further characterizes deg(�) = 0
manifolds. N.B. that for deg(�) = 0, superspace(�) is a manifold.

Mathematicians Richard Palais and David Ebin [276] established that Diff (�) is
not compact. Moreover, they also showed that Diff (�) acting on Riem(�) is one
of the cases for which a slice does none the less exist.

Ebin–Palais Slice Theorem [276] Using [301]’s presentation, for each h ∈
Riem(�) ∃ a contractible submanifold s containing h such that

i) For φ ∈ Diff (�) and φ ∈ I (〈�,h〉), φ∗s = s.
ii) φ �∈ I (〈�,h〉) ⇒ φ∗s ∩ s = ∅.

iii) ∃ in Orb(h) an open set U which itself contains h, and a local section

2superspacetime(m) also has nested strata and conical singularities corresponding to the geometries
with nontrivial Killing vectors.
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� : U → Diff (�) such that φ(p, s) = {�(p)}∗s is a diffeomorphism of U ×s onto an
open neighbourhood Nh of h .3

A ready consequence is as follows.

Superspace Decomposition Theorem [301] The decomposition of superspace(�)
into group orbits is a countable partially-ordered c∞-Fréchet manifold partition.

By the preceding and Appendix M.5’s definition of inverted stratification, the
following holds as well.

Superspace Stratification, Stratum and Strata Theorems [301] The manifold
partition of superspace is an inverted stratification indexed by symmetry type.

Fischer additionally tabulates classifications of the superspace topologies and of
the strata. The Stratum Theorem includes [301] that a stratum of superspace is finite
dimensional iff the group action on the manifold is transitive (corresponding to a
homogeneous space).

See e.g. [301, 302, 356, 357, 363] for further topological studies of Superspace,
and [363] for further difficulties with putting a Riemannian metric on Superspace.

Research Project 117)†† [Hard and long-standing] How satisfactorily can all GR
singularities be treated from a ‘paths in configuration space’ perspective? From a
space of spacetimes perspective?

N.5 Comparison Between Theories. i. Theorems

Let us next further compare the GR, Gauge Theory and Mechanics cases. Firstly,
Slice Theorems are known for each. The previous Section gives the GR case, and
Appendix N.1 the Gauge Theory case, whereas e.g. [686, 774] give Mechanics
counterparts. Secondly, see the same Sections for the GR and Gauge Theory cases
of Stratification Theorems; Mechanics also has a such, at least in the symplectic set-
ting [642]. The above two results provide further directions in which to consider the
RPM model arena. Thirdly, the Decomposition Theorem that we have seen arise for
GR also has a Gauge Theory version [759]. This is for group orbit spaces O, and
is more mathematically standard: based on a generalization of the Hodge–de Rham
Decomposition Theorem (see e.g. [207, 316] for a basic outline).

3Here s ∈ s and p ∈ U, which is an open neighbourhood of I (〈�,h〉)’s identity in the coset space
(Appendix M.1): Diff (�)/I (〈�,h〉), and ‘diffeomorphism’ and ‘submanifold’ are in the sense of
Fréchet(c∞ ).
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N.6 ii. Handling Dynamical Trajectories Exiting a Stratum

For both RPMs and GR, stratification becomes an issue as regards continuations
of dynamical trajectories. On the other hand, in Gauge Theory, bounding by strata
can be considered within the context of Gribov regions. See e.g. [267] for boundary
condition considerations for the Gribov regions of Gauge Theory.

In the GR case, Leutwyler and Wheeler [899] appear to have been the first to
ask about initial or boundary conditions on superspace. DeWitt, Fischer and Misner
subsequently suggested [240, 301, 658] that when the edge of one of the constituent
manifolds—i.e. where the next stratum starts—is reached, the path in Superspace
that represents the evolution of the 3-geometry could be reflected. Simpler such
reflection conditions were also previously considered for Mechanics; Misner’s con-
siderations were for Minisuperspace, whereas DeWitt considered a further simple
model arena [240].

A subsequent alternative proposal by Fischer [302] concerns extending such mo-
tions though working instead with a nonsingular extended space. This no longer
encounters the stratified manifold’s issues as regards differential equations for mo-
tion becoming questionable at the junctions between strata.

Fischer explicitly built such an extended space [302] by use of an unfold-
ing which permits access to Fibre Bundle Methods. The unfolding involved is
parametrized by I (�), as anticipated in the Mechanics case in Appendix G.3 This
unfolding improves on previous such constructs by being Generally Covariant. It
provides the right amount of information at each geometry—superspace(�)’s no-
tion of point—to make the space of geometries into a manifold. The unfolding at-
tains this by making use of the bundle of linear frames over �, F(�). In this case,
no nontrivial isometries fix a frame. Thus the group action on the unfolded space
Riem(�)× F(�) is free.

Fischer [302] also pointed to superspace(�) possessing a ‘natural minimal res-
olution’ of the resultant singularities. This is based upon using the frame bun-
dle quotient space Riem(�) × F(�)/Diff(�). In this particular case, one can
regard Riem(�) as a principal fibre bundle p(superspaceF(�),DiffF(�)). I.e.

DiffF(�)
i→ Riem(�)

π→ superspaceF(�) for i an inclusion map and π the fi-
bre bundle’s projection map (Appendix F.4).

However, the above unfolding runs against Relationalism, due to the F(�) in-
volved being a mathematical construct that does not correspond to more detailed
modelling of physical entities.

Within the alternative Accept All Strata strategy toward strata, as a first point,
recollect Sect. 37.6’s outline of extending geodesics between strata using sheaf
methods. As a second point, note that stratifolds (Appendix M.7) happen to fur-
ther model a number of configuration spaces of interest, as follows. Firstly, use Ap-
pendix M.6’s statement about Mechanics configuration spaces. Secondly, proceed
by Appendix M.7’s statement about infinite-dimensional stratifolds moving toward
being able to model GR configuration spaces. On the other hand, that the space of
spacetimes modulo spacetime diffeomorphisms is not Hausdorff leaves this space
outside the scope of stratifolds, as are some loop spaces. Kreck’s stratifold, and Śni-
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atycki’s and Pflaum’s constructs are then mentioned in this book due to their appli-
cability to a range of physically interesting examples, rather than as a full resolution
for handling all the stratified manifolds that arise in Physics.

Moreover, as Fischer and Moncrief pointed out, the deg(�) = 0 case of
superspace(�) avoids having strata in the first place, thus not necessitating any
boundary conditions or extension procedure. On the one hand, deg(�) = 0 carries
connotations of genericity, upon which general relativists place much weight. On
the other hand, there is considerable interest in studying the simpler superspaces
which are based on spaces with Killing vectors—such as S

3 and T
3—for which

reduced approaches do encounter stratification.
Another research direction arises from acknowledging that the actual Universe at

most involves approximate Killing vectors [218, 806, 807]. This comes at the price
of many standard techniques becoming inapplicable.

Example 1) perturbation theory that is centred about an exact solution with exact
Killing vectors may cease to apply.

Example 2) GR averaging issues enter the modelling.

Example 1) would be covered by modelling the Universe on some specific
deg(�) = 0 spatial topology: in this case we know there are no Killing vectors for
strata to arise from. This would greatly complicate calculations as compared to those
we are accustomed to on e.g. S3. On the other hand, Example 2) would be mani-
fested through us not knowing which deg(�) = 0 spatial topology to take; one would
now have to average over all plausible such, and quite possibly allow for these to
change over evolution. By this stage one would be modelling with ‘Big Superspace’
(Appendix S.2) and it would be a ‘higher level excision’ to exclude the superspaces
with Killing vectors. One might still hope that sufficiently accurate analysis of the
dynamical path would reveal it to avoid deg(�) �= 0 topologies, or at least the solu-
tions with Killing vectors therein. However, issues remain as regards whether each
of the nongeneric structures—such that deg(�) �= 0 and hab possesses one or more
Killing vectors—could have a dynamical attractor role, which could force generic
paths to have endpoints in, or pass arbitrarily close to, non-generic points.

N.7 Cs(�) and {Cs+ V}(�)

Conf (�) and Diff (�) combine according to Conf (�) � Diff (�) [303]; similarly
VPConf (�) and Diff (�) combine according to VPConf (�) � Diff (�) (Exer-
cise!). Note that Conf (�) ∩ Diff (�) �= ∅ due to the conformal isometries outlined
in Appendix E.2. However, since quotienting something out twice is clearly the
same as quotienting it out once, this does not unduly affect the implementation.
Also note that Conf (�) is contractible, so Conf (�)� Diff (�) has the same topol-
ogy as Diff (�), Conf (�)� Diff F(�) as Diff F(�), Cs(�) as superspace(�) and
CsF(�) as superspaceF(�) (see e.g. [363]).

Fischer and mathematical physicist Jerrold Marsden [303] extended Ebin’s work
by considering the action of the c∞ version of Conf (�) on Riem(�), as motivated
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by York’s GR initial value problem work [922, 924, 925]. They obtained an analogue
of the Ebin–Palais Slice Theorem for Conf (�)� Diff (�). They also demonstrated
that the cotangent space corresponding to Cs(�) is an infinite-d weak symplectic
manifold near those points corresponding to (h, p) not possessing any shared confor-
mal Killing vector fields. This signifies topological straightforwardness other than
as regards being stratified. [924] includes a linearized version of the stratification.
That stratification occurs carries over from superspace(�) to Cs(�), along with
many results that follow from contractibility. In fact, Fischer and Marsden [303] al-
ready had a Cs(�) analogue of the Superspace Stratification Theorem. Fischer and
Moncrief’s Superspace results [305] carry over to Cs(�) as well. Consequently for
the deg(�) = 0 case, one gets a second helping of each of orbifolds, manifolds and
contractible manifolds.

Cs(�) must be positive-definite since it is contained within CRiem(�).
CRiem(�) is better-behaved than Riem(�) along lines already established by

DeWitt [237]. One might hope that Cs(�) is better-behaved than superspace(�),
in parallel to relational space containing a better-behaved shape space.

Conversely, Dil alone can be quotiented out of superspace(�), giving a
vpsuperspace(�) configuration space (volume-preserving Superspace). Finally,
let us name the further quotient spaces afforded by the unit-determinant diffeomor-
phisms UDiff (�) by use of extra U -prefixes.

Research Project 118) PRiem(m) was studied at the geometrical level by DeWitt
[241]. Perform a corresponding analysis of CpRiem(m), [Stern [301] investi-
gated the basic topological properties of superspacetime(m); in particular, this is
not Hausdorff.] What are the basic topological properties of conformal superspace-
time, Css(m)?

N.8 Notions of Distance for Geometrodynamics

Referring back to Sect. G.4, ‖ ‖M is not a notion of distance for M indefinite, e.g.
for GR or its Minisuperspace. The same restriction occurs again for path metrics.
Thereby, the Kendall, Barbour and DeWitt comparers do not carry over to GR as
notions of distance. [Whereas the DeWitt comparer originates from Geometrody-
namics, it did not arise there as a distance, but rather as a metric functional from
which an indefinite geometry follows by double differentiation.] Four ways to make
progress are as follows.

1) Consider CRiem(�) and Cs(�). These are positive-definite so that the Barbour
and DeWitt comparers do carry over here as notions of distance [37].

2) Use an inf implementation instead; cf. (N.3) and the Gromov–Hausdorff notion
of distance [393] (see Sect. S.3).

3) Use inhomogeneity quantifiers. To set up a first example, the standard definition
of average is (for compact �)

〈A〉 :=
∫

�

d3x
√

h A

/∫

�

d3x
√

h. (N.5)
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Additionally,

A := A − 〈A〉, (N.6)

is an ‘unnormalized inhomogeneity quantifier’ of the ‘contrast’ type. There is
an obvious continuum counterpart of this example. See e.g. [926, 927] for more
complicated such quantifiers.

4) Use spectral notions of distance. The basic idea here is to consider the spec-
trum of some natural differential operator on the manifold. Problems with this
include non-uniqueness of such natural operators and the ‘isospectral problem’
that ‘drums of different shapes’ can none the less sound exactly the same; in this
way, the separation axiom of distance fails.

N.9 Modelling with Infinite-d Stratifolds

Work in this direction has started [294, 571, 837], centering around Sheaf Methods
and study of cohomology, in Hilbert and Fréchet space settings that do extend to
manifolds in these senses.

Research Project 119)† Finish bridging this gap. I.e. can superspace(�) and
Cs(�) be modelled as infinite-d stratifolds?

N.10 Reduced Treatment of Slightly Inhomogeneous Cosmology

This can be taken to arise from a particular example of the Thin Sandwich, in which
the sandwich procedure by itself fails to factor in the Diff (�) content (Chap. 30).
In these models, Diff (S3) start to have effect at first order. Let us denote the corre-
sponding space of the dun by Diff 1(S

3).

Vacuum Case

This case turns out to be more straightforward [34]. Here solving the Thin Sandwich
equations gives—for vn with components do

n, de
n, sn := an +bn: the scalar mode sum

ubiquitous quantity, and An given by (I.14): the best matched configuration space
metric

2

exp(3Ω)
ds2

bm = {−1 +An }dΩ2 + 2

3
dΩdAn + ‖dvn ‖2. (N.7)

This is of dimension 4 + 1: an drops out of the line element, so it is short by 1 in
removing the Diff (S3) degrees of freedom. Moreover, geometrically this is just flat
M

5. Indeed,

Tn := 2

3

√
An − 1 cosh

(
Ω + 1

3
ln(An − 1)

)
,
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Xn := 2

3

√
An − 1 sinh

(
Ω + 1

3
ln(An − 1)

)

cast the line element in the familiar form

2

exp(3Ω)
ds2 = −dT 2

n + dX2
n + ‖dvn ‖2. (N.8)

One can proceed from here by the V part of H separating out to give an equation
[34] for the thus only temporarily convenient mixed-SVT variable An = An(Ω).
This gives a fully Diff (S3)-reduced line element of the form

2

exp(3Ω)
ds2 = {−1 + fn(Ω)}dΩ2 + ‖dvn ‖2, (N.9)

where fn(Ω) := An(Ω) + 2
3 dAn(Ω)/dΩ . This is conformally flat. Next define a

new scale variable ζn := ∫ √
fn(Ω)− 1 dΩ to absorb the first term’s prefactor. This

leaves, up to a conformal factor, the simplified line element

ds2 = −dζ 2
n + ‖dvn ‖2, (N.10)

which is a local-in-time slab within M
4.

∂/∂vV
n ’s components ∂/∂sn, ∂/∂do

n , ∂/∂d
e
n are among the 10 conformal Killing

vectors; the others are ∂/∂ζ , 3 vV
n ∂/∂v

V′
n − vV′

n ∂/∂v
V
n and 3 vV

n ∂/∂ζ + ζ∂/∂vV
n .

Finally the corresponding shape space is also clearly flat, in this case R
3:

ds2 = ‖dvn ‖2. (N.11)

Minimally-Coupled Scalar Field Case

In this case [35], the outcome of the Thin Sandwich elimination is the undisturbed
ds2

0 of the densitized version of (9.12) alongside

dsn 2
bm = exp(3Ω)

2

{
‖dvn ‖2 + df 2

n + {{3dan +
√

3{n2 − 4}dsn
}
fn + 6andfn

}
dφ

+ 2

3
dAndΩ −An {−dΩ2 + dφ2 }

}
. (N.12)

However, since this is of dimension 6 + 2, it is not yet Superspace. In removing
the Diff (S3) degrees of freedom, the thin-sandwich manoeuvre has now fallen short
by 2. In this case, how to progress from here with the reduction is not known.

In this case, the geometry of the currently attained ‘half-way house’ has been fur-
ther explored by the Author. Its configuration space block structure can be tidied up
by removing as many off-diagonal terms as possible can be done separately in each
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of the first two blocks. Diagonalize the one by using (I.17) again, now alongside
using the exchanger variable

φn = φ − 3

2
bnfn (N.13)

on the other so as to set the coefficient of dandφn to zero.
[If multiple n’s are considered, use instead mode-summed variables Ω̃ as per

(N.13), alongside

φ̃ = φ − 3

2

∑
n

bnfn. (N.14)

This example illustrates that the configuration space metric split ( H.6) and conse-
quently the Hamiltonian constraint metric–matter split (24.22) are not in general
preserved by reduction procedures. This gives rise to the complication that even
minimally-coupled matter influences the form of the gravitational sector’s reduced
q geometry.

The Ricci scalar for the partly reduced geometry is

R = 7 exp(−3Ω)/f 2
n . (N.15)

Consequently the matter perturbation going to zero—a physically innocuous
situation—gives a curvature singularity. This has some parallels [34, 35] with the
configuration space singularity corresponding to the collinear configurations in the
N -body reduced configuration space.
∂/∂φn, ∂/∂de

n and ∂/∂do
n are Killing vectors for this; whereas ∂/∂fn has lost

this status upon reduction, the tensor mode directions have gained this property. As
ever, ∂/∂Ω is a conformal Killing vector. However, none of the above respect the
corresponding potential, so conserved quantities do not ensue.

Also, scaled perturbative Minisuperspace does not have a bona fide configuration
space metric based notion of distance. On the other hand, the space of pure inhomo-
geneities is positive-definite. The vacuum case admits a 3-d Euclidean metric with
the vn as the corresponding coordinates.

All in all, unlike in the vacuum case, it remains unclear how to complete the
reduction in the case with minimally-coupled scalar field matter.

N.11 Further Configuration Spaces

N.12 Loops and Loop Spaces

The loops of Appendix N.2 are now taken to involve i) paths embedded in GR’s
topological notion of space: �, and ii) the specific gauge group SU(2).

The heuristic outline of the loop spaces (Fig. N.1.c) being loop groups carries
over to this case. For more rigorous treatments, see e.g. [77, 179, 307]. The form
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Fig. N.1 Configuration spaces for a) GR as Geometrodynamics, b) Affine theory and c) Nodo-
dynamics. The last of these introduces an extra local SU(2)(�) in defining its variables. Taking
out these degrees of freedom, one passes to the space of loops, and subsequently quotienting out
Diff (�) as well, to the space of knots. The conformal versions of these are presented in square
parentheses due to hitherto not usually being studied in Nododynamics

Fig. N.2 Representation of knots as planar graphs with an over-and-under crossing designation.
The Reidemeister moves that preserve knots are a) twist/untwist, b) pull back/push under, and
c) slide string up/down underneath a crossing. d) The unknot—alias trivial knot—has no crossings,
or can be continuously deformed—by the so-called ‘ambient isotopy’ notion—into having none.
e) The trefoil knot is the simplest nontrivial knot

taken by the stratification of the group orbit space in the case of GR is covered in
[306].

See e.g. [179] for the LQC equivalent of diagonal anisotropy.

N.13 Knots and Knotspace

A knot K is an embedded closed curve in a closed orientable 3-manifold � (most
usually S

3). We restrict attention to smoothly or piecewise linearly embedded curves
to avoid ‘wild knots’ [68]. Two knots K1, K2 in a given � are equivalent if ∃ an
orientation-preserving automorphism such that Im(K1) = K2.

Whereas knot equivalence can be investigated using the Reidemeister moves
(Fig. N.2), we do not know of an upper bound on how many such moves are
needed to bring knots into obvious equivalence, so these moves are of limited prac-
tical use. Rather, we seek characterization in terms of knot invariants (a subset of
topological invariants). The obvious routes to such are homotopy and homology;
these give respectively the knot group (fundamental group of the knot complement)
[68] and the Alexander polynomial [626]. However, neither of these serve to dis-
cern between even some of the simplest knots. The advent of the Jones polynomial
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[159, 330, 533, 626] revived the subject; a number of further knot polynomials were
subsequently discovered at short order. However, these still do not suffice to classify
knots. See e.g. [330, 533, 757, 916] for some applications of knots in Physics. Also
note the rather obvious topological manifold level Background Dependence in this
formulation of knots.

The mathematical form of the corresponding ‘Knotspace’ remains an open prob-
lem. One approach is to view knot space as Emb(S1, S3): embeddings of the circle
in the 3-sphere, in the sense of each q being a subspace of a more tractable mapping
space [181]. This turns the topological problem into one concerning singular maps,
which is subsequently aided by these forming a stratified space. See also [180, 869]
for a mathematical account of spaces of knots.



Appendix O
DE Theorems for Geometrodynamics’ Problem
of Time∗

O.1 Types of Global Issues

0) In considering global issues, it is helpful to think complementarily, i.e. to con-
sider not ‘globality’ but the lack thereof: ‘locality’. This could refer to

i) an infinitesimal neighbourhood (if the type of mathematical space in ques-
tion possesses such a notion: see Appendix C).

ii) An extended region that does not cover the whole space, termed quasilocal-
ity in e.g. [823, 824].

iii) Topological effects that require the entire space to be taken into consideration—
such as the homotopy, homology or cohomology groups outlined in Ap-
pendix F.3—remain unaddressed by ii).

Many applications in Classical Physics involve the following set-up, or variants
given further below. Analysis can be applied not only to functions on R

n but to
linear and then nonlinear DEs as well. These enter Classical Physics through funda-
mental physical laws widely taking the form of PDEs. ODEs arise in those simple
models that permit separation (as well as directly from Newton’s Second Law).
Furthermore, a PDE problem is a PDE system alongside prescribed data, such as
boundary conditions, or initial conditions; prescription of values of fields and their
velocities on an initial surface is Cauchy data for a Cauchy problem. A PDE prob-
lem is well-posed if there exist unique solutions to it with continuous dependence
on the initial data.1 Global issues now enter as follows.

1) Some function spaces are well adapted to this task, including globally. If not
using such a function space at the outset, one can pass to it (‘Globalization by

1Without this last condition, an arbitrarily small change in the data could cause an arbitrarily large
immediate, precluding any physical predictability. N.B. this really does mean immediate—see e.g.
p. 229 of [220]—rather than some issue of chaos or unwanted growing modes. That said, though
well-posedness often also bounds the growth of such modes [323]. Section O.4’s hyperbolic PDE
problems require the domain of dependence property as a fourth well-posedness criterion. This
enforces a sensible notion of causality, permitting compatibility with Relativity.

© Springer International Publishing AG 2017
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Replacement’). Which function spaces are adapted to a PDE usually depends on
the type of PDE.

Limited Counter-example 1) Use of the analytic functions cω is not sensitive to the
type of PDE. These admit analytic continuation as a Globalization by Extension
method . The analytic functions are however also undesirable [732] for modelling
Relativistic Physics’ spacetime, since analytic continuation precludes independence
of causally unlinked regions. Consequently, one needs other function spaces for use
in Relativistic Theories; differentiable structure for these is usually taken to be c∞.

Well-posedness criteria can quite often only be established locally. A further
‘Globalization by Extension’ consideration is whether singular solutions can be in-
cluded in one’s treatment; see Appendix F.5’s consideration of Morse Theory for
a simple example. Finally, nonlinear PDEs are often harder to handle globally, the
Einstein field equations being the main case in question in this book.

2) The above involvement of Rn is in some ways but a local aspect, to be globalized
by passing to some globally-well-defined differentiable manifold M with mul-
tiple charts ⊂ R

n. Indeed, meshing charts together is itself a ‘Globalization by
Replacement’ technique. Yet this well-understood technique does not in general
carry over to patching together local solutions of PDEs holding on M, i.e. to
patching in a function space context.

3) A further modelling aspect is which role M plays. Spacetime versus space is one
source of variety here. Another is whether it is a space or a space of spaces, such
as configuration space q or phase space Phase.

4) Another local method involves associating with M of a Lie algebra g acting
thereupon. One can then ‘Globalize by Replacement’ by passing to consider-
ing instead a Lie group g version (which has its own manifold properties), or,
alternatively a Lie algebroid.

5) We have also seen that some physical applications replace M by such as a sin-
gular manifold or a stratified manifold. In the first case, note the increase in
intractability in passing from singularities of solutions on a fixed background
manifold versus singularities of manifolds themselves (e.g. GR singularities). In
the second case, Appendix M demonstrated that introducing g acting upon a
bona fide differentiable manifold M suffices for stratified manifolds to enter the
study.

6) Some physical modelling involves not just M but fibre bundles over M as well.
Indeed, such fibre bundles can serve to encode global properties of M.

Finally, note that some of the above six features occurring jointly can cause further
complications. For instance, stratified manifolds can take one outside of the scope
of Fibre Bundle Methods.

O.2 ODEs

Standard existence and uniqueness theorems for equations of the form

ẋ = f (x, t) (O.1)
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on metric spaces are based on contraction mappings, in the case of a Lipschitz con-
dition

Dist(f (x), f (x′)) ≤ kDist(x, x′)

holding locally in a neighbourhood Nx of x. x′ is here an arbitrary point in Nx , and
k is constant.2 This approach can be extended to establish continuous dependence
as well. Finally, we remark that this approach covers not only ODEs on R

n but e.g.
on Riemannian manifolds as well.

Moreover, local ODE solutions cannot always be globally extended, e.g. due to
blow-up within finite independent parameter; see e.g. [732, 874]. A global existence
result for ODEs for use in Minisuperspace solutions of GR is given in [732]; the
same equations also occur in the slightly different context of pointwise in Strong
Gravity [716, 717]. This is specific to 3-d and includes all Bianchi types except
Bianchi IX.

O.3 First-Order PDEs

There is an integral curves method for first-order quasilinear PDEs [207, 614]

f (x,u) · ∂u = g(x,u) , (O.2)

which holds provided that the surface swept out by the integral curves is not itself
characteristic.3

O.4 Second-Order PDEs

For second-order linear equations with constant coefficients, a simple elliptic–
hyperbolic distinction can be made in terms of whether or not the underlying
quadratic form is positive-definite or indefinite with one negative direction. Wider
applicability of such notions, however, requires a fair amount of further abstraction.
For a general PDE system

F(x, ∂(1)u, . . . , ∂(r)u) = 0, (O.3)

2See e.g. [72] for discussion of the necessity of the Lipschitz condition, and e.g. [426] for further
similar ODE theorems on Banach spaces, and their analogues on those Fréchet spaces for which
the Nash–Moser Theorem applies.
3This is avoided provided that there is no direction in which the directional derivative associated
with the flow is tangential to the surface. This involves the same underlying notion of characteristic
as in ‘method of characteristics’. Consequently e.g. the flat spacetime wave equation has charac-
teristics x = ±t . In contrast, the flat space Laplace equation has no real characteristics [220].
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where ∂(i) denotes the ith-order partial derivatives, the principal symbol σP is ob-
tained by taking the highest-order part and using ξ in place of ∂ = ∂(1). One simple
definition of elliptic system involves σP being positive-definite and invertible. On the
other hand, hyperbolicity is more sensitive to lower order terms; this is taken into
account by the Leray notion of hyperbolicity. See e.g. [204, 732] both for further
details of, and variants of, these concepts.

PDE problems are well-known for a range of PDEs linear in the dependent vari-
ables. E.g. Electromagnetism is straightforward to treat. Its Maxwell field equations
can be split into a constraint equation (2.13) and a system of evolution equations
(3.2). On the other hand, GR is nonlinear, by which it requires considerably more
work. Its Einstein field equations again split into constraint (8.27)–(8.28) and evolu-
tion equation (8.30) systems. In each case the constraints form an elliptic system and
the evolution equations can be cast as hyperbolic systems (modulo some caveats in
Appendix O.7). The constraint system is to be treated as a GR initial value problem
and the evolution system as a GR Cauchy problem.

O.5 GR Initial Value Problem Theorems.
i. Thin Sandwich Approach

The Mechanics analogue of the Thick Sandwich is already not well-posed [308]:
a simple periodic example exhibits both nonexistence and nonuniqueness. In fact
historically, it was the electromagnetic analogue of the Thick Sandwich [897] not
being well-posed (Ex VI.11.i) that led to Thin Sandwich limits being considered
instead.

As regards the Thin Sandwich, there are some results [115, 124, 308] concerning
well-posedness in a restricted sense.

Bartnik–Fodor Theorem Suppose

hij ∈ Hn+2(T0
2), Kij ∈ Hn+1(T0

2), ε ∈ Hn+1 and Ji ∈ Hn(T1
0)

satisfy the GR constraint equations and the ‘potential zeros avoiding condition’

2ε − R> 0. (O.4)

Here ε is the energy density, and the Hp are Sobolev spaces as introduced in Ap-
pendix P.5. Additionally, for any choice of shift βi ∈ Hn+2(T1

0) and positive lapse
α ∈ Hn+1, ḣij can be defined by (8.14). Suppose also that the equation

M(i|j) = μKij has only the trivial solution Mi (O.5)

holds: a locality in configuration space condition involving staying away from
Killing vectors. Then there exists a unique continuous map on an open neighbour-
hood N with data

D := (hkl, ḣkl, ε, Ji ) ∈ Hn+2(T0
2)× Hn+1(T0

2)× Hn+1 × Hn(T1
0).
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This assigns

β̃i ∈ Hn+2(T1
0) to D̃

such that β̃k is a solution of the reduced thin-sandwich equations with data D̃.

The proof follows immediately from the Implicit Function Theorem, once this is
established to apply to apply because the PDE system is established to be elliptic
and with trivial kernel (Exercise!).

Moreover, note that this locality is not just due to a lack of proof to date:
a counter-example to global existence was already previously known [124]. Also
contrast how in 3-d RPMs one has to excise the collinear configurations in order
to attain Best Matching with how one has to excise the metrics possessing Killing
vectors in order to attain Thin Sandwich proofs.

The local uniqueness, however, can readily be extended to the global Belasco–
Ohanian Theorem [115] (after physicists Elliot Belasco and Hans Ohanian).

Overall, while the Thin Sandwich historically precedes the next Section’s Con-
formal Approach, and is conceptually interesting and quite strongly tied to a Prob-
lem of Time facet, its mathematics remains less worked out, and is quite likely less
strong.

O.6 ii. Conformal Approach

Mi is here taken to be a decoupled equation for the longitudinal potential ζi of
Sect. 21.6, which is rather better-behaved elliptical PDE than the Thin Sandwich.
This is relatively straightforward, out of being linear in the dependent variable. See
e.g. [204] for protective theorems.

A quasilinear elliptic PDE for unknown u is one with a second-order elliptic part
and at most nonlinearity in u itself (no nonlinearity in derivatives of u):

�u + f (x,u) = 0. (O.6)

These afford more theorems than for more generally nonlinear PDEs. The
Lichnerowicz–York equation (21.7) of GR is set up to take advantage of this by
choosing a conformal scaling (D.33) which renders the equation quasilinear. See
e.g. [116, 204, 206, 465] for protective theorems, many of which are global in char-
acter; some of these make use of Hölder spaces and some of Sobolev spaces.

O.7 Theorems for the GR Cauchy Problem

The original treatments of Leray and Fourès–Bruhat [311, 312, 617] used cr (or
c∞), whereas more modern treatments [206, 440, 460] involve Sobolev spaces. The
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early works’ emphasis on suitable notions of hyperbolicity has proven to be long-
standing. Gauge fixing is also involved in the study of the GR evolution equations.
The preceding two sentences have to be taken together due to notions of hyperbolic-
ity not being gauge-invariant. E.g. the harmonic gauge (Ex V.13) casts the Einstein
field equations into the correct hyperbolic form—due to Leray [617, 732]:

MCD(x,φA,∇AφB)∇C ∇DφE = FE(x,φA,∇AφB), (O.7)

where MCD is a Lorentzian metric functional and both this and FE functional are
smooth—for Leray’s Theorem [617, 874] to apply. This guarantees well-posedness.

Hughes–Kato–Marsden Theorem This further result guarantees existence for the
n-d Einstein field equations in harmonic coordinates, if the Sobolev class of the
induced metric is no rougher than Hs+1 and that of the extrinsic curvature is no
rougher than Hs , for s > 1.5.

Finally, see e.g. [204, 323, 557, 732, 737] for furtherly modernized theorems.

O.8 Basic FDE Theory for GR and QFT

The following results are useful in the theory of observables or beables.

0) By the chain-rule,

If u solves the linear PDE or FDE Linφ ‘ =′ 0, then so do F(u) and F[u].
(O.8)

1) Lemma 1 The purely configurational gauge-invariant quantities (which coin-
cide with the K if Flin = Gauge) obey the same equation as that determining
which quantities are annihilated by the generators.

Proof This follows since the constraints involved are homogeneous linear in
piI , so the Poisson bracket removes the piI factors and replaces them with ∂

∂qiI

factors. [The Poisson bracket term with the other sign is annihilated by the purely
configurational restriction.] �

This result is used for instance in the configuration space q uplift of the group
generators acting upon absolute space a. In this way, a-invariants are replaced
by ones built out of multiple particle positions qiI .

Also note that the pure-momentum counterpart has no such result since the
constraints are not confined to be linear in the Q. Those which are linear in
both Q and P have pure-P and pure-Q beables in close parallel to each other.
On the other hand, those which are not diverge more in the forms of these two
contributions to the ‘basis beables’.
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2) Kuchař’s no-go Theorem [582] Nonlocal objects of the form
∫

�

d3xFij (x; h]pij (x) (O.9)

are not Dirac beables, where Fij is some general spatial tensor-valued mixed
function-functional.

This result makes use that metric concomitants are in general built out of
covariant derivatives of the Riemann tensor. One then proceeds by proving in-
ductively on the number of covariant derivatives that Fij cannot contain con-
comitants with that number of covariant derivatives, by use of algebraic and
integrability arguments.

3) Torre’s No-Go Theorem [854] (see also [63, 194, 853, 858]) Local functionals

T(x; h,p] (O.10)

are not Dirac beables either.

This uses that local observables correspond to local ‘hidden symmetry’. How-
ever, the latter’s cohomological classification (in the sense of de Rham for the
bundle of metrics over spacetime) leaves no options.

Two further FDE considerations as regards QFT and the Wheeler–DeWitt
equation are as follows.

4)

Double functional derivatives acting on functionals are not well-defined.
(O.11)

5) At least in the case of such FDEs as have been mastered,

FDEs require regularization. (O.12)



Appendix P
Function Spaces, Measures and Probabilities

P.1 Basic Formulation of Probability

Let us begin by considering a mathematical space �, now cast in the role of sample
space. Its subsets are now termed events E (meaning here ‘sets of outcomes’, not to
be confused with the spacetime use of the word ‘events’). Each such E is associated
with a probability Prob(E) ∈ [0,1]. In the original Probability Theory, these are
taken to arise by sampling:

Prob(E) = (number of times outcomes lying in E occur in the sample)

/(sample size) := m/n,

for n suitably large. This motivates viewing probability as a valuation within the
interval [0,1], since m,n are positive and m ≤ n.

A simple example of � is {H,T }: heads or tails for a coin toss. For an unbiased
coin, Prob(H ) = 1

2 = Prob(T ). More generally, a partition of � into discrete events
EE can be assigned probabilities such that

∑
E pE = 1 (normalization). Then

Prob(E1 5 E2) = m1 +m2

n
= m1

n
+ m2

n
= Prob(E1)+ Prob(E2),

while
∑

EmE = n for a partition. Such an assignation is called a probability distri-
bution.

Example 1) For {H,T }, assigning Prob(H) = p, Prob(T ) = q := 1 − p for an in
general biased coin gives a binomial distribution ρn,k,p = ( nk

)
pkqn−k for the num-

ber of heads.

A random variable is a function R : � → R. Each R has a corresponding prob-
ability distribution function ρ : � → [0,1] such that {Prob(R = r)|r ∈ Range(R)}.
The condition for a finite number of random variables RR, R = 1 to n to be indepen-
dent is that

Prob(RR = rR,R = 1 to n) = !nR=1Prob(RR = rR).
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Expectation

E(R) :=
∑
ω∈�

pωR(ω)

for a discrete random variable and

E(R) :=
∫

ω∈�

ωρ(ω)dω

for a continuous one. In either case, variance is given by

Var(R) := E(R − E(R))2 = E(R2)− {E(R)}2.

A statistic is a function θ : � → R that is independent of one’s sample’s data set. θ
computes a particular attribute of the data set. We next consider various generaliza-
tions of the above.

1) Extend from finite to countable R.

Example 2) The Poisson distribution ρk,λ = λk

k! exp(−λ); its parameter λ is both
mean and variance.

2) Further extend R to the uncountable case. Normalization
∫

�

ρ(x)d� = 1

is also required, where the probability distribution function ρ : � → R0 assigns
e.g.

∫ b
a

ρ(x)dx to Prob(a ≤ R ≤ b).

Integration is for now meant in the sense of Riemann (so a p-d multiple integral
for a region of � generalizes the above 1-d probability distribution function’s
assignment).

Example 3) The normal alias Gaussian distribution with mean μ and standard de-
viation σ = √

variance is ρμ,σ (x) = 1√
2πσ

exp(−{x −μ}2/2σ 2).
Example 4) A final example used in this book the is uniform distribution, ρ = 1/n

for n discrete values or ρ = 1/{b − a} on the interval [a, b].

3) One can furthermore view a collection of random variables RR as a random
vector.

The above notions of independence, expectation, variance and statistic general-
ize throughout this Appendix and Appendix T. Variance becomes the co-variance
matrix with components

Cov(RR,RR′) := E(RR − E(RR))E(RR′ − E(RR′)).
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Thus

Cov(RR,RR) = Var(RR) (no sum).

In case 3), it is also common to consider random vectors consisting of independent
identically distributed random variables. Joint probability distributions are for two
or more random variables considered together, e.g. for Prob(R1 = r1 and R2 = r2).
See e.g. [391] for further reading about this Sec’s material.

P.2 Measure Theory∗

A measure [207] is a map μ : s → R such that

μ.1) μ(∅) = 0 (the measure of nothing is zero).
μ.2) μ(

⋃
A YA) =∑AμA(YA) for A countable and the subsets YA pairwise disjoint

(countable additivity).

A measure is normalizable if μ(s) is finite for s the whole of the underlying
space in question.

Example 1) The Lebesgue measure (after mathematician Henri Lebesgue) gives a
general theory of integration; in this book, however, we only make detailed use of
various more specific subcases. The Lp spaces—with norm

μf := ‖f ‖Lp =
{∫

|f p(x)|dx
}1/p

(P.1)

—are measurable spaces; these are also (Exercise!) Banach spaces and the L2 case
is additionally a Hilbert space.

Example 2) The Haar measure [207] is a g-invariant Borel measures for s a com-
pact topological group g. This permits explicit computational integration over g.
For instance, the compact Lie group counterpart of (A.2) is

∫

g∈g
DgO

/∫

g∈g
Dg. (P.2)

Example 3) A measure ν is absolutely continuous with respect to a second measure
μ if ν(X) = 0 for each set X with μ(X) = 0. This requires μ to be a positive
measure, but is independent of which type of measure ν is. These are furthermore
related by

ν =
∫

X

R dμ:

the Radon–Nikodym Theorem. Within this, R plays the role of a derivative: the
Radon–Nikodym derivative [207]; compare the usual Fundamental Theorem of
Calculus.
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Example 4) Probability measures are considered in Appendix P.3.
Example 5) The theory of cylindrical measures [207] is suitable on the locally con-

vex topological vector spaces outlined in Appendix H.2. This is e.g. often applied
to more rigorous accounts of loop spaces.

P.3 More Advanced Formulation of Probability∗

The great mathematician Andrey Kolmogorov subsequently axiomatized Probabil-
ity Theory as follows.

Kolmogorov 1) Prob(E) ∈ R0 ∀ E ∈ � (positivity).
Kolmogorov 2) Prob(�) = 1 (normalization: the sample space is all).
Kolmogorov 3) Prob(

∐
E EE) =

∑
E Prob(EE) for E countable (countable additiv-

ity).

These turn out to suffice: E1 ⊆ E2 ⇒ Prob(E1) ≤ Prob(E2), Prob(∅) = 0, and
0 ≤ Prob(E) ≤ 1 are then corollaries (Exercise!).

Kolmogorov also formally extended the notion of sample space � to probabil-
ity space (�,C,p) for C a collection of events and p : C → [0,1] a probability-
assigning map E  → Prob(E).

The notion of σ -algebra, σ , arises as a standard answer to the question of what
constitutes a suitable collection C for use in Probability Theory. This obeys

σ -1) � ∈ σ .
σ -2) If E ∈ σ , then its complement Ec ∈ σ as well (closure under complementa-

tion).
σ -3) For {EE,E countable} a sequence of elements ∈ σ , then

⋃
E EE ∈ σ (closure

under countable unions).

Useful comparison of the Kolmogorov and σ axioms is as follows. Firstly, both
require � itself to be the entity to which probabilities can be assigned. Secondly,
σ -algebra 2) is implicit in Kolmogorov II) and III). Thirdly, Kolmogorov 3)’s count-
able additivity is indeed also known as σ -additivity; σ -algebra 3) matches this for
countability but not for disjointness.

For C any collection of subsets of �, ∩ {all σ -algebras containing C} gives the
smallest σ -algebra containing C, and is known as the σ -algebra generated by C.
The Borel σ -algebra σ (�) is the σ -algebra generated by the set of open subsets of
� [207]. The elements of this algebra are called Borel subsets; in outline, these are
the sets arrived at by repeatedly applying countable unions and intersections.

A probability measure is a measure as befits the necessities of modelling Proba-
bility Theory: μ : σ (�) → [0,1] of Probability Theory, and it is a normalized con-
struct. More specifically, a suitable probability map p is provided by the notion of
Borel probability measure μ : σ (�) → R. Such Borel measures are a subcase of
Lebesgue measures; given a σ -algebra σ (�), Y ⊆ � is measurable if Y ∈ σ (�).
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Finally, suppose that (�,σ ,p) is a probability space and (s,σ ′) is a measurable
space for s some equipped set and σ ′ another σ -algebra. Then an s-valued stochas-
tic process is an s-valued random variable on � that is indexed by a totally ordered
set dubbed ‘time’. [In conventionally studied cases, this is a parameter, Newtonian,
background time notion and can be either continuous or discrete.] Markov chains
[391] are a simple case of this, which is memoryless in the sense of st depending
only on the immediately preceding value of t , i.e. on the value taken by that state
one time-step previously. Poisson processes [391] are a particular continuous-t sub-
case of this which count occurrences from an underlying exponential distribution;
the resulting probability distribution is distributed Poisson. See e.g. [531] for further
reading about this Sec’s topics.

P.4 Distributions (in the Sense of Functional Analysis)∗

A function which is zero outside of some compact set is said to have compact sup-
port. One can subsequently consider the space of smooth functions with compact
support, c∞

0 The space of distributions is then the dual of the space of smooth func-
tions with compact support. Distributions make good mathematical sense when put
under an integral sign after being multiplied by test functions. Applications of this
notion of distribution include placing the Dirac δ-function on a rigorous footing,
and use of distributional solutions to PDEs; also measures are a type of distribution.
See e.g. [207] for further reading on this topic.

P.5 Further Useful Function Spaces∗

For each of the two types of PDE problem discussed in Appendix O.4, there is a
useful subcase of Banach spaces.

Hölder spaces (after mathematician Otto Hölder) ck,α consist of the following
[732]. A function f is Hölder if there are constants c and 0< α < 1 such that the
bound

‖f (x)− f (y)‖ ≤ C ‖x − y‖α

holds for any points x, y that the function acts upon (so if α = 1, f is Lipschitz).
The corresponding Hölder norm on an open set U is then

‖f ‖ck,α := sup
x∈U

‖f (x)‖ + sup
x,y∈U,x �=y

(‖f (x) − f (y)‖/‖x − y‖α); (P.3)

the k here is as in ck . Hölder spaces are well-suited to elliptic PDEs [220].
Sobolev spaces (after mathematician Sergei Sobolev) [204, 206, 207, 440, 460,

557, 732, 874] bear some similarity to Lp spaces, but are now built out of the
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Sobolev norm which involves up to kth derivatives1 as well:

‖f ‖Hk,p :=
∑

|i|≤k
‖∂(i)f ‖Lp . (P.4)

Furthermore the p = 2 case Hk := Hk,2 are Hilbert spaces (Exercise!). Unlike for
ck spaces, Sobolev spaces are set up specifically for PDE Theory (derivative terms
now lie within the common function space).

Sobolev spaces are well-suited for hyperbolic PDEs. This can already be en-
visaged from a simple example such as the flat spacetime Klein–Gordon equa-
tion [874]. Consider the values of the scalar field φ and its first derivatives on
S2 = D+(S1) ∩ �2, for D+ the future domain of dependence. Then using the con-
struction in Fig. 8.5.b), Gauss’ (divergence) Theorem and energy–momentum con-
servation, ∫

S1

Tμν t
μtνdS1 +

∫

E
Tμνn

μtνdE =
∫

S2

Tμν t
μtνdS2, (P.5)

for nμ the future-directed normal to S2 and E the ‘side edges’. Moreover, the second
term ≥ 0 provided that the matter obeys the dominant energy condition: [874]

−Tμνu
ν is a future-directed timelike or null vector ∀ future-directed timelike uμ

(P.6)
and that tμ is timelike. The definition of the energy-momentum-stress tensor then
gives that, for scalar field matter φ,

∫

S2

{
φ̇2 + {∂φ}2 +m2φ2

}
dS2 ≤

∫

S1

{
φ̇2 + {∂φ}2 + m2φ2

}
dS1. (P.7)

Since each integrand is the sum of squares (which are necessarily positive), this
means that control over the data on S1 gives control of the solution on S2. The idea
of a Sobolev norm is then a generalization of these last two ‘energy’ integrals to a
wider range of energy estimates [204].

Finally, as regards e.g. GR applications or quantizing curved configuration
spaces, note that both Hölder and Sobolev spaces can indeed also be defined on
manifolds [207, 732].

1These are meant in a distributional sense to ensure completeness is maintained.



Appendix Q
Statistical Mechanics (SM), Information,
Correlation

This and the next Appendix support in particular this book’s Timeless Approaches.

Q.1 Thermodynamics

Physical systems with complicated microphysics are none the less observed to admit
approximate macroscopic descriptions in terms of a very small number of classical
state variables.

Let us distinguish between two types of energy transfer: work w done on a sub-
system, which involves directed ordered motion, versus heat q exchanged between a
subsystem and its surroundings, which involves random ‘thermal’ motion. Temper-
ature T is a quantifier of thermal motion; an idealized limiting case of no thermal
motion corresponding to an absolute zero temperature. Two physical subsystems are
in thermal equilibrium if heat exchange between them is possible but there is none
overall. The Zeroth Law (of Thermodynamics) is that

‘in thermal equilibrium with’ is a transitive relation on physical subsystems.
(Q.1)

[For comparison with the Zeroth Law of black holes, that corresponds to the some-
what distinct formulation of T being constant throughout a body in thermal equilib-
rium.]

Temperature T is itself an example of a state variable; in the case of a gas, other
examples are its pressure P and the volume V it occupies. P and T are furthermore
intensive quantities, i.e. ones which do not depend on the amount of matter under
consideration (provided that this amount suffices for the approximate macroscopic
description to apply in the first place). This is as opposed to extensive quantities,
which are proportional to the amount of matter, such as V .

Next, the First Law is that

dU =� dw+ � dq. (Q.2)
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Fig. Q.1 Thermodynamics’
Legendre square, all four
corners of which are
well-known

I.e. the change in internal energy U is the result of the work w done on the sub-
system and the heat q exchanged by the system; U is another example of an exten-
sive quantity. Also here � d denotes inexact differential which acts on path-dependent
functions, as opposed to d’s exact differential which acts on state functions.

Entropy S is another state function [e.g. S can be regarded as S(V,T ) for a gas];
this enables assessment of which states are spontaneously accessible from which
others. A first historical definition of entropy follows from dS =� dq/T for idealized
reversible physical processes. The Second Law is that entropy is observed to obey

S ≥ 0 (Q.3)

for all physical processes which are sufficiently macroscopic for entropy to be a
meaningful notion. At least in simple cases, S is additive upon considering subsys-
tems together (so it is also extensive in these cases). However, in systems involving
long-range correlations, entropy can acquire either or both of non-additive and non-
extensive character. Gravitational interactions in general, and black hole entropy
(7.16) par excellence, are examples of the latter. See e.g. [879] for notions of en-
tropy in general alongside careful detail of what properties these have.

One can furthermore conceive of U as the state function whose dependence is
U(S,V ). The dependence can be reorganized to involve any two of P,V,T ,S. Do-
ing this consistently involves making use of Legendre transformations, leading to
the further conceptually and computationally useful state functions (Fig. Q.1): en-
thalpy H(S,P ) := U +PV , Gibbs function (after mathematician J. Willard Gibbs)
G(T ,P ) := H − T S and Helmholtz free energy (after mathematician Hermann von
Helmholtz) F(T ,V ) := U − T S.

Finally, the Third Law is that

absolute zero is not attainable by any finite series of procedures. (Q.4)

Q.2 Thermodynamics for GR More Generally∗

The Black Hole Mechanics cases of the Laws of Thermodynamics are outlined
in Sect. 7.3). However, there are difficulties with defining gravitational entropy in
general—rather than just black hole—situations, with the cosmological setting be-
ing of particular interest.

One approach to more general gravitational information candidates bases these
on the Weyl tensor F[Cμνρσ ] [704]. Monotonicity has caused problems with some
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such. However, the expression [212] in terms of the Bel–Robinson tensor (K.16)

Sgrav
PL :=

∫
Tμνρσuμuνuρuσdτ (Q.5)

circumvents this problem, and provides an expression that extends to the cosmolog-
ical context. Moreover, Sect. Q.7 raises two further issues with Weyl tensor based
candidates.

On the other hand, in Holographic Approaches, screens in general spacetime
have been considered as a possible generalization of event horizons as regards asso-
ciation of entropy [164].

Q.3 Spaces of Substates∗

The configuration spaces of Appendices G–H are taken to be for whole-universe
models. However in Physics one usually deals with subconfigurations that corre-
spond to subsystems; these are furthermore the primary objects in Records Theory.

For example, subconfigurations of RPMs are not necessarily themselves RPM
configurations, e.g. through their carrying a net angular momentum or mutually ex-
changeable energy. Archetypes of this are the base subsystem of a triangleland or
the base alongside the relative angle. Naturally subconfigurations form subconfigu-
ration spaces Subq; subphase space follows suit.

Q.4 Imperfect Knowledge of a (Sub)system∗

Two distinct notions of imperfect knowledge of a (sub)system in use in this book
are as follows.

1) Imperfect knowledge of the system’s state. This can be modelled using localized
subsets of a given q.

2) Imperfect knowledge of the system’s contents, which could be incorporated by
modelling by a union of configuration spaces. Alternatively, one might make use
of a space that all the configuration spaces sit in and then use a map M : q −→
Subq.

In this setting, the other hitherto ignored coordinates may become relevant in
some regions: Fig. Q.2. This is through these other coordinates entering the notion
of localization itself. E.g. consider the base of the triangle as a localized subsystem.
One notion of localized here is for the apex to have to be outside of the circle of reg-
ularity (i.e. with partial moments of inertia obeying Imedian > Ibase). In considering
this, one passes from being (in q) on any open half-line emanating from the triple
collision to being on any such which lies within the D-hemisphere. So in this exam-
ple, one passes from the mathematics of the Dirac string to that of the Iwai string
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Fig. Q.2 A meaning in space for a) Kendall’s [539] ε-blunt notion of collinearity. In fact, Kendall
considered the min for this over all choices of construction, whereas the Author’s notion b) of
ε-collinear adapted to the dynamically useful relative Jacobi coordinates [37]. c) A notion of
ε-equilateral [37], for which each vertex is to lie within a shaded disc of radius ε

(Sect. 37.3) Finally, note that ‘subspaces of configuration space’ is not necessar-
ily meant here in any particular mathematical sense. They are physically desirable
entities to study but are not necessarily mathematically nice.

Q.5 Classical Statistical Mechanics (SM)

It is well-known that there is a Probability and Statistics basis for Thermal Physics;
to some extent, this can be contemplated at the classical level.1 SM is valuable
due to further explaining the nature of macroscopic state variables, and for deriving
equations of state and thermodynamical laws.

Firstly, the relation

E ∼ kBT (Q.6)

gives a rough measure of thermal energy per active mode; the average such is
kBT /2; in some physical regimes, some modes are not however active. Here kB

is Boltzmann’s constant, after noted physicist Ludwig Boltzmann. While originally
arising in modelling of ideal gases, E/kBT turns out to be a common grouping in
Physics, in the form of Boltzmann factors

exp(‘E’/kBT ) (Q.7)

for various notions of ‘E’ which have the dimensions of energy.
A second key idea is that of underlying microstates. For now, these are in terms

of classical phase space regions. The number of microstates W is to be evaluated
combinatorially in the discrete case or taken to be proportional to the phase space
volume in the continuous case.

In the case of phase space, a pivotal role is played by the ergodic hypothesis
that the system passes through all of its states that are compatible with thermody-
namic equilibrium. Coarse-graining (see the next Sec) is subsequently a means of
introducing statistical machinery into Ergodic Theory.

1Once QM becomes available—historically in part due to the failings of classical SM prompting
its development—one can carefully determine the extent of applicability of classical SM rather
than quantum SM.
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Approaching the modelling of SM via ensembles—not the actual system but
rather a group of similar systems which have been suitably randomized—rests on
the ergodic hypothesis. The most commonly encountered ensembles are canonical
ensembles. These involve species number N being fixed and energy E being free.2

They lead to the simplest version of the thermodynamical laws. On the other hand,
grand ensembles involve both N and E being free. These are of practical use in
Chemistry since chemical reactions in general do not conserve N , as is reflected
by the extra pieces entering the ensuing thermodynamical laws including a ‘chem-
ical potential’ μ. Moreover, in more fundamental physics (for which N is more
specifically particle number), grand ensembles are useful as regards handling each
of bosons and fermions. Microcanonical ensembles are the opposite intermediate
stage: now both N and E are fixed. This ensemble is commonly used in Black Hole
Physics.

Ensembles provide the constraints involved in extremization of entropy, result-
ing in the corresponding partition functions. Statistical Mechanics is formulated in
terms of partition functions for the physical states. These turn out to be built from
exponentials; for now in the classical context, these are of the form (Q.7). In this
way, this construct generalizes the appearance of ‘Boltzmann factors’ in a number
of physical situations, and also has close ties to the Maxwell–Boltzmann statistics of
widespread use in Classical Physics. One can then insert the classical Hamiltonian
of the system in question into (Q.7) in order to carry out specific calculations.

Classical SM has classical probability distribution function on phase space; each
type of ensemble has its own kind of probability distribution function [781].

The usual classical notion of probability density function ρ plays a substantial
part in classical SM. Note moreover that the algebraic structure of classical uncon-
strained observables U(Q,P) is additionally the space on which such probability
density functions live. Finally, the Wigner functional Wig[Q,P] (cf. Sect. 48.2) is
a close analogue of such densities which arises in the semiclassical context.

Q.6 Fine- and Coarse-Graining

In Physics, grainings are principally known in the context of Statistical Mechanics;
in the classical case, these are phase space grainings. Moreover, we start with a
rather more widely applicable mathematical formulation of grainings. Let U 3 V

denote ‘U is finer-grained than V’ and V 7 U for ‘V is a coarser-grained than U’;
these are ordering relations. The coarsest graining is then the whole mathematical
space itself. On the other hand, the finest graining consists of the individual points
that constitute the mathematical space. A more specific partition-based theory of
grainings is along the following lines.

2‘Free’ here means ‘free to fluctuate about equilibrium’, which still means that the average value
of the quantity is fixed.
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Graining 1) Refine partitions from Y to Z so that each YY partition is a subset of a
ZZ one.

Graining 2) A common refinement WW of two partitions YY and ZZ is concurrently
a refinement of both individually.

Graining 3) Moreover, a product of two partitions can be defined in which the new
elements are all of the intersections of the two input partitions.

Note that the finest graining’s knowledge is attainable in principle, if not in prac-
tice, at the classical level: perfect knowledge of state is classically permissible. It
is also clear from the mathematical version of the graining concept that there is a
configuration space level version of graining as well.

Example 1) Replace a set of particles by just the coordinates of their centre of mass.
Example 2) Replace a set of field values in a region by a mean field value for that

region.
Example 3) Replace a set of shape variables by an averaged shape variable. As a

first case, replace an N -body configuration by the M-body configuration formed
by M < N cluster centres of masses, and then consider shape variables for the
M-body configuration rather than the N -body one. As a second case, replace di-
agonal Minisuperspace GR’s two anisotropy parameters by their average value.
As a third case, one might define a local inhomogeneity averaging operation that
approximates complicated lumps by simple ones, or multiple lumps by single ones.

Examples 1) and 3) involve notions of large scale approximate shape. All of
the above are examples of coarse-grainings of subsystem contents, which involves
passing from the configuration space of the precise configuration to a distinct con-
figuration space for an approximate configuration. This is known as collectivization.
Another type of coarse-graining involves replacing a point in the space by a cell in
the same space, due to only knowing a state’s value approximately. Appendices G,
H and N’s q geometry considerations cause it to be straightforward to consider re-
gions within q for the spatially 1- or 2-d case of Example 1), for Example 2), and
for Example 3) in the modewise perturbative case.

As regards the phase space case which underlies classical SM, coarse-graining
here is usually considered in the sense of a cellular approximation.

Example 4) In the case of the continuous phase space of a finite system, the coarse-
grained density is given by

ρn =
∫

cell
ρ(p,q)dnpdnq

/
W(cell), (Q.8)

where W counts up the for now classical microstates in the cell.
Example 5) The graining concept furthermore extends to Histories Theory as well,

as per Chap. 28.

Finally, note that the current Section’s examples consider graining at the met-
ric and differentiable manifold levels of structure. However, the given mathematical
conceptualization clearly transcends to deeper levels of structure, for which Ap-
pendix T provides a number of examples.
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Q.7 Classical Microscopic Notions of Entropy

While one can make useful calculations based on Appendix Q.1’s notion, it took
a further conceptual leap of Boltzmann’s to understand the microscopic nature of
entropy.

S = kBlnW (Q.9)

for W the number of microstates (i.e. of arrangements of the constituent objects)
giving a more primitive combinatorial basis for the entropy concept.

One can subsequently recover entropy from the partition function:

S =
(
∂kBT logZ

∂T

)

V

.

Many further expressions for notions of entropy are based on the

x logx (Q.10)

function, which arises from maximizing the form (Q.9) of S subject to the cor-
responding (e.g. canonical) ensemble’s constraints. This is through the microstate
count giving factorials to which Stirling’s approximation can be applied. This
x log x function is, moreover, the positive continuous function that is consistent
with regraining, monotonicity, and further useful properties for a notion of entropy
to have, as exposited in the reviews [221, 879].

Finally, having made these Statistical Mechanics level considerations about no-
tions of entropy, let us caution that entropy candidates for GR in terms of the Weyl
tensor bear no known relation to microstate counting arguments or to consistency
under regraining.

Q.8 Classical Notions of Information∗

One approach to classical information is (see e.g. [129]) that information I is negen-
tropy I = −S, so that an incipient classical notion is the Boltzmann-type expression

IB = −logW. (Q.11)

Shannon information (after mathematician Claude Shannon) is likewise related to
(Q.10)

IShannon(px) =
∑
x

px logpx (discrete case),

IShannon [ρ] =
∫

dV ρ log ρ (continuous case)

(Q.12)
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for px and ρ discrete and continuous probability distributions respectively. This
expression arises from (Q.11) by use of (e.g. in the discrete case) ai/

∑
ai = pi as

partial contents and then applying Stirling’s approximation.
Mutual information is defined by (in the portmanteau case)

MShannon [A,B] = IShannon [A] + IShannon [B] − IShannon [AB] (Q.13)

for probability distributions A, B , and AB their joint distribution. Note the parallel
with elementary set theory’s ‘union = sum - intersection’ relation. Relative informa-
tion is a conceptually-similar quantity given by

Irelative [p,q] =
∑
x

px log (px/qx) (discrete case),

Irelative [ρ1,ρ2 ] =
∫

dV ρ1 log (ρ1/ρ2) (continuous case).

(Q.14)

This introduced, mutual information can be cast as a relative information, now be-
tween a joint probability distribution and the product of the corresponding marginal
distributions.

Aside from connotations of the subsystems or perspectival notion of relational, if
mutual and relative notions of information are built out of r-formulation objects, they
are automatically Configurationally Relational (and timeless). But, as ever, this is a
luxury that one cannot afford in the case of GR itself. The more general alternative
is to consider g-act, g-all versions of these objects.

Q.9 Classical Notions of Correlation∗

Again these can be set up for both discrete and continuous cases; these occur in
many branches of Mathematics and Physics.

Example 1) The most basic notion from Statistics is

Pearson’s correlation coefficient ρP := Cov(X,Y )/σXσY , (Q.15)

in 2-d for random variables X, Y . Assessing this relationally, it is scale-invariant
and invariant under exchange of dependent and independent variable status of the
X and Y ; it is not rotationally invariant. Indeed, it is very well-known that the
upward and downward pointing lines have the opposite extremes of ρP.

Example 2) One resolution of this in terms of basic rotational invariants is exem-
plified by

ρRel = 2

√
1 − ρ2

P

ω +ω−1
for ω := σX

σY
. (Q.16)
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The bar notation here means ‘not’, since perfect correlation returns the value 0 and
not 1, so this quantity is an ‘uncorrelation coefficient’. Finally, in terms of the basis
of shape quantities in the simplest relationally nontrivial case of a triangle [33],

ρRel ∝ area/{1 − aniso}. (Q.17)

Examples 3) and 4) ρP is also more standardly known to be limited through only
capturing correlations that approximate a straight line. One can e.g. use [534]
Spearman’s, or Kendall’s τ , rank correlation coefficients to detect non-linear cor-
relations (after statisticians Charles Spearman and Maurice Kendall). Rank corre-
lation tests statistics immediately fail to be rotationally relational, since any two
data points can be rotated into a tie.

Example 5) Mutual information (Q.13) also serves as a notion of correlation, but
one which is in sore need of an n-object extension so as to be able to address
most problems. That straightforwardly gives the total correlation and dual total
correlation for any n > 2.

Example 6) The n-point function correlators which are well-known to occur in
physical Field Theories such as classical Cosmology and QFT. These are Green’s
functions corresponding to instantaneous operators such as the spatial parts of
wave operators. Some such quantities can readily come with [269] translational
and rotational invariance directly built in through depending only on |x−x′ |. Occa-
sionally they also involve taking the dot product with an arbitrary-direction vector
and then integrating over all directions, which is another g-act, g-all manoeuvre.
For now, we restrict attention to the classical case (see Chap. U.5 for quantum
counterparts). For instance, Classical Cosmology has a 2-point function for such
as mass density or galaxy number density [215]. This takes the form of a function
of inter-particle separation magnitudes.

Example 7) We end by noting that, in the full GR setting, physicist Roustam Za-
laletdinov proposed a type of correlation tensor—a comparer—for the study of
inhomogeneity [926, 927].
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Stochastic Geometry∗

Now let the sample space � (Appendix P.1) be a manifold M.1 M is furthermore
taken to carry a σ -algebra (Appendix P.3) of Borel subsets Bo, which is gener-
ated by the open subsets on M. A statistic on a p-d differentiable manifold M is a
function θ : � → M such that

θ−1(U) = {ω ∈ � | θ(ω) ∈ U} is an event for every open set U ⊆ M . (R.1)

Statistics thereupon are random p-vectors; a given statistic θ induces a probability
distribution Prob θ−1 according to Prob θ−1(Bo) = Prob (θ−1(Bo)).

R.1 Metric Shape Statistics

Now let the geometry in question a fortiori be a shape space corresponding to a
metric Shape Theory. This provides techniques for addressing a wider range of geo-
metrical hypotheses concerning detailed patterns in point data sets upon, most usu-
ally, Rd .

Example 1) Clumping Statistics investigates hypotheses concerning ratios of rela-
tive separations (detailed information which can be attributed both locally and to
subsystems). These already exist in 1-d and in settings simpler than metric shape
spaces, so this topic is well-known. Astrophysical applications include tight bi-
nary stars, globular clusters, galaxies and voids: and absence of clumping. E.g.
Applied Mathematician Stanley Roach [738] provided a discrete statistical study

1This is one of the senses in which ‘Geometrical Probability’ is used in the literature [539, 792].
See the first of these for an accessible introduction to probability on manifolds, including for this
setting’s notions of independence, expectation, uniform and normal distributions, and binomial and
Poisson processes. If you encounter unfamiliar material beyond the scope of Appendix P.1 in the
first of these, consult [90]. The second of these is a more advanced reference of particular relevance
to the current book.
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of clumping; this can in turn be interpreted in terms of coarse-grainings of RPM
configurations. Geometrical Probability on the shape space s(N,1) = S

n−1 is an
alternative [878] to this.

Example 2) For spatial dimension ≥ 2, the degrees of freedom include relative an-
gles as well as ratios of relative separations. Now hypotheses concerning relative
angle information can be made as well. In particular, angular patterns in 2-d—
i.e. in N -a-gon constellations—are both nontrivial and mathematically accessible.
Spatially 2-d case of metric shape geometry are more straightforward due to not
being stratified, as per Appendix G. Among these, the minimal relationally nontriv-
ial case concerns alignment in threes; this enters for instance the standing stones
and quasar alignment problems outlined in Chap. 26. Such techniques were pio-
neered in particular by Kendall and collaborators such as Dennis Barden, Keith
Carne, Huiling Le and Christopher Small; see [536, 537, 539, 792] for reviews.2

One is here addressing whether there are a statistically significant number of almost
collinear triangles quantified by some (bluntness angle) < ε ∈ R+ (Fig. Q.2.a).
One then uses probability distributions based on the corresponding shape space
geometry (i.e. on Kendall’s spherical blackboard in the case of probing in threes.
Making use of Borel subsets, Haar measures and Radon–Nikodym derivatives (all
defined in Appendix P.1), it can be shown that in 2-d N independent identically
distributed isotropic Gaussian distributions induce a measure on shape space which
coincides with the uniform measure [536]. Most neatly in Appendix G.2’s complex
presentation of shape coordinates, one obtains a probability measure [539]

dω(N,2) = {N − 2}!
πN−2

∏N−2
j=1 dZj

1 +∑N−2
i=1 |Zi |2

. (R.2)

In the minimal relationally nontrivial case of the triangle, this reduces to

dω(3,2) = 1

π

dZ

1 + |Z|2
, (R.3)

i.e. proportional to the ‘square root’ of the metric ( G.11). See e.g. [536, 539, 792]
for further cases.

Furthermore, how good a ‘best fit’—such as given by Best Matching—is can
also be assessed by Shape Statistics. This is by making a set of relational objects out
of primed and unprimed vertices (Fig. Q.2.d), to which the corresponding notion of
Shape Statistics is to be applied. In the case of metric shapes, this produces triangles
that can be tested against the ε-bluntness criterion.

Finally, we outline in [36] how the above Metric Shape Statistics is but the first
of a larger family, each corresponding to a distinct notion of shape as per Fig. G.4.

2Kendall’s work is a solution to Broadbent’s [172] previously posing the standing stones problem
as one to be addressed by some kind of Geometrical Statistics. Kendall also generalized this to
probing in more than threes [536].
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R.2 Stratified Manifold Version∗∗

Stochastic Geometry on stratified manifolds is already required for finite theories of
Mechanics as per Appendix G. [539] covers an example of this (the Shape Space of
tetrahaedrons). Note that assigning the open sets to be Borel subsets Bo does not
require these to be modelled on R

p or for the manifold to carry a metric. The same
applies to the definition of statistic.

What about ‘large’ Shape Statistics on GR’s superspace(�), Cs(�) and {Cs +
V}(�)? In fact, infinite dimensionality is not a concern: stochastical treatment of
Banach spaces and Fréchet spaces are known [388, 864, 865, 892], including for
Fréchet spaces of the more specific type used to model superspace(�). However,
we are not aware of this being extended to Banach or Fréchet manifolds much less to
a suitable class of Fréchet stratified manifolds. This is one obstacle which keeps us
far from having stochastic and statistical treatments of superspace(�) and Cs(�)
(Research Project 18).

Research Project 120)† Give a stochastic and statistical treatment of gauge group
orbit spaces O, as a model arena with a simpler counterpart of this obstacle.

It is additionally likely that ‘large’ configuration spaces’ statistics will possess a
Measure Problem.

Research Project 121)† This gives one reason why investigation of ‘medium-sized’
examples—Midisuperspaces—are likely to be useful stepping-stones. Moreover,
stochastic and statistical theories for the models of anisotropy and modewise small
inhomogeneity considered in this book are flat and so are too simple to require
Stochastic Geometry. One might next turn to analytically tractable Midisuper-
spaces in this regard.



Appendix S
Deeper Levels. i. Generalized Configuration
Spaces∗∗

This and the next Appendix support in particular this book’s Epilogues II.C and
III.C about Background Independence at deeper levels of mathematical structure
and consequent Problem of Time issues.

S.1 Spaces of Differentiable Structures

The amount of differentiability involved turns out to be inconsequential. This is
because the configurations in question are spatially 3-d , and differentiable structure
on a given topological manifold is unique for dimension d ≤ 3. [In contrast, see
e.g. [614, 674] for the interesting dimensional sensitivity exhibited by the theory of
differentiable structures for d ≥ 4.]

S.2 Spaces of Topological Manifolds

In standard GR, one firstly assumes a fixed spacetime topological manifold
(Chap. 7). This is a major restriction on possible spacetime-level solutions. In Ge-
ometrodynamics (Chap. 8), one furthermore assumes a fixed � × R. Some com-
monly used further restrictions are as follows.

i) A fixed spatial dimension.
ii) The orientable �.

iii) The connected � [350, 351].
iv) The compact without boundary � [350, 351].
v) Whether the singular spaces are to be included or left out. If these are included,

the basic differential geometric notion of chart ceases to suffice to cover all
purposes.

The idea of removing such assumptions first appeared in Wheeler’s considerations
of ‘spacetime foam’ [896, 897, 899]. This was motivated from the form of the Feyn-
man path integral formulation: i.e. whether Feynman diagrams could be generalized
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Fig. S.1 a) and b) are examples of cobordisms. c) Depiction of which configurations are ‘near’
which others in BigRiem in the simple case of 2-d orientable compact without boundary �. g is
genus and p is ‘pinch number’. d) An open universe that looks closed, built by use of one of
Hawking’s tubes of negligible action, whose aperture l is smaller than the probeable wavelength λ.
[This begs the further question of whether such tubes are dynamically stable.] e) A closed universe
that looks open, due to its characteristic size lUni greatly exceeding its Hubble radius lH

to topology change diagrams. Geroch’s Theorem [346] (after mathematical physicist
Robert Geroch) then requires choosing between Scylla and Charybdis: singularities
or a loss of causality. This result makes use of a combination of mathematics pi-
oneered by Thom and another noted mathematician, John Milnor: singular metric
geometries, cobordisms and Morse Theory. At the classical level, one often chooses
to keep causality and thus allows for the inclusion of singular metrics.

�1 and �2 are cobordant if there exists a M of dimension one greater which
interpolates between them (Fig. S.1.a–b). One can view the piece in between as
� × [0,1] with some parameter λ ranging over [0,1]. This can be viewed as a gT-
act gT-all procedure. To be clear, the gT group is not a group of the conceptually
simpler kinds that occur in Topology—homotopy, homology or cohomology: char-
acterizers of topology. It is, rather, a cobordism group of topology-altering ‘ripping’
operations. For instance, Surgery Theory [876] involves such operations.

In the single-floor case—considering the topological level alone—Top-Man is
the space of �’s themselves. This is possibly subject to some restrictions from a
menu such as being of a particular dimension, orientable, compact, connected. This
supports e.g. the dynamics of a theory with just TFT degrees of freedom.

On the other hand, in the tower case—keeping the upper levels as well—one
has ‘Geometrodynamics with topology change’. Here the topological manifolds are
equipped with differentiable and metric structure. However, this is still dynamically
sterile through not providing suitable intermediates, which lie, rather, in Riem(�)
where � is now allowed to be singular. One gets around this by adjoining pinched



S.3 Spaces of Metric Spaces 823

manifolds also: a mild case of singularness. We then have (one notion of) BigRiem
(Fig. S.1), Bigsuperspace [301] etc, on the set of ordinary and pinched �. An
example of this is a geometrodynamics that is additionally a topolodynamics in
the sense of admitting changes in topological manifold. These considerations are
built upon the following considerations of Fischer [301]. “Nevertheless, it is hoped
that the complete Superspace of all possible topologies can be pieced together from
the individual superspaces, so that quantum fluctuations in the topology can be
described. This I believe will be possible only after a great deal is known about the
individual superspaces.” He then added that “In such a program, pinched manifolds
will play the crucial intermediary role in the topology change.”

Model Arena 1) for 2-d orientable closed without boundary manifolds, cobor-
disms are generated by the genus-changing operation of ‘adding handles’ (Fig. S.1).
In the simplest case, this reduces to S’s indexing set being just over the discrete
genus parameter. The next simplest involves indexing over the number of pinch-
ings as well. Consider furthermore just the spheres, tori and the pinched spheres
that lie between these. This requires studying the counterparts of Riem(�) and
superspace(�) for the pinched spheres, and then the BigRiem and Bigsuperspace
on the three topologies in question.

Epilogue III.C considers two further model arenas: variable-N RPMs and TFTs.
As regards being more precise how singular these pinched spacetimes need to

be, Morse spacetimes [161] are a nicely tame example. Morse Theory encodes these
metrics singularness by a Morse function: f : m → [0,1] with f−1(0) = �1 and
f−1(1) = �2 and r critical points in the interior of m. These are isolated and non-
degenerate for f a Morse function. So in this case one is more specifically interested
in e.g. BigRiem and Bigsuperspace restricted to Morse function type singulari-
ties. Moreover, Sect. 60.1’s TFT example further resembles topology change in GR
through its also being linked to Morse Theory.

By Fig. S.1.d)–e), papers nominally concerning ‘the topology of the Universe’
[219, 597, 618] are really about a large scale approximate notion of topological
manifolds that has not necessarily yet been quantified. I.e. some means by which
topological manifolds themselves has been equipped with a coarsened length con-
cept. Then handles and tubes which are ‘large’—with respect to the probing capacity
of the observers—‘count’, and small ones do not. On some occasions, global effects
can serve to discern which universe one is in, though this should not be expected
to always be the case. Finally note that spectral notions of distance between metric
geometries (Appendix N.8) extend to cases involving comparison between metrics
on distinct underlying topological manifolds.

S.3 Spaces of Metric Spaces

In the single-floor case [508, 509], for Y1 and Y2 subsets of a metric space
〈X,Dist〉, the Hausdorff distance DistH(Y1,Y2) is

max
(

sup
y1 ∈Y1

(
inf
y2 ∈Y2

(
Dist(y1, y2)

))
, sup
y2 ∈Y2

(
inf
y1 ∈Y1

(
Dist(y1, y2)

)))
. (S.1)
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The Gromov–Hausdorff distance (named in part after mathematician Mikhail Gro-
mov) between any two compact metric spaces X1 and X2 is then

DistGH(X1,X2) := inf
(
DistH(f1(X1), f2(X2)

)
. (S.2)

This is over all isometric embeddings fi : Xi → X into all metric spaces X. [I.e.
the embeddings cast X1 and X2 into the form of subsets of larger metric spaces
within which the Hausdorff distance notion applies.] This provides an example of
a space of metric spaces which is itself a metric space. Finally note that the above
construction is an example of g-act g-all method.

On the other hand, in the tower case, as regards how the (positive-definite) Rie-
mannian manifolds sit within the metric spaces, each Riemannian metric induces a
metric space metric: the path metric (cf. Sect. D.4)

Dist(x, y) = inf
γ from x to y

∫

γ

√
gμν(x)dxμdxν. (S.3)

Assuming only metric spaces contain physically meaningful information, it is then
an interesting question what dynamics they support.

S.4 Lattices

A number of the further spaces of spaces below are lattices, so we introduce these
in more general terms. A lattice is a poset (Appendix A.1) within which each pair
of elements has a least upper bound and a greatest lower bound. In the context of
a lattice, these are called join ∨ and meet ∧. ∨ and ∧ form an algebra. Each of
these operations is furthermore idempotent, commutative and associative, and the
pair of them obey the absorption conditions a∨ {a∧b} = a and a∧ {a∨b} = a. An
element 1 of L is a unit if ∀ l ∈ L, l 3 1, and an element 0 of L is a null element if
∀ l ∈ L, O 3 l. A lattice that possesses these is termed a bounded lattice. A lattice
morphism is an order-, join- and meet-preserving map between lattices.

Example 0) Fig. A.2.a), c) and d) can be interpreted as lattices. Moreover d) is one
of the minimal-sized nondistributive lattices (Exercise!). Such models are already
often used to illustrate the Causal Sets Approach.

Example 1) The Boolean algebra (after mathematician George Boole) of classical
propositions is a well-known example of a lattice. Here additionally ∨ is distribu-
tive over ∧ and vice versa, there is a greatest element 1 and a least element 0,
identity relations a ∨ 0 = a and a ∧ 1 = a, a not operation ¬, and complement
relations a ∨ ¬a = 1 and a ∧ ¬a = 0.

In fact, the minimal structure required for consideration of propositions is an
orthoalgebra Up [503]. Here, P 3 R iff ∃S ∈ Up such that R = P ∨ S in cases in
which P and S are disjoint, with ∨ not being defined in other cases.
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S.5 Spaces of Subgroups, Topological Spaces and Collections

Example 2) The set of subsets of a fixed finite set X forms a lattice LX under the
ordering ‘is a subset of’. The top and bottom elements here are X and ∅, and the
join is the smallest subspace containing a pair of spaces.

Example 3) The subgroups of a group form a lattice Lg under the ordering ‘is a
subgroup of’. The top and bottom elements here are the whole group g and the
trivial group id, and the join is the subgroup generated by their union. This exam-
ple generalizes to the subalgebraic structures of an algebraic structure, which the
current book uses to model constraints, beables and the selection process under-
lying Kinematical Quantization. Let us denote the lattices in question by Lc and
Lb (exposited in Sect. 24.12).

Example 4) The set of collections Collect(X) of subsets of a fixed finite set X forms
a lattice LC under the ordering ‘is a subcollection of’. The top and bottom ele-
ments here are the power set p(X) and ∅ (the empty collection, not to be confused
with {∅}: the non-empty collection of subsets consisting of the empty set!)

Example 5) The set of topologies Top-space(X) on a fixed finite set X—a special-
ization of the previous to collections of subsets which constitute topologies—is
itself a lattice LT [608, 810] under the ‘is a finer or coarser topology than’ (rela-
tive coarseness) operations. The discrete and indiscrete topologies are the top and
bottom elements of this: the entirety of p(X) and just {∅,X} respectively. This par-
ticular lattice is complete and complemented; [480, 481, 490, 608, 810] list further
properties. Examples 2), 4) and 5) are of further interest as ‘spaces of spaces’ for
some of the sparser levels of mathematical structure.

As regards the tower case, what if all of the topological space and any subse-
quent emergent differentiable, affine, conformal, and metric structure are dynam-
ical? Now, far from all topological spaces support topological manifolds, so one
encounters a problem unless one can consider the structures from here upward as
emergent for certain τ(X). This does however beg the question of what other struc-
tures some topological spaces are capable of supporting. This corresponds to a ma-
jor breakdown here between the sharply characterized tower of Manifold Geometry
and the far wider range of topological spaces and of collections more generally
(Fig. S.2). A dynamical theory of topological spaces might explain whether and
how topological manifolds are prevalent in the set of possible universes as a ‘ze-
roth principles’ theory. After that, one would restrict attention to a Top-Man(X)
first-principles theory.

Further discussion involves various useful classes in the nested array of Fig. S.2.
Note also the modelling disjointness between topological spaces on a finite set

versus manifolds, which are based on infinite sets. None the less, Čech cohomology
based methods can be applied to both sides of this divide.
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Fig. S.2 The collections, and the principal tower of the standard approach. This figure illustrates
by examples that not all cases within a given floor of the tower can be extended up the tower;
Kervaire’s example refers to [547]. Whereas the Hausdorff second-countable locally Euclidean
case just returns the manifolds, their generalization to Hausdorff second-countable topological
spaces is also of interest; LCHS spaces are depicted as well. The main purpose is to highlight
various well-behaved classes of stratified manifolds: the HS stratified manifolds and the LCHS
stratified manifolds. This last case includes a number of physically relevant stratified manifolds,
Kreck’s stratifold construct, Śniatycki’s differential spaces and Kendall’s work on random sets (see
Appendix T.4)

S.6 Spaces of Sets?

In the single-floor case, if sets alone contain physically meaningful information, so
if q is the set of sets, what dynamics do these support?

In the tower case, problems arise since the space of topological spaces becomes
unruly if one tries to define it on the set of sets rather than on a fixed set X. This is
rooted in the set of sets suffering from mathematician Bertrand Russell’s paradox,
limiting the study that far of spaces of space [480, 481]. Yet it is conceivable—if the
Universe is built out of sets—that all of the metric, connection, differentiable struc-
ture, topological manifold, topological space and set are dynamical (or, a fortiori,
undergo quantum fluctuations).

An alternative position, however (Epilogue III.C), is that the approach to set
structure (via collections of subsets)—in which simplifications start to occur—is
itself a type of background structure.
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Deeper Levels. ii. Grainings, Information,
Stochastics and Statistics∗∗

Let use now take the sample space � of Appendix P.1 to be whichever of the deeper
levels of structure’s q, and build stochastic and statistical theories thereupon.

T.1 Grainings

Example 1) A more mathematically general starting point than Appendix Q.6’s in-
volves replacing metric notions of locality with ones based on subset overlaps.
Indeed, Appendix Q.6’s partition refinement is a subcase of subset refinement
based on Appendix A’s ordering by ⊆. Another subcase of note is the condition for
whether two neighbourhoods overlap from Čech cohomology as per Appendix F.3,
which are based on covers. Cover refinement then plays the role of fine-graining.
This admits a further sheaf-theoretic generalization as well.

Example 2) Notions of locality can also be defined on lattices, along the chains,
including on LX, LC and LT. Furthermore, graining of subsets, collections of
subsets and topologies, and for covers thereover, are lattice concepts.

Example 3) Graining of sets can be considered by use of a variety of sizes of sub-
sets.

T.2 Notions of Information or Entropy

Example 1) In the context of topological spaces, information consists of which sub-
sets overlap [2]. This is amenable to using Čech methods, and is further generaliz-
able to Sheaf Methods.

Example 2) Topological entropy or information has been considered on some lat-
tices, though further exploration of this is required in the specific cases ofLX,LC

and LT.
Example 3) Entropy or information is a straightforward notion in the case of for

unstructured sets, and consequently for X and Coll(X).
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T.3 Stochastic and Statistical Treatment.
i. Topological Manifold Level

Some simpler cases have become familiar in the Theoretical Physics literature,
namely those probing ‘topology of the Universe’ i.e. large-scale shape. In more gen-
eral terms, Smale, Niyogi and Weinberger [681], have worked on stochastic topol-
ogy, making use of random simplicial complexes, covering set intersections, and
(Čech co)homology. This serves to assess the topology of an approximately given
configuration.

Sheaves can indeed be applied to Statistics by being a means of presenting and
handling local data, (see e.g. [739] for a contemporary outline on this).

T.4 ii. Topological Space Level

Example 1) Kendall’s [535] theory of random sets operates within a carrier space
C—taken to be LCHS—which the random set X ‘sits within’. A trapping system
{UT } for X ⊂ C is then a collection of subsets with the following properties.

Trap 1) UT �= ∅,
Trap 2)

⋃
T UT = C, so {UT } are a cover of C.

Trap 3) To each UT one can associate a countable system VS(UT) of subtraps (local
countability).

Trap 4) If x ∈ UT, then x belongs to a C-trap whose UT-closure is covered by UT.

Example 2) One can furthermore contemplate applying this approach to carrier sets
that are half of the stratifold construct’s pairing. Approaches based on Čech coho-
mology descend to this level of structure as well.

Example 3) Since the space of topologies on a finite set is a lattice LT, stochastic
treatment of lattices is also to be considered. Well-known examples of this include
random points on a square lattice [738] and percolation [781]. This renders plausi-
ble a stochastic treatment of LT itself (this is one possible approach to Research
Project 47).

Example 4) See e.g. [268, 697, 892] for stochastic treatment of metric spaces.

T.5 iii. Set and Collection of Subsets Levels

Once again, the case of sets is more mathematically tractable due to the lack of
additional structures.

Research Project 122) Using e.g. that the set of subsets of a finite set X also form a
lattice, LX, consider the following sharper version of part of Research Project 49).
How probable is it for a random collection of subsets to be a topology? Hausdorff?
A cover? A good cover? [In the sense of (F.2).] A basis? A σ -algebra? A trapping
system?



Appendix U
Quantum SM, Information and Correlation∗

This Appendix supports in particular this book’s Timeless Approaches, now at the
quantum level.

U.1 Mixed States

Mixed states are more general than pure states. These can be modelled by [487]
density matrices

ρ =
∑
n

onP̂n

for on = Prob(state is| ψn 〉) and P̂n the corresponding projector, |ψn 〉〈 ψn|.

Prob(A = an in state ρ) = Tr(ρ̂P̂n).

Note that this gives back the pure state case upon using ρ of the form |ψ 〉〈 ψ|.
Density matrices are i) Hermitian, ii) positive semi-definite: 〈 ψ | ρ̂ | ψ 〉 ≥ 0, and iii)
normalized: Tr(ρ) = 1. In fact, density matrices can be taken to be defined by these
properties.

The space of mixed states for a system [130] is much larger than the correspond-
ing spaces of pure states. E.g. the system whose pure states are just an ‘up’ and
‘down’ discrete pair (a ‘qubit’) has a whole S

2’s worth of mixed states. More gen-
erally the qunit has a CP

n−1 of mixed states, complete with a Fubini–Study metric
(G.8), i.e. the extension of the previous sentence upon making the identification
S

2 = CP
1.
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U.2 Quantum Grainings

Some notions of coarse-graining carry over from the classical level due to remaining
defined upon the same classical spaces Subs. However, some other notions are new
through involving quantum state spaces [130].

In contrast to the classical level’s finest graining’s knowledge being attainable in
principle, a quantum-level distinction is that perfect knowledge of states becomes
contentious.

Coarse-graining calculations at the quantum level consist of tracing out modes in
(sub-)Hilb,

Pij = δijD
−1
I

DI∑
A,B=1

ρ
ii
, (U.1)

i.e. a density matrix trace version of (Q.8).

U.3 Quantum Versus Standard Probability Theory

For the purposes of this book, ‘quantum probability theory’ is approached as follows
(other authors may approach this elsewise). At the quantum level, propositions have
an inherently probabilistic nature, in the sense of being in terms of ‘Prob(A) is’
rather than ‘A is’. This is embodied by representing propositions by projectors as
per Chap. 51.1. Then for state ρ and proposition P implemented by projector P̂,1

the assignation of probability is

Prob(P | ρ) = tr(ρ̂P̂). (U.2)

We next consider whether this assignation—a function Prob : proj(Hilb) → R—is
unique. (U.2) can be axiomatized as obeying the following [contrast with classical
Kolmogorov probability, which uses only ii)].

i) Prob(P ) ∈ [0, 1] ⊂ R0 (positivity).
ii) Prob(∅) = 0 and Prob(any outcome) = 1.

We need a further criterion along the lines of additivity for disjoint subspaces
U, V: Prob(U ∪ V) = Prob(U) + Prob(V). Note beforehand that this is less
stringent than Prob(U ∪ V) = Prob(U)+ Prob(V)− Prob(U ∩ V), which is not
imposed due to the incompatibility in general [487] of quantum observables or
beables. Then extend this criterion to the following (compare also now with
Kolmogorov’s countability axiom).

iii) Prob
(∑∞

n=1 P̂i
)=∑∞

n=1 Prob(P̂i) for any finite or countably infinite collection
of pairwise mutually orthogonal projectors.

1Denote the space of the P̂ by Proj(Hilb).



U.4 Quantum SM 831

Note that (U.2) complies with these. Furthermore, Gleason’s Theorem [487] pro-
vides a strong uniqueness criterion for this: for dim(Hilb) > 2, use of a density
matrix is the only possibility that fulfils i)–iii).

As regards other violations of classical probability concepts encountered at
the quantum level, some proposed wave equations give ‘negative probabili-
ties’ (Chap. 6), on which grounds they are discarded; some authors term these
‘quasiprobability distributions.

Finally note that the difference between classical and quantum probability is
great enough for QM density matrices not to be ‘multivariate probability distribu-
tions’ in the usual sense familiar from classical probability.

U.4 Quantum SM

A distinct quantum version of SM can be based on Quantum Theory; now imperfect
knowledge is required in principle (see e.g. [341]).

The quantum partition function is, for instance, in the case of the canonical for-
malism for a system with discrete non-degenerate energy spectrum

Z(T ) = Tr(exp(−Ĥ /kBT )).

ρ(T ) = Tr(exp(−Ĥ /kBT ))/Tr(exp(−Ĥ /kBT ))

is then the corresponding thermal density matrix. [At the quantum level, the sum
or integral involved in partition functions takes the form of tracing over states.] See
e.g. [781] for further ensembles’ partition functions and thermal density matrices.

One major difference comes from quantum level symmetry restrictions on states
affecting their count: selections rules giving rise to bosons and fermions respec-
tively. Counting the states in question replaces the classically inspired Maxwell–
Boltzmann distribution exp(Ei/kBT ) with the specifically quantum Bose–Einstein
and Fermi–Dirac distributions, which are respectively,

1/{1 − exp(Ei/kBT −μ)}, (U.3)

1/{1 + exp(Ei/kBT −μ)}. (U.4)

Note that these as given are grand ensemble entities due to the relevance of particle
creation and annihilation, which alters particle number N . These distributions can
readily be built up into partition functions by inserting degeneracy factors and taking
suitable traces.

Finally, from (42.3) it is clear that Configurationally-Relational density matrices
can be defined by

ρg :=
∫

g ∈g
Dg exp

(
i
∑
g ∈g

→
ggG

)
ρ exp

(
−i
∑
g ∈g

→
ggG

)
. (U.5)
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Projectors then clearly end up built the same way whether assembled out of states
or treated as a subcase of operators.

U.5 Quantum Notions of Entropy and Information

In this setting, quantum states play the role of microstates instead of the classical
phase space volumes previously considered.

A suitable quantum analogue of Shannon information (Q.12) is von Neumann
information,

Ivon Neumann [ρ] = Tr(ρ logρ). (U.6)

See e.g. [633, 879] as regards the classical–quantum correspondence between these.
This notion furthermore survives the passage to specially-relativistic QM, and to
QFT modulo a short-distance cutoff [874].

The mutual information concept (Q.13) also applies to van Neumann information
[130, 725], though this is now of the form

Mvon Neumann [ρ
A
,ρ

B
,ρ

AB
]

= Ivon Neumann [ρ
A

] + Ivon Neumann [ρ
B

] − Ivon Neumann [ρ
AB

]. (U.7)

Relative information at the quantum level is [680]

Irelative [ρ1,ρ2 ] = Tr(ρ1 {logρ1 − logρ2 }). (U.8)

This can be interpreted as a distance on state space. Mutual information can further-
more be seen as a distance between ρ

AB
and the uncorrelated state ρ

A

⊗ρ
B

. In
Ordinary Quantum Theory, one can view this as a quantifier of entanglement.

Also, a Configurationally Relational version of von Neumann information is

I
g
von Neumann :=

∫

g ∈g
Dg exp

(
i
∑
g ∈g

→
ggG

)
ρ exp

(
−i
∑
g ∈g

→
ggG

)

× ln

(∫

g ∈g
Dg exp

(
i
∑

g ∈g

→
ggG

)
ρ exp

(
−i
∑

g ∈g

→
ggG

))
. (U.9)

Finally, von Neumann entropy has also been used in Black Hole Physics (see
e.g. [874]). This gives rise to further difficulties due to the form of the underlying
quantum microstates still being a matter of speculation.

U.6 Quantum Correlations

Example 1) Ordinary QFT has n-point functions [712] of the same well-known kind
as in Example 1) of Chap. Q.9. 〈 〉 here includes inserting the ground-state quantum
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wavefunction at each end. Giddings–Marolf–Hartle provide a further useful treat-
ment of correlators for Quantum Cosmology in [353]. Some aspects of this [and
Example 1)’s relational underpinning] go back to DeWitt [235, 237]. However, we
need to proceed with caution because at least some forms of n-point function are
not manifestly already-relational. In such a case one could at least formally apply
g-act g-all with the g-all move being integration over the g in question,

〈φ(x1) . . . φ(x1) 〉g :=
∫

g∈g
Dg
∫

q

→
gg

{
Dφ exp(−s[φ])φ(x1) . . . φ(xn)

}

/∫

g∈g
Dg
∫

q

→
gg {Dφ exp(−s[φ])} . (U.10)

Example 2) Quantum entanglement means that Quantum Theory has an extra type
of correlations that classical theories do not have. This leads to the concept of
discord = (quantum correlations) − (classical correlations), for which expressions
using von Neumann and Shannon informations can be employed. This quantifies
how Shannon entropy is insufficient to capture quantum correlations.



Appendix V
Further Algebraic Structures∗

This Appendix supports in particular Facets 3 to 6 of the Problem of Time.
Finite groups can be generalized by considering infinite groups which still have

a finite number of generators; Lie groups are examples of such. An obvious further
generalization is to the case of infinitely many generators. Another generalization in-
volves including fermionic generators in both the finite and infinite generator cases.
A further vast generalization occurs upon passing from the structure constants of
Lie algebras to the structure functions of Lie algebroids. The rest of this Appendix
gives examples of such groups and points to key results in the corresponding Rep-
resentation Theory.

Applications of this include Kinematical Quantization, classical and quantum
constraints and observables or beables. These cover many workings in QFT, Quan-
tum GR, Quantum Supergravity and String Theory.

We next consider representations for various products of groups. Firstly, repre-
sentations of direct products of groups or of Lie algebras are elementary to handle
by tensor products of the individual groups’ reps (Exercise!).

V.1 Reps. i. Semidirect Product Groups in General

Quite a lot of the groups involved in Theoretical Physics are semidirect products,
such as Eucl(d) = Tr(d)� Rot(d) = R

d
� SO(d), Poin(d) = M

d
� SO(d − 1,1),

Conf (�)� Diff (�), and various groups of the form V∗
� gcan arising from kine-

matically quantizing homogeneous spaces g/H (Appendix M.1). The Representa-
tion Theory of semidirect product groups H�K is fortunately rendered tractable in
terms of that of the constituent groups H, K, via Mackey Theory [633, 867]. This is
a substantially more general version of Wigner’s use [908, 909] of the little group,
which is very familiar in the Theoretical Physics literature for the Poincaré group
Poin(4) in particular and is the subject of Ex III.8. All of this lies within the scope
of induced representation methods, in which the reps of a subgroup H can provide
reps for the group g itself. [786] is an excellent introduction to induced representa-
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tions, taking one as far as Mackey’s criterion itself. [475, 477, 480, 481] then con-
sider various Theoretical Physics applications of Mackey Theory. Note finally that
Sect. 41.5’s ‘Rieffel induced inner product’ is also meant in the sense of induced
reps.

On the other hand, the more complicated and diverse Thomas →© and two-way
↔© integrability structures, have no known systematic means of approaching the
corresponding Representation Theory.

V.2 ii. Super-Poincaré Groups

These admit a well-known extension of the approach to Poincaré group Represen-
tation Theory. For N = 1 Supersymmetry in 4-d , this is also a semidirect product
as per Ex VI.20. Moreover, this differs with increasing N, with multiplets getting
larger, up to a maximum N = 8, corresponding to the maximal spacetime dimen-
sion being fixed to be 11 (Exercise!).

V.3 iii. Diffeomorphism Groups

We next outline what is known about the reps of diffeomorphism groups, due to
their importance in GR.

Example 1) S
1 admits the Witt algebra1

[Lm,Ln] = {m − n}Lm+n, (V.1)

which is an infinite-d Lie algebra. More particularly, this is a central extension of
a Lie algebra g by an Abelian Lie algebra g,2 to the Virasoro algebra

[Lm,Ln] = {m − n}Lm+n + c δn+m,0n{n2 − 1}/12 (V.2)

(the c-number c here stands for ‘central charge’). These are both examples of the
more general class of Kac–Moody algebras.
As regards the Representation Theory for these algebras, [368] supply a Weyl–
Kac character formula based approach (see e.g. [326] for development of the Weyl
character approach for finite (Lie) groups). On the other hand, [674] outlines a
distinct Fibre Bundle Method (Borel–Weil construction).

1The algebras in the current section are named after mathematicians Ernst Witt, Victor Kac and
Robert Moody, and physicist Miguel Angel Virasoro. See e.g. [385, 674] for more about the The-
oretical Physics involvement of these algebras, in particular in CFT and in String Theory.
2For H and K groups, g is an extension of H by K if there is a short exact sequence 1 → K →
g → h → 1. Then K � g and g/K ∼= H. This is furthermore central if K ⊆ Z(g). Finally, these
additionally admit a cohomological interpretation [214].



V.4 iv. Super-diffeomorphism Groups 837

Example 2) The more general 3-d case is considered e.g. in [475], with [471, 475,
477, 482, 483, 501, 502] giving furthermore some indication of the corresponding
Representation Theory.

V.4 iv. Super-diffeomorphism Groups

The extension of the previous Sec’s S
1 example is straightforward, giving the Witt

superalgebra (V.1) alongside

[Lm,Gr] = {m/2 − r}Gm+r and (V.3)

{Gr,Gs} = 2Lr+s. (V.4)

This also admits a central extension, to the Virasro superalgebra (V.2), (V.3) and
(V.4) with the extra central term + c

3

{
r2 − 1/4

}
δr+s,0. The Weyl–Kac character

based approach to Representation Theory mentioned above extends nicely to this
case as well.

On the other hand, the general case of diffeomorphism supergroup and its corre-
sponding Representation Theory is considerably less well-known than the already
limitedly-known general diffeomorphisms; see however e.g. [609].

V.5 v. For Kinematical Quantization of GR

Unitary reps for sym(3,R)�GL+(3,R), of relevance pointwise to GR, are consid-
ered e.g. in [476]. This fortunately still lies within the remit of Mackey Theory as
regards construction of representations.

V.6 Algebroids and Their Reps

Lie algebroids are defined as follows [190, 603, 863].

1) Consider a smooth manifold M, and define a vector bundle j over this.
2) Then define a Lie algebra structure on the corresponding space of sections of j:
sec(j).

3) The anchor map is a bundle map A : j → T(M) such that

i) A : sec(M) → Vec(M) (of vectors) is a Lie algebra homomorphism corre-
sponding to the commutator Lie bracket.

ii) For f ∈ c∞(M), �1,�2 ∈ sec(M) the derivation rule |[�1,f�2]| =
f |[�1,�2]| + (A(�1)f )�2 holds.

The algebroid–groupoid interrelation is also more complicated than its algebra–
group counterpart.
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Example 1) In the case over just a one-point space, one returns to the standard Lie
algebra.

Example 2) In the case of tangent bundles, the identity map of T(M) is the an-
chor map, and the reps are vector bundles over M with flat connections. This has
applications to the theory of foliations.

Example 3) Lie algebroids arising in the symplectic context are covered in particu-
lar in [190].

Example 4) The main algebroid considered in this book is the Dirac alias deforma-
tion [454] algebroid (9.31)–(9.33). See in particular [154] for further contemporary
coverage of this in a Theoretical Physics setting.

Example 5) The Ashtekar–Dirac algebroid [75].
Example 6) Both Mackey’s Kinematical Quantization and its phase space general-

ization admit interpretation as algebroid mathematics [601, 605].

Representations of algebroids [383] consist of two parts.

I) a vector bundle j over M.
II) A R-bilinear map sec(M)× sec(j) → sec(M) : A⊗ S  → DAS, for a suitable

notion of derivative DA [293].

II) is such that for any A,B ∈ sec(M), S ∈ sec(j) and f ∈ C∞(M), DfAS =
fDAS, DA{f S} = fDAS + {ρ(A)f }S and DA{DBS} −DB{DAS} = D|[A,B]|S.

Some Representation Theory methods which extend as far as this case are pro-
vided in e.g. [383]. Cohomology suitable for Lie algebroids is covered in [223, 293].

Superalgebroids are treated in outline in e.g. [372]; the above outline readily
continues to carry over upon replacing ‘Lie algebra’ by ‘Lie superalgebra’.

Example 7) Supergravity’s constraint superalgebroid [232] is probably Theoretical
Physics’ most salient example of superalgebroid.

V.7 Operator Algebras

Operators on Hilb form a number of algebras B(Hilb) ⊃ C∗(Hilb) ⊃ W∗(Hilb).
In this book’s quantum application of these, they are all taken to be over the field C.

Here the B are bounded linear operators T [207] defined on normed spaces.
The star superscript ∗ denotes that an involution operation ∗ : B → B enters the
algebra; this obeys the following relations.

1) {T1 + T2 }∗ = T ∗
1 + T ∗

2 and {pT }∗ = p̄T ∗ (complex-linearity, for p ∈ C).
2) {T1T2 }∗ = T ∗

2 T
∗

1 (preservation of the algebraic structure itself).
3) T ∗∗ = T (involution).
4) ‖T ∗ ‖ = ‖T ‖ (continuity).

T ∗ is indeed the adjoint operator of T ; in this way, Quantum Theory makes active
use of this ∗ operation. 1) to 4) characterize C∗-algebras, which incorporate clo-
sure under adjunction. The further W∗-algebra alias von Neumann algebra [528]
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specialization ensures that we are dealing with an algebra of self-adjoint operators,
which is also a requisite feature in setting up Quantum Theory. Furthermore, pro-
jectors suffice to express all the information in such a model’s operators (Exercise!).

See [207] for further outline comments, or [528] for a more detailed account
these algebras.

Many physical applications of C∗ and W∗ algebras proceed via these being a
powerful tool in treating the Representation Theory of quantum-mechanical com-
mutation relations [473, 605, 828]. More specific applications are to Kinematical
Quantization algebraic structures [75, 475, 605], quantum constraint algebraic struc-
tures, and especially local quantum observables’ or beables’ algebraic structures
[401, 602, 605, 778]. The Rieffel induced inner product is in fact additionally a
C∗ algebra approach construct. A final application of W∗-algebras outlined in this
book is in the sheaf or topos approach to the Kochen–Specker Theorem.



Appendix W
Alternative Foundations for Mathematics∗∗

This Appendix supports in particular the global and deeper levels of structure Epi-
logues II.B, III.B, II.C and III.C.

Representation Theory unlocks many doors in the study of Quantum Theory.
Theoretical physicists may well then ask what ‘comes after’—i.e. meaningfully
generalizes—Representation Theory; one possibility is Category Theory. This is
from the perspective that group representations are a simple, very useful and histor-
ically early example of functor category.

And what meaningfully generalizes the fibre bundle based topological methods
so useful in global considerations of QFT? One possibility is Sheaf Methods. And
what meaningfully generalizes the function spaces that underlie both Mathematical
Relativity and Quantum Theory? Functor categories are a possible candidate. And,
in thinking about QG, what meaningfully generalizes the General Covariance that
is so useful in GR? Perhaps it is Topos Theory!

W.1 Categories

Categories C∼ = (O,M) consist of objects O and morphisms M : the maps between

the objects, M : O −→ O, alongside the following.

i) A rule assigning a domain domf and a codomain codf to each f ∈ M .
ii) An identity morphism 1O : O −→ O.

iii) A composition f2f1 for each pair of morphisms f1, f2 such that codf1 =
domf2.

Functors are maps F : C∼ 1
−→ C∼ 2

such that

i) domF f =F (domf ) and codF f =F (codf ).
ii) F (1O) = 1FO.

iii) F (f1f2) =F (f2)F (f1) ∀f2f1 defined in C∼ .

© Springer International Publishing AG 2017
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Fig. W.1 Commuting square
for natural transformations

Note that ‘co’ is used in this context to indicate that the map runs in the opposite
direction; the two ensuing cases are termed covariant and contravariant functors.

Categories first appeared in the 1940s work of mathematicians Samuel Eilenberg
and Saunders Mac Lane; see in particular [128, 611, 612, 631] for more details on
this subject.

Example 1) Sets∼ is the category of sets; per se this is foundationally trivial, though

indirectly it plays a repeated role in the developments below.
Example 2) Grp

∼
is the category of groups.

Example 3) Vec∼ is the category of vector spaces.

Example 4) The category of topological spaces Top
∼

played a substantial role in the

historical development of this subject in support of the development of Algebraic
Topology.

Example 5) Forgetfulness (Appendix A.1) is functorial: involves all spaces within
a given category with corresponding morphisms [631].

Functor categories are categories of maps between categories.
A natural transformation is a morphism of functor categories themselves: N :

F → G; some authors have argued that these are the core of Category Theory.
N maps O −→ M such that NO : F O −→ GO and the diagram in Fig. W.1
commutes for any F : O1 −→ O2.

Example 6) The representations of Representation Theory are a functor category
from Grp

∼
to Vec∼ . Intertwiners—maps between representations—are then clearly

understood as natural transformations. Indeed, understanding intertwiners is often
the first benefit for students of Physics beginning to study Category Theory.

Example 7) (Co)homology can be understood as functor categories [631]; coho-
mology indicates functor contravariance to homology’s functor covariance. The
characteristic classes of Algebraic Topology provide a second example of natu-
ral transformations. This perspective also points clearly to (co)homology having a
considerably broader range of applicability than that of the first (de Rham) physical
application of these. This is because what (co)homology functors do is to associate
Abelian categories to given non-Abelian ones. The latter are then differentiable
manifolds in the de Rham case, Poisson manifolds in the Poisson case, covers for
topological spaces in the Čech case, singular differentiable manifolds in the Morse
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case, maps between differentiable manifolds in the (co)bordism case, and associa-
tive algebras over fields and rings in the Hochschild and cyclic cases.1

Non-example 8) It would be nice if Quantization itself were in general a clear-cut
functor, but it is not in general (Chap. 40).

A final pair of notions that Epilogue III.C makes use of are as follows. A small
category is one for which both the objects and the morphisms are sets. A locally
small category is one in which for each pair of objects, the corresponding set of
homomorphisms is a set.

W.2 Presheaves

Presheaves are functorsE : Top
∼

→ Sets∼ (or on occasion some other category such

as Vec∼ ), such that the following hold.

Presheaf-1) Each inclusion of open sets W ⊆ U corresponds to a restriction mor-
phism resW

U
: f (U) → f (W) in Sets∼ .2

Presheaf-2) resU
U

is the identity morphism.
Presheaf-3) resW

V
◦ resV

U
= resW

U
for open sets W ⊆ V ⊆ U. See Fig. W.2 for mean-

ings of these conditions.

For U an open subset of X (upon which the topological space 〈X, τ 〉 is based),E(U)
is the section ofE over U. It is a global section if it is over the whole of X itself. We
carry over use of the fibre bundle notation � for sections to presheaves. Moreover,
we now write �(E,U), which is a useful notation since the case in which U rather
than E is fixed is common. This notion of section indeed generalizes that of fibre
bundles as regards being the gateway to a more general range of global methods.

W.3 Sheaves

For a presheaf to additionally be a sheaf [92, 128, 167, 511, 713]—historically
another notion of Leray’s—the following further conditions are required.

Sheaf-1) (local condition). Let {UC} be an open cover of an open set U. If s1, s2 ∈
E(U) obey s1 |UC

= s2 |UC
for each UC, then s1 = s2.

Sheaf-2) (gluing condition). Let sC ∈E(UC) be sections that agree on their pair-
wise overlaps sC |UC ∩UD

= sD |UC ∩UD
∀ C,D. Then there exists a unique s ∈ E(U)

such that resU
UC
(s) = sC. See Fig. W.3 for meanings of these conditions.

1The first of these is named after mathematician Gerhard Hochschild whereas the second is a more
recent development by mathematician Alain Connes.
2We subsequently use the standard notation for restriction s|W to denote resW,U(s).
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Fig. W.2 a) Map from each open subset U ∈ 〈X, τ 〉 to a group of sections over U. Each section is
depicted as a point sC. b) These are equipped with restriction maps resV

U
for each U included within

each V. In these last three figures, the (pre)sheaf functor is denoted by a flat backed arrowhead and
restriction maps with ordinary arrowheads. c) The restriction of an open subset to itself is just the
identity. d) Restriction is independent of whether one goes via an intermediate subset: the drawn
maps form a commuting triangle

Example 1) Each of the sets of: smooth, real-analytic and complex-analytic func-
tions can be viewed as sheaves. This includes in the setting of these being defined
over suitable manifolds [891]. The reader might wish to verify this statement and
to show that the bounded functions on C do not form a sheaf.

Example 2) Each of the sets of smooth, real-analytic and complex-analytic sections
of a vector bundle form a sheaf [891]. This illustrates how fibre bundles themselves
can carry sheaf structure.

The sheaf notion of section s ∈E(UC) with s|UC
= sC for each C in the cover.

These properties render sheaves adept as a means of formulating more general
patching constructs. One can now attach heterogeneous objects to different base
space points rather than attaching homogeneous fibres in the formation of a fibre
bundle. A simple application of this is to the heterogeneous types of chart involved
in the study of a given nontrivial stratified manifold as per Fig. 37.5. See e.g. below
and [92, 570, 713] for a wider range of applications to stratified cases of q and
Phase.
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Fig. W.3 Sheaf axioms. a) A section is determined by its local restriction in the depicted sense.
b) A section over all of U can be glued together from sections on UC such that U =⋃C UC under
the depicted circumstances

Sheaves provide a means of formulating obstructions that generalizes the topo-
logical treatment using fibre bundles of a number of obstructions that are already
familiar in Theoretical Physics. In each case, the notion of section has an associated
notion of cohomology concerning obstructions to the presence of global sections. In
the case of sheaves, this is given the natural name of sheaf cohomology, and indeed
turns out to be widely useful from a computational perspective [511]. This ensures
the sheaf encodes the topological level of structure of generalized spaces as well as
their geometrical structure.

Sheaf cohomology coincides with Čech cohomology
on paracompact Hausdorff spaces, (W.1)

which is relevant for the particular simple classes of stratified manifolds considered
in Appendix M.7. Furthermore [180],

Sheaf cohomology extends Čech cohomology
beyond paracompact Hausdorff spaces. (W.2)
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Indeed, this is how sheaf cohomology was first arrived at by noted mathematician
Jean-Pierre Serre [785].

Moreover, for all that sheaves were not originally developed with singular spaces
in mind, Whitney and Thom’s work on the latter proved to be a further place to apply
Sheaf Methods. Kreck’s subsequent development of stratifolds is a further variation
on this theme. The other half of the stratifold pair is an algebraic structure of c∞
functions, which can be interpreted as an algebraic structure of global sections in
the sense of Sheaf Theory.

Research Project 123)† To what extent does Sheaf Theory extend Fibre Bundle
Theory as a physically useful theory of global effects and obstructions? If this and
Topos Theory do not cover all of the Global Problem of Time’s needs, what should
the next ports of call be?

Sheaves can also be taken as an underlying structure for topological space no-
tions. Sheaves can be viewed as but a preliminary structure as compared to far more
general mathematical structures considered by the foremost mathematician of the
20th century, Alexander Grothendieck [396], of which the topoi below are but one
example. In this manner, sheaves and subsequently Grothendieckian mathematics
could replace the far simpler collections of subsets, and sets, as lower-lying levels
of mathematical structure. Moreover, in this case there ceases to be a guarantee that
these are the deepest levels of mathematical structure, or, indeed, of the levels of
mathematical structure terminating. A very major application of sheaves and subse-
quent more general structures considered by Grothendieck is Algebraic Geometry.
[436].

In Theoretical Physics, sheaves have to date mostly been used in the complex-
analytic case in Twistor Theory [459]. They have also been used in modelling al-
gebraic structures of observables [401] and in studying the Complex and Algebraic
Geometry arising from String Theory [674, 778]. In this book, we have pointed to a
number of further foundational problems which may well become better understood
through use of sheaves and the above more general structures.

W.4 Topoi

The original approach leading to these began with equipping categories with the
Grothendieck topology, which gives these an open space like structure. The pair
formed by a category and the Grothendieck topology thereupon is termed a site.
Furthermore, a category of sheaves on a site forms a (Grothendieck) topos; in this
manner, consideration of sheaves offers one route to topoi (Fig. W.4).

Another conceptualization of topoi later considered by mathematicians William
Lawvere and Myles Tierney is the elementary topos; this furthermore bears some
relations to mathematical logic. In this at least a priori much more straightforward
approach [611, 612], a topos is envisaged as a category with three extra structures
that give it some properties similar to those of sets.
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Fig. W.4 Example of a topos presheaf construct, as used in formulating the Kochen–Specker
Theorem. This figure illustrates that not all cases within a given floor of the tower can be extended
up the tower

1) So-called finite limits and colimits in terms of initial and terminal objects and
(algebraic-level) pull-backs and push-outs.

2) Power objects: for each O1, O2 there is an object OO2
1 that acts like the set of

functions from O2 to O1.
3) Subobject classifier: a generalization of the characteristic function from a set to

{0,1}: ‘truth values no and yes’, allowing for more general truth values: multi-
valued or contextual (terms explained in Epilogue III.B).

See [611, 612] for a basic description of topoi from this point of view, and Isham
and Doering’s [260] for physical applications based on presheaves on a category C∼ :

functorsE : C∼
op → Sets∼ , which is often written as Ĉ∼ = Sets∼

C∼
op

.

Moreover, being set-like in this manner may render topoi more suitable than
categories themselves as regards superceding Set Theory’s foundational role.

As regards further breadth of perspectives on what topoi are, see in particular the
advanced text [525]. Indeed, topoi are notorious for being a coincidence of multiple
perspectives, in a more mathematically rigorous parallel to how Wheeler argued
there to be ‘many routes to GR’. [And yet, two theories being rich in the admission
of multiple perspectives is not a sufficient criterion for the two to be related, nor for
Nature to realize one just because it realizes the other.]

Let us end by noting that Grothendieck himself viewed topoi as but a step toward
further mathematical entities called ‘motives’, and that he developed numerous fur-
ther interrelated mathematical structures [66]. On these grounds, future exploration
of structures and foundations for use in Physics could benefit from not necessarily
being restricted to the sheaf and topos concepts.



Appendix X
Outline of Notation

X.1 For Part I and Unstarred Appendices

We use the italic font for c-numbers and for functions of one variable F(t), and
straight font for multivariate functions F(x, t) We also use straight font for func-
tionals based on one variable F(t;Q(t)], meaning that d/dt and

∫
dt feature in the

dependence. We use calligraphic font for multivariate functionals F(x, t;Q(x, t)],
meaning that partial derivatives and integration over more than one variable feature
in the dependence. On occasion, operator-valued functionals are allowed, though in
such cases they are declared as such. That covers e.g. F containing derivative oper-
ators which act on adjacent expressions to F rather than solely on other expressions
within F itself.

We correspondingly use d for ordinary derivative, ∂ for partial derivative and
δ for functional derivative. I hang ‘cov’, ‘abs’ suffixes on these for covariant and
absolute derivatives, or I use D in place of ∂ and D in place of δ in some such
contexts. I use � for Laplacians (suitably suffixed to indicate of which type), D for
measures and oversized δ for variational derivative. ∗ := d/dt when acting on func-
tions f (t) such as QC, or ∗ := ∂/∂t when acting on objects that are functionally
dependent onQC. Underline denotes spatial vector, with double-underline denoting
spatial matrix. Bold denotes configuration space vector or tensor. I use the math-
frak font for mathematical spaces, ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz. I use the bold version of this for spaces of spaces.
I also use ABCDEFGHIJKLMNOPQRST UVWXYZ (undersized slightly curly calli-
graphics) for constraints. Finally, I use undersized slanty Latin letters for observ-
ables or beables.
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X.2 Additional Notation for Parts II and III, and Starred
Appendices

We now also use the ‘finite–field-theoretic portmanteaux’1 F of F and F and
F of F and F , denoted by the highly curly font ABCDEFGHIJKL

MNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz and the following
‘derivative portmanteaux’. Ordial derivatives d∂ : ordinary–partial derivative port-
manteau. Partional derivatives δ∂ : partial–functional derivative portmanteau.

We use a special font (Large typeface) for such portmanteaux that come inte-
grated over their corresponding notion of space (the action s is a such). The idea
is to use these to provide general cases of definitions, concepts and results in port-
manteau form, to the extent possible. This shorthand embodies the analogies which
feature in modelling Field Theories via finite model arenas. These in turn rest on
numerous parallels between ordinary and Banach Calculus (Appendix H.2). I use
undersized straight Latin letters Q, B, R, T, V, H for Cubert (Chap. 13): how to order
Quantization, allotting beables, reduction, allotting a time, use of paths and use of
histories. I also use the undersized sans-serif font for conserved quantities. Finally,
I use wiggly underlines for categories and oversized italics for functors and natural
transformations.

1Since GR is central to this book, the Field Theory part is on curved spaces. By this later parts of
this analogy are more subtle than simply jointly treating particles and flat-spacetime fields, for all
that the latter is another plausible use for a distinct portmanteau.
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568. Kouletsis, I., Kuchař, K.V.: Diffeomorphisms as symplectomorphisms in history phase space:

bosonic string model. Phys. Rev. D 65, 125026 (2002). gr-qc/0108022
569. Kowalski, M., Rubin, D., et al.: Improved cosmological constraints from new, old and com-

bined supernova datasets. Astrophys. J. 686, 749 (2008). arXiv:0804.4142
570. Kreck, M.: Differential Algebraic Topology: From Stratifolds to Exotic Spheres. American

Mathematical Society, Providence (2010)
571. Kreck, M., Tene, H.: Hilbert stratifolds and a Quillen type geometric description of coho-

mology for Hilbert manifolds. arXiv:1506.07075
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584. Kuchař, K.V.: The problem of time in canonical quantization. In: Ashtekar, A., Stachel, J.
(eds.) Conceptual Problems of Quantum Gravity. Birkhäuser, Boston (1991)
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591. Kuchař, K.V., Ryan, M.P.: Is minisuperspace quantization valid?: Taub in mixmaster. Phys.
Rev. D 40, 3982 (1989)
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differentiable manifold level -, 143
metric geometry-level -, 143
metric space level -, 471, 637
Quantum -, xi, 635
set level -, 473, 638
topological manifold level -, 468, 636
topological space level -, 471, 637
topos-theoretic -, 642

Banach
- Calculus, 726, 850
- spaces, 725, 726, 795, 803, 805, 819

Barbero–Immirzi parameter, β , 312, 175, 389,
516, 517, 612

Barbour, Julian, 36, 117, 122, 148, 152, 215,
224, 228, 237, 255, 261, 309, 344,
402, 576, 723

Base space, 381, 452, 704, 704, 705, 707, 844
Beables, xiii, 133, 134, 138, 321, 322, 563,

567, 573, 614, 760, 798
Kuchař -

quantum -, K̂ , 187, 563, 603, 616, 617
Kuchař -, K , 138, 208, 324, 328, 363, 374,

432, 503, 564
A-

quantum -, Âx, 563, 564
A-, Ax, 324, 333, 335, 364, 375, 433
Assignment of -, xiii, 137, 196, 207, 297,

301, 432, 464, 617
Quantum -, 187

basis -, 323, 331, 363, 375, 481, 565, 602,
754, 798

Chronos -
quantum -, Ĉ, 187, 563, 600, 605, 631

Chronos -, C, 139, 150, 325, 363

Dirac -
quantum -, D̂, 187, 563, 565, 575, 598,

600, 603, 606, 616, 617, 631
Dirac -, D, 138, 208, 261, 324, 325, 332,

363, 377, 432, 799
global quantum -, 629
gravitational -, 194
g-

quantum -, Ĝ, 187, 563, 617
g-, G, 325, 340, 435
local -, 629, 839
locally Lorentz -, 333
non-supersymmetric Dirac -, 333
non-supersymmetric Kuchař, 333
Problem of -, xiii, 139, 149, 152, 194, 297,

323, 325, 335, 374, 400, 435, 454,
565–567

Quantum -, 187
proper -, 323
quantum -, 187, 563, 566, 830
quantum unconstrained -, Û , 478
strong -, 139, 324
Superspace -, 375, 377
unconstrained -

quantum -, Û , 478, 613
unrestricted -, 138
weak -, 139, 324

Beables algebraic structures, 139, 152, 318,
324, 364, 605, 753, 754, 770

Kuchař -, 374
general A-, 324
histories -, 456
lattice of -, 432
quantum -, 495
Supergravity -, 318
unrestricted -, 321, 563

Beables subalgebraic structures, 195, 604, 621
Becoming, 8, 62, 133, 146, 187, 339, 569, 571,

576
emergent -, 574
semblance of-, 8

Before, 4, 8, 62
Bein, 109, 313
Being, 6, 8, 146, 187, 339, 569

- at a time, 7, 8, 10, 61, 133, 146, 339, 569,
573, 574, 576

at a particular time-, 571
conditioned -, 188, 573

Best Matching, xi, 126, 126, 127–129, 131,
152, 185, 199, 211, 212, 231, 232,
237, 250, 253, 255, 257, 259,
262–264, 267, 270, 293, 302, 306,
309, 313, 314, 316, 317, 326, 352,
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361, 370, 432, 434, 435, 449, 451,
464, 470, 723, 773, 797, 818

- corrected derivative, 127, 255, 262, 406,
421, 424, 428

semiclassical -, 544
TRi-, 234, 234

Bianchi identity
contracted -, 677
first -, 675
second -, 675

Bianchi models, 198, 244, 295, 343, 377, 445,
446, 486, 531, 571, 603, 676, 731,
732, 733, 795

Big Bang, 9, 90, 94, 493, 728, 736
Big Crunch, 9, 94, 493
Big Riem, BigRiem, 823
Big Superspace, Bigsuperspace, 823
Bijective, 647, 648, 649, 651, 665, 696
Black holes, 85, 86, 90, 93, 94, 111, 116, 158,

161, 164, 165, 198, 808
Block

- Universe, 7
- Worldview, 13

Bohr, Niels, 59, 72, 94
Boltzmann, Ludwig, 158, 810, 811, 813
Boosts, 38, 43, 44, 46, 50, 311, 393, 486, 659,

686, 689, 698
Born Rule, 57
Born–Oppenheimer ansatz, 183
Bosonic string model, 149
Bosons, 66, 171, 245, 259, 546, 729, 746, 811,

831
Goldstone -, 75
Higgs -, 74–76
W± and Z0 -, 73, 76

Bottom-up, 100, 159, 193, 228, 379
Brachistochrone, 53
Bracket inequivalence, 567
Brackets, 297

anticommutator -, 67, 71, 268, 696
associator -, 299
Casalbuoni -, 315, 324, 755
classical -, 138, 322, 324, 325, 749

generalized -, 464
commutator -, 56, 67, 185, 464

differential geometric commutator -,
142

Dirac -, 301, 308, 314, 328, 357, 561, 752,
752

histories -, 146, 355, 356, 435, 590, 592,
594

Lagrange -, 299
Lie -, 142, 350, 685
mixed Poisson–Peierls -, 304, 747, 770

Nambu -, 299
Peierls -, 299, 584, 747
Poisson -, 31, 56, 134, 142, 152, 185, 206,

298, 299, 614, 685, 746, 762, 767
iterated -, 333

quantum commutator -, 685
Schouten–Nijenhuis -, 299
spacetime -, 351

Brackets map, 479, 555, 556
Branching processes, 345
Branes, 177, 178
Broad, Charles, 36
Broad’s Worldview, 7, 13, 117, 194
Bundle

- of metrics, 799
cotangent -, 206, 706, 744, 769
direction -, 223
fibre -, 213, 231, 233, 239, 265, 309, 444,

451, 625, 627, 682, 704, 707, 779,
782, 794, 841, 843

associated -, 706, 781
principal -, 448, 602, 706, 781, 785

frame -, 785
general -, 450, 451, 628, 704, 707
g-, 211, 234, 706, 769
mixed cotangent–tangent -, 747
tangent -, 206, 218, 232, 381, 706, 707,

744, 747, 765, 837
tensor -, 706
vector -, 707, 837, 844

Bundle Theory, 453

C
Calabi–Yau spaces, 174, 777
Cambium: an alias of change, 205, 346
Canonical

- Approach, 105, 116, 145, 159, 166, 167,
169, 189, 198, 298, 348, 351, 353,
394, 398, 399, 610, 619, 757

almost-, 583
- GR, 176, 266, 271, 313, 387
- group, 484, 492, 588, 591, 594
- Quantum Theory

TRi - (TRiCQT), 495
- transformation, 110, 132, 194, 266, 275,

281–283, 286, 287, 289, 309, 395,
449, 480, 492, 519, 623, 746

histories -, 355
- twist, 281

Canonical versus Path Integral, 189, 190, 581
Canonical-and-Covariant Approach, 581, 612
Canonical-and-Histories-Canonical Approach,

353
Canonical-and-Path-Integral Approaches, 584
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Casimir, 694, 695, 698, 754
Category

small -, 843
locally -, 843

Category Theory, 648, 841
Cauchy data, 333, 394, 395, 793
Cauchy evolution, 457
Cauchy problem, 107, 458, 793

global -, 459
GR -, 107–109, 796, 797

Cauchy sequence, 661, 664, 681
Cauchy surface, 107, 164, 455
Cauchy–Riemann equations, 664, 692, 701
Causal

- ordering, 8, 10, 11, 22, 49, 399, 473
- relations, 473
- structure, 88
anti-, 66
half-, 66

Causal Sets Approach, 473, 583, 635, 638, 824
Causality, 8, 13, 22, 46, 49, 66, 92, 108, 144,

145, 148, 155, 162, 170, 177, 189,
193, 273, 348, 357, 408, 440, 458,
467, 512, 612, 680, 682, 794, 822

background -, 145
Causality Theory, 46, 85, 94, 112, 382

SR -, 45
Causally interconnected, 440
Central charge, 298
Change, 21, 35, 121, 123, 124, 146, 205, 206,

217, 220, 224, 245, 766
- covector, 219, 223, 419, 423, 765, 765,

769
- in configuration, 763
- in geometry, 220, 404, 425
- in time, 21
- of motion, 19
- of topology, 96, 107, 269, 468
- over time, 8
- scalar, 222, 224, 228, 232, 420–422, 765,

771
- tensor, 235, 424, 767, 772
- weight, 222, 420, 423, 765
all -, 184, 224, 225, 228, 246, 255, 261,

288, 289, 407, 537
anisotropic -, 215
any -, 224, 226, 261, 287, 326, 554, 574,

622
bosonic -, 245, 259, 267
fermionic -, 245, 259, 268

quantum -, 259
generalized -, 463
inhomogeneous -, 215
l-, 294, 541, 543

quantum -, 182, 489, 537, 550, 614
semiclassical -, 537
sufficient totality of locally relevant -

(STLRC), 225, 228, 245, 246, 255,
261, 288, 404, 425, 431, 447, 463,
535, 540, 546, 550, 574, 622, 626

Character (of representations), 696, 836, 837
Charge, 26

- density, 26
colour -, 73
electric -, 26, 68
gravitational -, 26

Charge-to-mass ratio, 27, 68, 73, 79, 158
Charts, 153, 667, 668, 669, 701, 726, 727, 779,

821
foliation as decorated -, 383
local -, 448, 592, 640, 682, 701, 777
multiple -, 448, 455, 485, 592, 625,

668–670, 794
orbifold -, 776, 776
stratified manifold -, 450, 472, 844

Chirality, 67, 174, 552, 580
Choice of ‘calendar year zero’, 9, 21, 23, 61,

124, 508, 537, 673, 746
Choice of ‘tick-duration’, 9, 21, 508, 673
Choquet-Bruhat, Yvonne, 109, 797
Chronological ordering, 22, 49
‘Chronons’, 11
Class

characteristic -, 629, 707, 842
Chern -, 707
Stiefel–Whitney -, 707

Class functional, 599, 600, 600, 605, 606, 631
Class functionals, 599
Classical Machian Emergent Time Approach,

130, 196, 271, 289
Clock, vi, ix, 14, 14, 17, 18, 43, 51, 64, 80, 94,

189, 201, 325, 350, 425, 572, 574,
576

- accuracy, 15, 16
- bias, 16, 36, 50, 93
- calibration, 16, 36, 50, 226
- comparison, 15
- in GR, 92
- in motion, 50
- in Relativity, 93
- inside one’s system, 339
- longevity, 16, 63
- mass, 63
- multiplicity, 15
- not reading off purported timefunction,

290
- occasionally running backwards in QM,

62



890 Index

Clock (cont.)
- precision, viii
- pulsar-based, 112
- reading hand, 14, 16, 36, 226, 227
- reading the purported timefunction, 15
- readings depending on the clock’s past

history, 16
- stability, 15, 63
- tick-duration, 63
- useable within the regime of study, 16
-system coupling, 225
: marine chronometer, 16, 93
: pocket watch, 35
: the counter of occurrences, 14

- that are periodic, 14
- that are regular, 14

atomic -, ix, 16, 17, 35, 36, 63, 78, 93, 110
black hole -, 166
candle-, 14
external, 60
good -, 14
hourglass -, 14
ideal, 50
Leibniz’s perfect -, 35
light-

Einstein’s -, 50
Marzke–Wheeler’s -, 51

localized -, 573
mirror -, 92
non-ideal -, 574
pendulum -, 14, 16, 35
perfect -, 35, 62, 63

Leibniz’s -, 34, 217, 224, 225
periodic -, 14, 36
portable -, 16, 50
quartz -, 16
reading hand, 14
Solar System as a -, 35
space -, 54, 93, 110
Universe contains -, 34, 225
water -, 14, 52
whole Universe as a -, 35

Clock inequalities, Salecker–Wigner -, 63, 71,
78, 166, 198, 494

Closed, 470, 663, 665
Closed models, 182
Closed timelike curves, 92, 92, 107, 111, 467,

470
Closure, 150, 207

Constraint -, xiii, 134, 136, 138, 194, 224,
297, 365, 401, 464

Quantum -, 186, 555
Entity -, 297

Generator -, 141, 195, 297, 348, 435
Closure Algorithm

Constraint -
Quantum -, 556

semiclassical -, 561
Closure Problem

Constraint -, xiii, 135, 137, 186, 297, 300,
302, 313, 314, 323, 326, 435, 557,
559, 567, 583, 609, 629

Entity -, 297
Generator -, 134

Closure strategies, Constraint -, 306, 559
Clumping, 444, 716
Cluster Decomposition Principle, 73, 496
Co-variance, 342, 343, 376

- matrix (Statistics), 802
Cobordisms, 468–470, 637, 822, 822, 843
Cocycles, 453, 629, 703
Codimension, 98, 99, 177, 270, 379, 382, 383,

457, 458, 468, 779
Coherent states, 551, 552, 612
Cohomology, 452, 702, 703, 707, 708, 788,

793, 838, 842
- group, 485, 487, 703
Čech -, 471, 703, 825, 827, 828, 842, 845
cyclic -, 642, 843
de Rham -, 448, 468, 642, 703, 747, 842
deformed -, xvi
Hochschild -, 642, 843
Poisson -, 642, 842
sheaf -, 453, 473, 636, 845, 845

Coleman–Mandula No-Go Theorem, 171, 267
Collapse of the Wavefunction, 58, 78
Collections of subsets, 197, 473, 639, 665,

666, 681, 804, 825–828, 846
Combined Approach, xvi, 359, 597
Commutation relations, 53, 61, 62, 65, 71, 162,

186, 189, 194, 478, 493, 529, 555
affine -, 483
anti-, 67
GR -, 513
group -, 136
time–Hamiltonian -, 493, 521

Commutator, 70
Compact

- groups, 212, 449, 689, 777
- Lie group, 212, 694, 803
- manifold, 170, 457, 779
- simple Lie algebras, 392
- support, 805
- without boundary, 95, 251, 379, 412, 428,

470, 618, 669, 698, 821, 822
non-, 164, 686, 689, 694, 783
spatially-, 278, 285
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Compact astrophysical objects, 91, 109
Compactification, 92, 170, 174, 178
Compactness, 342, 456, 472, 665, 666, 669,

681, 687, 776, 781, 782, 822, 824
local -, 776, 780

Comparatives, 4
Complete, 55, 725
Completeness, 57, 62, 661, 661, 664, 682, 726,

806
Complex projective space CP

n, 239, 240,
504–506, 508, 623, 637, 701, 701,
713, 717, 734, 775, 777, 829

Composition Principle (for beables), 329, 330,
754

Conceptual Thinking, v, xii, xv, 19, 27, 33, 39,
50, 51, 59, 78, 81, 87, 91, 94, 111,
116, 118, 123, 142, 143, 146, 150,
154, 162, 167, 191, 195, 205, 210,
225, 227, 229, 252, 255, 270, 321,
352, 379, 389, 394, 397, 399, 400,
419, 437, 441, 452, 466, 472, 487,
494, 496, 497, 514, 574, 636, 642,
813, 821, 846

- by Naming, xiv, 95, 117, 220, 265, 280,
317

Conditional Probabilities Interpretation, 188,
573, 575, 576, 578

Cone, 776
- point, 716
(linear algebra), 727
(metric), 238, 279, 343, 505, 537, 777, 779
(topological), 238, 343, 505, 537, 777, 779
topological -, 716
universal null -, 45

Configuration, xi, 95
- representation, 283, 477, 490, 502, 564,

569, 575
generalized -, 463
geometrodynamical -, 105
merger -, 296, 592, 718

Configuration space, q, 119, 121, 709,30, 209,
279

- geometry, 105, 199, 219
- metric, 31

- of GR, 105, 199, 728, 729
- of GR, 97
- radius, 273, 282, 711
generalized -, 709

Configuration Space Geometry
implementation, 123

Configuration–velocity space, 218, 232, 395
Configurational Minimalism, 121

Configurational Relationalism, xi, 125, 126,
130, 149, 194, 207, 231, 247, 365,
463, 469

Quantum -, 185
Configurational relationalizing map, 211
Conformal

- connection, 293
- covariant, 679
- factor, 678
- invariance of worldsheets, 173
- invariant, 92, 679, 679
- isometry, 690
- Killing

- equation, 199, 690, 692
- form, 691
- operator, 283, 691, 698
- vector, 163, 199, 272, 529, 691, 691,

736, 761, 787, 789, 790
- symmetry, 690
- transformations, 728
- weight, 678

Conformal Field Theory (CFT), 179, 263
Conformal Geometry, 269
Conformal Riem, CRiem(�), 279, 281, 728,

728, 787
Conformal Superspace, Cs(�), 280, 280, 281,

284, 412, 415, 733 786, 787, 819
Conformal Superspace + volume,

{Cs + V}(�), 280, 281, 413, 414,
819

Conformal Superspacetime, Css(m), 348,
787

Conformal transformations
special -, 214, 237, 681, 691, 692, 698, 713

Conformogeometrodynamics, general -, 412,
415, 611

Conformogeometrodynamics (GR), 264, 280,
314, 392

Congruence (of integral curves), 671
Conjugate points, 94, 674, 674, 682
Connectedness, 95, 383, 472, 666, 669, 682,

689, 776, 779, 821, 822
path-, 666, 682, 747
simple-, 666, 687, 776

Connecting vector, 674
Connection, 49, 80, 81, 83, 170, 648, 677, 727,

826
- on fibre bundles, 706
affine -, 79, 80, 84, 265, 672, 673, 676, 729
conformal -, 293
flat -, 837
gauge -, 110, 707, 782

(Ashtekar variables), 265
metric -, 49, 80, 263, 676, 676, 679, 680
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Connection (cont.)
nondynamical -, 238
spacetime -, 393, 394, 409, 410, 428, 518

pull-back of a -, 353, 389
spin -, 267
Weyl -, 729

Connection formulae, 626, 627
Consciousness, 78, 346
Conservation equation, 58
Conserved quantities, 8, 20, 697, 741
Consider Kuchař Beables to Suffice (strategy),

326
Consider Chronos Beables (strategy), 326
Consider g-Beables to Suffice (strategy), 326
Consider Split Dirac Beables (strategy), 326
Consistent Geometrodynamics Theorem, 403
Consistent Metrodynamics Theorem, 411
Constant mean curvature (CMC), 133

- foliation, 148, 386, 439, 457
Constitute (out of threads), 155
Constraint, 31, 102, 121, 134, 232, 297, 300,

308, 318, 324, 466, 614, 743, 748,
755

- Encoding (strategy), 134, 410, 414
- Providers (strategy), 121, 134, 309, 316,

317, 501
Chronos -, 125, 134, 135, 302
energy -, E , 124, 292, 124
first-class -, 69, 75, 134, 136, 138, 697,

749, 751
linear -, 138, 207

gauge -, 122, 126, 134, 135, 139, 302, 544,
751

Gauss -, G, 135, 251, 69, 392
generalized -, 463

Chronos -, 463
shuffle -, 464

GR Ashtekar Hamiltonian -, 110
GR Ashtekar momentum -, 110
GR Ashtekar SU(2) Yang–Mills–Gauss -,

110, 175
GR Ashtekar variables-, 175
GR Hamiltonian -, H, xii, 106, 106, 109,

121, 125, 129, 132, 135, 176, 254,
277, 373, 392, 762, 796

Minisuperspace -, 130, 198
GR momentum -, Mi , xii, 106, 107, 109,

131, 135, 144, 252, 254, 277, 683,
762, 796

histories -, 356, 357, 360, 376, 591, 593
holonomic -, 514, 749
inequality -, 514, 638, 749
linear -, 126, 129

first-class -, 126

locally-Lorentz -, 259, 313
LQG Hamiltonian -, 176
minisuperspace Hamiltonian -, 243
primary -, 69, 75, 123, 125, 127, 129, 223,

235, 244, 749, 767
pure deformation -, 392
quadratic -, 123, 127, 223, 224, 235, 237,

249
quantum -, 186, 625, 629
quantum energy -, Ê , 167
quantum gauge -, 185
quantum GR Hamiltonian -, Ĥ, 166
quantum GR momentum -, M̂i , 166
quantum linear -, 167
second-class -, 134, 300, 307, 308, 314,

749, 751
secondary -, 127, 749
shuffle -, 126, 126, 134, 136, 232, 233, 250,

302, 392
SIC -, 370, 371
supersymmetric -, 519
trial Hamiltonian -, 391, 401
trial momentum -, 391
Yang–Mills–Gauss -, GI , 75, 110, 135, 392
zero total affine momentum -, 504
zero total angular momentum -, Li , 127,

135, 236, 503
zero total dilational momentum -, D, 237,

503
zero total momentum, supersymmetric -,

268
zero total momentum -, P i , 135, 127
zero total special conformal momentum -,

Ki , 263
zero total supersymmetric exchange

momentum, 268
Constraint algebra, 135

Abelian -, 137, 411
histories -, 360

Constraint algebraic structures, 126, 134, 310,
318, 319, 328, 406, 415, 454, 464,
607, 616, 619, 697, 753, 770

classical -, 186, 557, 615
GR Ashtekar -, 312
histories -, 357, 456
partitioned -, 304
quantum -, 186, 495, 555, 557, 558, 560,

607, 615, 839
anomaly-free -, 609
foliation-dependent -, 617

semiclassical -, 607
Constraint algebroid

Supergravity -, 315, 364
Constraint Appending (strategy), 300, 304
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Constraint Closure Problem: see Closure
Problem, Constraint -, 135

Constraint Encoding (strategy), 302
Constraint Provider (strategy), 123
Constraint subalgebra

quantum -, 557
Constraint subalgebraic structures, 139, 318,

319, 324, 375, 557, 563, 616, 695
classical -

histories -, 591
lattice of -, 317–319, 348, 432, 557
Supergravity -, 316, 333

Constraint surface, 302, 683
Constraint–Embedding Theorem of GR, 107,

422
Constraint–Evolution–Embedding Theorem of

GR, 108, 422
Constraints, 748
Constraints Unquestioned (strategy), 121
Construction, 155
Constructive approach, 39
Contexts, 641
Contextual realism, 568, 641
Continuity, 12, 193, 386, 463, 482, 661,

662–665, 681, 838
absolute -, 803
dis-, 482

Continuous
- dependence, 793, 795
- limit, 590, 639
- spectra, 499
- spectrum, 62
- time steps, 356

Continuum, 11
Contorsion, 677
Contractibility, 483, 702, 703, 783, 786, 787

non-, 702
Convergence, 665
Convexity, 342, 457, 726, 727

local -, 726, 804
Coordinates

Hopf–Dragt -, 239, 329, 357, 505, 509,
592, 721, 722

inhomogeneous -, 701
Lagrange multiplier -, 740
mass-weighted relative Jacobi -, 711
relative Jacobi -, 52, 710
relative Lagrange -, 710

Copenhagen Interpretation, 570
Correlation, 139, 188, 325, 339–341, 376, 814,

832
- between histories, 594
- coefficient

Kendall’s -, 815

Pearson’s -, 814
Spearman’s -, 815

- for shapes, 341
(dual) total -, 815
imperfect -, 595
long-range -, 808
perfect -, 595
quantum -, xxxviii, 829, 833
tensor, Zalaletdinov’s -, 815
timeless -, 133, 343, 572, 573, 576, 578,

597
Correlator, 66

n-point -, 832
Correspondence Principle, 56, 482
Cosmic microwave background, xiv, 90, 111,

116, 167, 362, 577, 615
Cosmological constant, Λ, 85, 90
Cosmological Constant Problem, 162
Cosmology, 86, 88, 112, 116, 273, 291, 431,

815
Coulomb’s Law, 26, 26
Countability, 76, 647, 680, 734, 802–804, 828

first-, 666
local -, 828
second-, 450, 452, 471, 472, 666, 666, 667,

681, 727, 776, 779–781, 783, 826
Coupling constant, 75, 76, 159, 162, 172
Covariance

General -, 80, 143, 400, 490, 580, 760, 841
DeWitt’s -, 490, 510

Poincaré -, 71, 160
Covariance -

General -
DeWitt’s -, 510

Covariant Approach, 159
Covariant-and-Canonical Histories Theory,

399
Cover (topology), 666, 666, 703, 706, 776,

828, 842, 843
CPT, 78, 437
Crane’s postulates, 261, 553
CRiem, CRiem(�), 280, 728, 729
Cross-ratio, 264, 681, 714

- space, 714
Cubert (facet ordering notation), 207, 478,

501, 611
Current, 759

displacement -, 37, 53
electric -, 27, 28
Noether -, 77
probability -, 58

Curvature, 13, 81, 83
- of spacetime, 80, 81
- scalar
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Curvature (cont.)
Ricci -, 82, 676

- tensor, 81, 82
Einstein -, 82, 104, 676, 682, 761
Ricci -, 82, 169, 675, 682
Riemann -, 81, 99, 104, 169, 395, 673,

674–676, 682, 698, 799
Weyl -, 83, 108, 169, 350, 676, 679,

682, 698, 813
extrinsic -, 98, 98, 99–101, 106, 252, 381,

385
Gauss -, 99
mean -, 99
principal -, 99

Cyclic
- coordinate, 221, 741, 742, 740, 744, 752,

759, 761, 764, 766
- differential, 234, 248, 251, 300, 304, 424,

428, 432, 590, 764, 765, 767–770
- equation, 245
- velocities, 234, 304, 740, 742, 765, 766

D
Dating, 5, 8, 10, 22, 49, 62
Decoherence, 78, 197, 552, 552, 553, 568,

574, 577, 586, 589, 597, 598, 604
- functional, 191, 586, 586, 587, 589,

591–594, 600, 602
Decoherent histories, 191, 196, 595, 597–599,

631
Deformation, 369, 391

- algebroid, 147
- vector field, 384

TRi version of -, 423
Deformation Approach, 148, 391, 392, 406,

607
TRi -, 423, 424

Degenerate, 175, 262, 517, 636, 651, 727, 747,
748

- configurations, 309
- signature, 406, 411
non-, 262, 675, 677, 708, 823

Degradables, 454, 454, 629, 630, 632
Degree of symmetry, 783
Dense (topological spaces), 71, 665, 726
Derivative

absolute -, 229
Best Matching corrected -, 127, 255, 421,

424, 428
covariant -, 97, 673
gauge covariant -, 74
hypersurface -, 102, 255, 393, 394, 406,

421, 424, 428
Lie -, 84, 142, 233, 456, 671

ordial -, d∂ , 247
partional -, δ∂ , 249
Radon–Nikodym -, 803

Derivative couplings, 393, 394, 425
Descriptors, 350, 350, 397
DeWitt, Bryce, v, 105, 112, 116, 130, 132,

161, 178, 404, 490, 580, 723, 728,
785, 787, 833

Diffeomorphism algebra, 400
Diffeomorphism induced gauge group

projective -, PDigg, 395, 396, 398
Diffeomorphism induced gauge group, Digg,

351, 351, 395, 396, 398, 400, 435,
610

Diffeomorphism invariance, 106
spacetime -, 144, 160, 162, 190, 347, 349,

350, 580
Diffeomorphism invariant

- loops, 331
- measures, 190, 581, 616

Diffeomorphisms, xiii, 91, 143, 149, 151, 253,
352, 384, 433, 434, 456, 464, 670,
689–691, 706, 720, 782, 784, 785,
836

active -, 84, 96, 126, 143, 144, 251, 671
passive -, 84, 143, 144, 397, 670
Representation Theory for -, 164, 189
spacetime -, Diff (m), 83, 141–145, 323,

347, 348, 350, 353, 383, 388, 398,
434, 439, 610

spacetime split -, 433
spatial -, Diff (�), xii, 96, 145, 147, 251,

265, 310, 311, 313, 353, 369, 383,
408, 449

split spacetime -, Diff (m,Fol), 104, 353,
609

super -, 267, 353, 837
unit-determinant -, 411, 787
worldsheet -, 173, 609

Differentiability, 83, 233, 299, 321, 463, 661,
662–664, 670, 681, 685, 726, 821

Differentiable structure, xvi, 83, 96, 143, 380,
402, 638, 648, 669, 826

Differential Geometry level, 96
Differential of the frame, 251, 254, 419, 421,

734
Differential of the instant, 228, 419, 421, 590

- fixing equation, 405, 414
emergent -, 255

Differential space, 776, 780, 826
Differential Topology, 780
Dilations, 656, 680
Dimension, 651, 822

maximal spacetime, 836
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Dimension (cont.)
spatial -, 821
topological -, 666, 667

Dimensional analysis, 162
limitations on -, 159, 532, 533, 540

Dirac, Paul, xiii, 60, 67, 68, 73, 116, 118, 123,
134, 137, 138, 152, 166, 185, 223,
309, 311, 315, 316, 387, 388, 394,
447, 448, 650, 749–751

Dirac Algorithm, xiii, 134, 134, 148, 152, 297,
299, 300, 302, 305, 313, 317, 348,
370, 404, 416, 514, 556, 749, 750,
760

histories-, 360
Dirac equation, 76, 519, 546
Dirac operator, 315
Dirac-type Algorithm, 302, 304, 317, 351,

464, 501
Quantum -, 561
TRi -, 300, 304–306, 401, 403, 404, 414,

419, 432, 767
Direct product, ×, 107, 647, 686, 688, 689

- of groups, 171, 304, 305, 324, 353, 649,
835

Direct sum, 392, 651, 653, 688, 729
Discard Refoliation Invariance (strategy), 608
Discord, 833
Discover Connections and then Curvature

(strategy), 83, 410
Discover Curvature and then Connections

(strategy), 410
Discrete, xxxiv, 12, 13, 636, 639, 647
Discrete Approaches, 169
Distance, 28, 30, 211, 340, 342, 473, 664, 675,

681, 724, 728
- anisotropy, 343
- between shapes, 212, 341
- for Geometrodynamics, 787
- measurement, 17
- on configuration space, 709, 723
- on state space, 832
Euclidean -, 342, 655, 655, 664, 675
geodesic -, 779
Gromov–Hausdorff -, 824
Hausdorff -, 823
homogeneity -, 376
quantizing -, 638
spectral -, 788, 823

Distributions, 805
Domain of dependence, 45, 46, 107, 108, 455,

457–459, 793, 806
Dual

- basis, 680
- forms, 482, 687, 701

- spatial–spacetime tensor, 98
4-space to 3-space -, 406
Banach -, 805
momentum-change -, 769
non-parametrization–geometry -, 123, 124,

219, 220, 223, 224, 234, 259
proper time–instant labelling, 257, 425
ray–wavefront -, 102, 104, 386
S-, 178
spacetime–space -, 421, 423
T-, 178
tensor spacetime–space -, 406
threading–foliation -, 102, 154, 386, 439
time–instant, 229, 257
time–spatial hypersurface -, 88, 146, 389
vector space -, 484, 652, 670, 680

Duration, 4, 8, 10, 21, 22, 43, 60, 61, 273, 471
GR -, 101, 419
SR -, 49

Dynamical laws, 20
Dynamics, 8, 15, 21, 95, 118, 121

- of pure shape, 265

E
Earman’s Principle, 444, 456, 507, 554
Effective theory, 72, 157, 162
Efficient codification, 3, 5, 6
Einstein, Albert, ix, xi, 6, 7, 10, 12, 13, 18, 33,

37, 39, 41, 42, 45, 48, 50, 51, 60,
79–84, 90, 116, 120, 143, 148, 149,
157, 158, 170, 275, 676

Einstein elevator, 79
Einstein–Aether theories, 417
Electromagnetism, 37, 139, 149, 198, 557, 580
Ellip (triangle shape variable), 374
Elliptic

- Hamiltonian, 132
- PDE, 459, 498, 523, 576, 796, 796, 797,

805
quasilinear -, 679

Embedding, 76, 97–99, 119, 120, 147, 148,
191, 193, 379, 380, 380, 384, 385,
391, 392, 399, 400, 402, 404, 409,
421, 434, 443, 452, 458, 468, 470,
790, 791

- variables, 281, 284, 449, 609
isometric -, 380, 381, 388, 824

Embedding equation
- Ricci, 422
Codazzi -, 99, 107, 108, 421, 422

contracted -, 109, 403, 404
Gauss -, 99, 107, 108, 404, 421, 422

contracted -, 404
doubly contracted -, 109
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Ricci -, 104, 108, 404
Embedding Theorems, 457–459
Emergent Time after Quantization (strategy),

183
Emergent Time before Quantization (strategy),

124, 182
Endomorphism, 648
Energy, 77, 81, 811

- as conjugate to time, 167, 437, 550, 746
- balance, 158
- condition, 288
- conservation, 291, 741, 759, 761
- density, 796
- desert, 159
- eigenstate, 599
- equation, 124, 167
- exchange, 290, 293, 540, 809
- in GR, 92, 757, 761
- integral, 740, 764, 806
- interlocking, 496
- loss, 55
- non-conservation, 163
- spectrum, 59, 76, 831
- thermal, 810
- transfer, 807
dark -, 90
finite -, 61
Helmholtz free -, 808
high -, 76
internal -, 808
kinetic -, 31, 123, 218, 247, 763

GR -, 105
low -, 160, 161
Planck -, viii
positive -, 63
potential -, 31, 123, 247
total -, 123, 163

Energy, Problems of -, 437
Energy condition

dominant -, 806
Ensembles, 811, 811, 831

canonical -, 811, 813
grand -, 811, 831
microcanonical -, 811

Entropy, 345, 551, 724, 808, 808, 809, 811,
813, 827

black hole -, 176, 177, 313, 517
classical microscopic -, 813
gravitational -, 808
neg-, alias information, 341, 813
quantum -, 832
Shannon -, 833
topological -, 827
von Neumann -, 832

Environment, 64, 164, 552–554, 577,
600–602, 605

small -, 595
Equality

strong -, 323
weak -, 211, 323, 350, 749

Equations of motion
ADM -, 107, 332, 798
Euler–Lagrange -, xvi, 31, 53, 134, 222,

249, 739, 740
Hamilton’s -, 743

d∂-, 767
d∂A-, 768

Heisenberg -, 58, 574
Jacobi–Mach -, 222, 236, 249, 250, 254,

764
relational -, 257, 291
TRi-split relational-, 422

Equipping Objects with a Brackets Structure
(strategy), 297

Equivalence Principle, 27, 79, 158, 161, 389,
416

Einstein -, 83, 89
geometrodynamical -, 393, 410, 417
Strong -, 83
Weak -, 83

Equivalence relation, 647
Eternalism, 7
Euler, Leonhard, 24, 31, 103, 123, 170, 281,

329, 540, 739, 743
Event, 5

coincidence -, 5
emission -, 5
reception -, 5

Event (Probability), 801
Evolution, 8, 10, 58, 102, 107, 109, 112, 117,

187, 194
Evolution Postulate, 58, 62
Evolving constants of the motion, 138, 188
Exact sequence, 704

short -, 704, 836
Exclusion Principle: Pauli’s -, 60, 67
Expectation, 57, 802
Expectation terms, 532, 539, 543
Extent, 6, 43

F
Facet ordering, 207, 323, 436, 522, 544
Fadde’ev–Popov, 580, 581, 583, 592, 631

- factor, 580
TRi -, 592

Faraday–Lenz Law, 37
Fashionables, 454, 454, 629, 630, 632
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FDE (functional differential equation), 514,
625, 663, 798

- in Quantum Gestalt, 511
- regularization, 514, 799
beables -, 323, 330–332, 335, 564, 760
Field Theory Hamilton–Jacobi -, 762
linear -, 798
second-order -, 514
well-definedness -, 799

Fermions, 171, 245, 259, 315, 546, 755, 811,
831

Feynman, Richard -, 66, 68, 72, 77, 161
Feynman rules, 72, 169, 353
Fibres, 452, 704, 704
Fictitious forces, 23, 52
Field (Algebra), 650, 680
Field equations, 25, 80, 81, 109, 352, 406

Einstein -, xiii, 82, 82, 83, 84, 89, 105, 111,
121, 143, 144, 348, 383, 386, 404,
439, 540, 677, 760, 794, 798

relational split -, 428
split -, 95, 97, 109
TRi split -, 422

Maxwell -, 38, 47
quantum-sourced Einstein -, 157
Yang–Mills -, 74

Field Theory, xxxv–xxxvii, 10, 25, 511, 725,
757, 781

Filling by a congruence of threads, 439
Filling Congruence Dependence Problem, 439
Fine structure constant, 73
Finite limits and colimits, 847
Finite Theories, 10
Fischer, Arthur, 450, 778, 783–787, 823
‘Fitting together’ condition

- of stratified manifolds, 638, 778
Flow

- of time, 7, 100, 384, 419, 423
material -, 103
tilted -, 102

Fluid Mechanics analogies, 157, 159
Fock space, 66, 72, 76, 163, 587, 638
Foliation, xiii, xvi, 44, 96, 100, 100, 101, 102,

104, 112, 131, 137, 147, 191, 278,
379, 383, 383, 384, 386, 387, 389,
391, 398, 399, 401, 422, 435, 439,
443, 457, 458, 467, 468, 472, 609,
747, 837

- fixing, 608
- primality, 379, 385
- privileged, 617
- vector, 610, 636
-fixing equation, 387
arbitrary -, 388

CMC -, 148, 386, 439, 457
fixed -, 385, 608
local -, 457
privileged -, 388, 389, 415, 416, 434, 457,

458, 608
quantum -, 608
reference -, 424
TRi -, 423

Foliation Dependence, xiii, 149, 365, 388, 434,
607, 609, 610, 617, 622

Foliation Dependence Problem, 146, 147, 152,
189, 387, 390, 439, 593

- with Histories Theory, 609
- with Internal Times, 609
- with Path Integral Approach, 609
Quantum -, 609

Foliation Dependent anomalies, 559, 607, 609
Foliation Formulation, 147, 379, 419, 432

TRi -, 423
Foliation Independence, xiii, 146, 194, 365,

379, 399, 433, 466, 607, 608
Quantum -, 191, 560

Foliation Independence strategies
Quantum -, 607

Foliations
multiple -, 146, 311, 386, 387, 400

Force Law, 20
Biot–Savart -, 28
Coulomb’s -, 26
geodesic deviation as a -, 83, 111
Inverse -, 90
Lorentz -, 38, 83, 111

Forgetful
- map, 379, 381, 648
- morphism, 379, 842

Frame dragging, 90
Frames, vi, ix, 195, 607, 785

- accelerated, 49
- global, 13
accelerated -, 89
freely falling -, 83, 409
Galilean -, 22, 52, 54
inertial -, 23, 23, 41, 45, 49, 83, 116

local -, 409
g-, 232, 238, 250
locally inertial -, 116
Lorentzian -, 13, 43, 44, 91, 409

local -, 259
non-inertial -, 23, 44
rest -, 38
rotating -, 23, 27, 29

Fréchet
- Calculus, 726
- spaces, 725, 725, 726, 727, 788, 795, 819
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Free end
- notion of space variation, 248, 765, 771
- point variation, 234, 236, 765
- spatial hypersurface variation, 412, 765

Free fall, 80, 161
Friedmann equation, 273, 274, 535
Frontier property, 778

inverse -, 778
Frozen, 35, 140, 167, 182, 275, 285, 397, 412,

446, 540
- quantum wave equation, xii, 130, 167,

181, 182, 187, 228, 489, 492, 521
non-, 289, 443

Frozen Formalism Problem, xii, 130, 131, 182,
189, 220, 289, 493, 521, 571, 581,
613

Quantum -, 181, 223, 224, 494, 537, 614
Fully Timeless Approaches, 205, 337, 339,

569, 570
Fully Timeless Postulate, 339
Function space, xxxvii, 663, 801
Functional Analysis, 71, 489, 524, 663, 725,

726, 805
Functional Evolution Problem, 186, 297
Functor, 519, 841

- category, 842
Future, 4, 4, 6–8, 46, 86, 92, 101, 273, 382,

455, 589, 612, 806
causal -, 45, 45
chronological -, 45, 458

G
g-Act g-All Method, 211

TRi -, 235
g-scalar, 211
Galaxies, xiv, 89, 90, 167, 615, 817
Galileo, 15, 19, 20, 22, 655
Gauge

- choice
Coulomb -, 69, 69, 198
harmonic -, 112, 161, 288, 798
Lorenz -, 69, 112, 309

- covariant derivative, 74
- fixing, 278, 398, 592, 798
- generator, 396, 397
- group, 73, 76, 126, 400
- invariant, 138
- orbit, 448
- orbit strata, 628, 630
- symmetry, 68, 72, 75, 309, 392
- transformation, 69, 198, 397
-fixing, 395, 580, 581, 627, 750–752
-fixing equation, 333
data-, 309, 394, 751

notions of -, 309
path-, 309, 353, 751

Gauge Theory, 34, 80, 126, 579
Gauss, Carl Friedrich, 12, 13, 26, 81, 99, 198,

802, 806
Gauss’ Law, 26
Gauss’ Outstanding Theorem, 99
Gell-Mann, Murray, 73, 190, 361, 598, 689
Gell-Mann–Glashow Theorem, 392
General Relativity (GR), v, xxxv, xxxvii, 7, 13,

79, 95, 115–120, 122, 125, 129,
143, 215, 247, 264, 331, 332, 347,
379, 391, 402–404, 408, 428, 434,
514, 559, 560, 580, 607, 725, 731,
781, 798, 808, 837

Generic (GR), 91, 103, 163, 164, 226, 253,
608, 621, 732, 786

Genesis
separo-, 472
topological manifold -, 472
topological space -, 473

Genus, 668
Geodesic, 240, 444, 451, 453, 675, 676, 682,

728, 761
- deviation, 81, 674
- deviation equation, 81, 83, 111, 674, 682
- equation, 79, 111, 229, 290, 291, 673,

679, 680
non-affinely parametrized -, 87

- hitting strata, 628
- incompleteness, 728
- principle, 219, 245, 467, 763
affine -, 673
null -, 87, 92, 94, 679

Geometrization, 7, 81, 82, 677
co-, 7, 12, 13, 43, 96, 118, 141, 205, 299,

353
Geometrodynamics, v, x, xxxvii, 95, 95, 96,

97, 108, 110, 112, 117, 119, 128,
129, 144, 149, 159, 175, 176, 193,
194, 220, 251, 253, 266, 270, 275,
280, 312, 313, 317, 331, 332, 384,
387, 391, 469, 512, 514, 517, 518,
520, 536, 558, 564, 571, 679, 787,
791, 793

- with topology change, 468, 822
Affine -, 529, 558, 564, 578, 594, 613, 638
Machian -, xi
Quantum -, 199
Strong Gravity -, 408
TRi -, 419
unit-determinant -, 411

Geometrodynamics, general -, 97, 122, 406,
410, 412, 611
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Geometrostatics, Galileo–Riemann -, 458
Geometry, 9, 210, 220, 680

3-, 95, 106, 331
Absolute -, 658
Affine -, 215, 262, 264, 269, 330, 483, 656,

676, 678, 693
configuration space -, xxxv, 105, 199, 219,

220, 709
Conformal -, 215, 263, 264, 269, 658
conformal 2-, 440
conformal 3-, 280, 284
Curved -, 12, 81
DeWitt -, 248
Differential -, 84, 461, 678

Affine -, 672
Conformal -, 468, 678, 682

dynamical -, 229
Equi-p-voluminal -, 656
Equi-top-form-al -, 330
Equiareal -, 656, 693
Euclidean -, 12, 20, 22, 29, 49, 264, 656
Finslerian -, 245, 677
Flat -, xxxiv, 29, 42, 82, 98, 264, 655

Affine -, 673
Intrinsic -, 100
kinematical -, 229, 444, 719
Manifold -, xxxiv, 444, 667, 825
Metric -, 80, 81, 678
Ordering -, 658
Projective -, 55, 264, 269, 441, 658
Randers -, 245, 677
Riemannian -, 13, 675, 677, 711, 728
Riemann’s quartic -, 244, 677
Shape -, 265, 341, 343, 346
Similarity -, 264, 656, 680
Stochastic -, xxxvii, 817, 819
Symplectic -, 683, 753

Geroch’s Theorem, 636, 822
Ghosts, 580
Giulini, Domenico, 142, 258, 389, 630
Gleason’s Theorem, 572, 831
Global

- Cauchy problem, 459
- continuity, 478, 564
- differential structure, 669
- effects in QFT, 512, 627, 841
- embedding, 383
- existence, 795, 797
- frames, 13, 100
- histories, 631
- Killing vectors, 215
- obstruction, 448, 452, 480, 485, 488, 627,

641, 707, 845, 846
- product space, 704

- protective theorems, 797
- section, 448, 452, 625, 641, 707, 843,

845, 846
- sensitivity -

of operator spaces, 479
of QM, 481, 486, 557, 566, 613, 625,

628
- slice, 473
- solutions, 443, 457
- Spacetime Construction, 459
- symmetry, 72, 75
- timefunction, 100, 384, 455
- uniqueness, 797
- valuation, 640
- well-definedness, 626

Global positioning system (GPS), 90, 93, 112
Global Problems of Time, xiii, 153, 195, 443,

625
Global Validity, xiii, 152, 443
Globality, 793

- in configuration space, 346, 449, 626, 632
- in space, 21, 384, 443, 444, 449, 451,

457–459, 626, 632
- in spacetime, 13, 80, 457
- in time, 21, 49, 63, 443, 444, 447,

456–458, 470, 626
- over manifolds, 456

Globalize
- by Discarding (strategy), 444
- by Extension (strategy), 444, 726, 794
- by Replacement (strategy), 444, 793

Globally
- valid foliation, 386
-nontrivial fibre bundle, 706

Globally hyperbolic, 107
Gluing condition for sheaves, 452, 640, 843,

845
Gluons, 73
Gordian cube, vii, ix, 159, 177, 262–264, 267,

269, 468
GR Path Integral strategies, 580
Graining, xxxviii, 338, 346, 779, 812, 827

coarse-, 340, 341, 349, 356, 585–587, 641,
810, 811, 812, 818, 825, 830

coarsest -, 811
fine-, 349, 356, 811, 827
finest -, 586, 811, 830
re-, 813

Graph, 653
Gravitation, 13, 27, 79–81, 160, 170, 325

2 + 1 -, 149
alternative theories of -, 159, 165, 169, 215,

260, 309
higher-order Theory of -, 170
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Gravitation (cont.)
Lovelock Theory of -, 170
Newtonian -, 24, 79, 81

Gravitational
- compass, 350
- degrees of freedom, 275, 280, 522, 608,

734, 736
- fall, 79
- field, 24
- force, 25
- potential (scalar), 25, 199, 238
- radiation, 157, 158, 198
- redshift, 89, 90, 110
- vector field, 25
- waves, 51, 83, 90, 102, 109, 149, 160,

169, 198
Gravitational regime

strong -, vii
weak -, 85, 159, 162, 198

Gravitino, 171
Graviton, 160, 160, 161, 172–174
Gravity

- gravitates, 160, 240
nothing can be shielded from -, 27, 225,

540
surface -, 87, 111, 165

Green’s function, 66, 162, 747, 815
energy -, 582

Gribov
- horizon, 448
- phenomenon, 448, 449, 452, 627, 631,

707
- region, 448, 785

Groenewold–Van Hove phenomenon, 194,
480, 492, 520, 621, 641

Grothendieck, Alexander, 846, 847
Group, 680

- centre, 649, 694, 697
Abelian -, 649
affine -, 656, 693
canonical -, 484, 492, 588, 591, 594
cohomology -, 485, 703
conformal -, 264
continuous -, xi, 233
Data -, 394
equi-top-form -, 693
Euclidean -, 29, 269, 656
fundamental -, 483, 486, 505, 516, 702, 703
Galilean -, 659, 693, 698
gauge -, 73, 76, 126, 400
Heisenberg -, 689
holonomy -, 707
isometry -, 690

isotropy -, 450, 650, 695, 720
kinematical -, 23
Leibniz -, 36, 127
Lie -, 212, 464, 474, 567, 638, 649, 666,

685, 686, 689, 690, 693, 696, 731,
781, 782, 794, 835

compact -, 212, 694, 803
Fréchet -, 726, 782
infinite-d -, 692, 728

Lorentz -, 38, 47, 467, 659, 686, 689
special -, 46

Möbius -, 659
Poincaré -, 46, 160, 269, 467, 659
proper orthochronous Lorentz -, 659, 689
similarity -, 269, 656
special orthogonal -, 656
special unitary -, 659
structure -, 682, 704
symplectic -, 688
topological -, 666, 782, 803
unitary -, 659
universal covering -, 687

Group action, xi, 126, 210, 232, 233, 235, 307,
340, 464, 502, 649, 697, 723, 782

free -, 696, 785
Lie -, 775–777
natural -, 649
proper -, 781
transitive -, 516, 784

Group extension, 836
central -, 836

Group orbit, 199, 352, 389, 484, 516, 650, 696,
697, 777, 781, 782, 784

Group orbit space, 450, 628, 775, 778, 781,
819

Group Theory, 649
Group

homology -, 703
Guiding principle, xii, 307

H
Halliwell, Jonathan, xvi, 149, 344, 359,

361–365, 437, 565, 577, 578, 595,
599, 605

Halliwell–Hawking type model, 149
Hamilton, William Rowan, 53, 743, 748
Hamilton–Jacobi equation, 183, 534, 535, 540,

548, 748, 755, 760
Einstein–, 121, 762

Hamiltonian, 53, 61, 121, 132, 396, 399, 614,
743, 743, 748, 757, 759, 770, 811

- vector field, 747
bare -, 300, 749
constrained -, 748
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Hamiltonian (cont.)
differential -, 222
Dirac -, 67
electromagnetic -, 69
elliptic -, 132
extended -, 751
hyperbolic -, 132
l-, 183, 550
d∂-, 767
d∂A-, 307, 768, 768
parabolic -, 131, 185, 274, 282, 284, 521,

522
primed -, 751
quantum -, 70, 188, 495, 499, 598
scalar field -, 65
starred -, 749
time-dependent -, 289, 550, 771
total -, 140, 300, 749, 761

d∂A-, 249, 308
total A-, 304
true -, 132, 198, 282, 288, 521, 523, 524,

624
Yang–Mills -, 75
zero -, 495, 761

Hamiltonian variables, 131, 134, 223, 614
Hamilton’s characteristic function, 748, 760,

771
Harmonics

scalar -, 372, 509, 734, 788
spherical -, 497, 506, 507
tensor -, 374, 509, 734, 790
vector -, 374, 734

Hartle, James, 167, 190, 346, 361, 588, 594,
598, 599, 833

Hartle–Hawking no boundary proposal, 167
Hartree–Fock method, 541, 547, 548
Hausdorff, Felix, 665, 823, 824
Hausdorff paracompact spaces, 780
Hausdorffness, 450, 452, 471, 472, 665, 666,

667, 681, 727, 775, 776, 779–781,
783, 785, 787, 826, 828

Hawking, Stephen, 94, 115, 149, 164–167,
187, 365, 508, 637, 822

Hawking radiation, 164, 198
Heat, 807
Heat Death, 9
Heisenberg, Werner, 56, 58, 60, 72, 158, 689
Helicity, 695
Heraclitus, 7
Here, 5
Hidden Time Approach, xvi
Higher derivative terms, 539, 540, 544
Hilbert Space Problem, 182

Hilbert spaces, 55, 58, 62, 71, 72, 163, 164,
478, 488, 489, 495, 527, 529, 549,
553, 554, 625, 638, 650, 663, 681,
725, 726, 788, 803, 806

cohomological -, 625
dynamical -, 322, 478
kinematical -, 322, 478, 589, 613
operators on -, 492, 519, 625
ray in -, 55, 70

Histories, 10, 49, 62, 145, 146, 152, 187, 309,
356, 376, 399

- brackets, 355
- constraints, 356, 357, 360
- momenta, 355
consistent -, 190, 190
space of -Hist, 610

Histories, Gell-Mann–Hartle -, 594
Histories Approach, xvi
Histories Brackets Approach, 356
Histories Postulate, 190, 356
Histories Projection Operator (HPO)

Approach, 586, 588, 590, 593, 594,
597, 610

Histories Theory, 190, 191, 200, 355, 356, 398,
456, 560, 570, 585, 598, 612, 616,
630, 639

Hodge-*, 701
Hojman, Kuchař and Teitelboim, 147, 148, 391
Hölder spaces, 797, 805, 806
Hole argument, 143
Holography, 178, 261, 618, 619, 809
Holonomy, 175, 331, 707, 782
Homeomorphisms, 379, 470, 665, 667, 687,

706
Homogeneity, 88, 88, 103, 120, 125, 129, 198,

389, 415, 434, 617
Homogeneous space, 484, 516, 715, 727, 775,

784, 835
Homology, 702, 703, 791, 793, 842

- group, 703
Homothetic

- Killing
vector-, 691

- symmetry, 691
- tensor, 680
- tensor calculus, 219

Homothety, 680
- covariant, 680
- equation, 691
- invariant, 680

Homotopy, 486, 505, 512, 516, 702, 791, 793
Hooke’s Law, 29
Horizon

Cauchy -, 107
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Horizon (cont.)
cosmological- alias particle-, 88
event -, 85, 111, 511, 517, 809
Gribov -, 448
particle -, 88, 111, 471

HS (Hausdorff second-countable) stratified
manifolds, 826

Hughes–Kato–Marsden Theorem, 798
Husain–Kuchař model, 149, 313
Hyperbolic

- Hamiltonian, 132
(PDE), 107, 184, 271, 498, 728, 793, 795,

796, 798, 806
Hypersurface, 97

- derivative, 102, 255, 393, 394, 406, 421,
424, 428

- kinematics, 255, 393, 394, 425, 426, 611
Machian -, 424

- tensor, 98, 99, 406, 419

I
Ideal (Algebra), 653, 688
Identically distributed (Probability), 803
Identity of Indiscernibles, 34, 154, 450
Imperfect knowledge, 338, 809, 831

- of subsystem contents, 809
- of subsystem state, 809

Implicit Function Theorem, 664, 797
Inclusion map, 381, 647, 785
Independent dynamical variable, 8
Independent (Probability), 801, 803
Index (Analysis/Topology), 707
Index Theorems, 629, 707
Infinity

future null -, 85
past null -, 85
spatial -, 85

Influence functional, 600, 602
Information, xxxvii, 188, 211, 340–343, 345,

362, 376, 453, 577, 594, 595, 598,
724, 807, 813, 827

- storage, 553
angular -, 722, 818
gravitational -, 808
mutual -, 814, 814, 815

quantum -, 832
quantum -, xxxviii, 827, 829, 832
ratio -, 722
relational -, 478
relative -, 814, 814

quantum -, 832
Shannon -, 813, 832, 833
shape -, 341

topological -, 455, 471
useful -, 340
von Neumann -, 832, 832, 833

Information Gathering and Utilizing Systems,
346, 554

Information Paradox, 165
Inhomogeneity, xiv, 88, 90, 103, 129, 130,

149, 167, 183, 291, 292, 338, 341,
343, 365, 372, 373, 376, 416, 548,
571, 598, 716, 734, 736, 787, 790,
812, 815, 819

Initial value problem (GR), 109, 199, 264, 278,
283, 413, 415, 451, 678, 787, 796,
796

Injective, 83, 84, 647, 670, 704
Inner product, 55, 57, 58, 62, 65, 498, 588, 652

- space, 28, 29, 55, 652, 725
Dirac -, 67, 519
Klein–Gordon -, 66, 166, 182, 184, 498,

499, 528, 529
Rieffel induced -, 499, 600, 836, 839
Schrödinger -, 58, 182, 199, 498, 522, 527,

632
Inner Product Problem, 182, 182, 189, 493,

498, 527, 528, 549, 581, 582, 613,
623, 629

Insist on Constructing Dirac Beables
(strategy), 325

Instant, 4, 7, 8, 10, 22, 46, 188, 205, 228, 229,
257, 337–340, 343, 346, 356, 360,
386, 467, 573, 576, 595

Integrability, 298, 319, 388, 402, 410, 411,
502, 691, 692, 694, 799

- in GR, 315, 316
- in Supergravity, 315
- of GR, 407, 435
brackets closure -, 477
non-, 749
Thomas -, →© , 306, 311, 315, 317, 686,

692, 836,334
two-way -, ↔© , 315, 686, 836

Integral curve, 671, 671, 747, 795
Intermediate Value Theorem, 662, 663, 666
Internal Principle, Mach-type -, 248
Interpretation of QM, 59

Conditional Probabilities -, 188, 574
Copenhagen -, 59, 62, 168, 188, 497, 538,

567, 570
Many-Worlds -, 497
Naïve Schrödinger -, 187, 570

Intertwiners, 625, 842
Interval (SR), 43, 659
Invariance

diffeomorphism -, 144, 512



Index 903

Invariance (cont.)
Galilean -, 38, 41, 53
Lorentz -, 42, 84, 161, 758
Poincaré -, 71, 143

Inverse Function Theorem, 664, 726
Inversion, 216

- in a sphere, 214, 264, 657, 692
parity -, 75

Involution, 702, 838
Isham, Chris, v, 91, 115, 143, 154, 190, 195,

197, 207, 297, 348, 355, 383, 384,
400, 461, 463, 464, 472, 473, 484,
513, 516, 528, 550, 594, 610, 612,
624, 635, 638–641

Isolation of space and time, 49
Isometries, 30, 84, 664, 689

of Minkowski spacetime, 46
Isomorphism, 648, 649, 651
Isotropy, 29, 48, 88, 273, 496, 777, 818

J
Jacobi, Carl, 30, 52, 102, 123, 124, 138, 199,

218–220, 285, 507, 669, 674, 685,
710, 711, 743, 748

Jacobi identity, 138, 350, 685, 697, 747, 754
Grassmannian generalization of -, 755

Jacobi vector field, 674
Jacobian (determinant), 30, 580, 669

K
Kendall, David, 212, 215, 238, 341, 342, 711,

720, 723, 810, 818, 828
Kernel, 511, 579, 588, 590, 651, 691, 698,

702–704, 724, 797
Killing

- equation, 199, 485, 690, 692
- form -, 84, 690
- operator, 690
- tensor, 698
- vector, 49, 84, 87, 91, 97, 163, 215,

450–452, 485, 689, 690, 697, 722,
728, 736, 737, 761, 782, 783, 786,
797

absence of -, 760, 786
absence of timelike -, 91
approximate -, 786
timelike -, 85, 163, 164, 190, 272, 496,

759
Kinematical geometry, 21
Kinematical group, 23
Kinematical Quantization algebra, 481, 486,

613
Kinematical Quantization algebraic structures,

839

Klein–Gordon Approach, xvi, 272
Klein–Gordon equation, 65, 67, 76, 132, 184,

198, 527, 528, 544, 806
Klein–Gordon operator, 272, 315
Klein–Gordon-type Approach, 199
Klein–Gordon-type equation, 272, 491, 540
Knots, 176, 265, 331, 564, 791
Kochen–Specker Theorem, 487, 641, 839, 847
Kuchař, Karel, v, 102, 112, 138, 148–150, 153,

175, 191, 195, 274, 288, 297, 309,
383, 387, 391, 400, 443, 457, 558,
559, 574, 588, 589, 608, 609, 799

L
L2-spaces, 481, 482, 484–486, 508, 587, 725,

781, 803
Lp-spaces, 803
Lagrange, Joseph-Louis, 31, 107, 126, 285,

299, 446, 710, 739, 740
Lagrangian, 31, 219, 247, 739
∂-, 422
Dirac -, 67
electromagnetic -, 48
scalar field -, 65
Yang–Mills -, 74

Lapse, 100, 101, 101, 106, 122, 228, 243, 253,
266, 285, 286, 301, 366, 372, 382,
384, 385, 388, 414, 734, 761

Lapse fixing equation, 285, 301, 414, 750, 762
Lattice, 824

- Field Theory, 471
- of collections of subsets, 825, 827
- of constraint subalgebraic structures, 318,

319, 348, 432, 466, 557, 753
- of notions of beables, 318, 319, 324, 432,

466, 557, 563
- of subgroups, 745, 825
- of subsets, 825, 827, 828
- of topological spaces, 472, 681, 825, 827,

828
Law of Gravitation

Newton’s Universal -, 20, 24, 26
Law of Mechanics

Newton’s -, 19, 20
First -, 19, 23
Second -, 19, 20, 24, 48
Third -, 19

LCHP (locally compace Husdorff
paracompact) stratified manifolds,
780

LCHS stratified manifolds, 826
LCHS: locally compact Hausdorff

second-countable, 780, 780, 828
Leaves, 383, 747
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Leibniz, Gottfried Wilhelm von, x, 20, 23, 33,
34, 37, 203, 217, 228, 246, 409

Length, 12, 28, 30, 80, 97, 675
- contraction, 43, 44, 53
- measurement, vi, 17, 51, 64, 93
- positivity, 514
- unit, 18
-standard, 51
coarsened -, 823
Compton wave-, vii, 65, 158
extremal -, 676
minimum -, 172
path -, 18
Planck -, 158, 162, 165
proper -, 94
string -, 172
temperature dependence of -, 17
wave-, 605, 822

Leray, Jean, 109, 796–798, 843
Leray’s Theorem, 798
Levels of mathematical structure, xvi
Lichnerowicz equation, 112, 278, 279, 412
Lichnerowicz–York equation, 278, 679, 683,

797
Lie algebroids, 298
Lifetime (QM), 60
Light cone, 45
Linear

anti-, 58, 651
locally -, 662

Linear map, 651, 652, 663, 670
anti-, 651

Linearity
anti-, 76

Local
- angle, 214, 263, 264, 675, 678
- beables, 629, 839
- charts, 448, 592, 640, 682, 701, 777
- compactness, 776, 780
- condition for sheaves, 452, 843
- convexity, 726, 804
- countability, 828
- data, 828
- embedding, 383
- Euclideanness, 452, 471, 667, 667, 681,

726, 727, 779, 780, 826
- finiteness, 666
- frame, 79
- gauge fixing, 593, 752
- gauge symmetry, 72, 791
- geodesics, 451
- histories, 456
- inertial frame, 80
- invariant, 747

- observables, 512, 629, 799, 839
- observer, 139
- product, 704
- restriction, 845
- section, 448, 632, 682, 777, 783
- slab, 131, 453, 454, 458, 628
- solutions, 451, 457, 485, 625, 794, 795,

797
- trivialization, 706, 777
- well-posedness, 794
- in-time slab, 376, 508, 789

Local Lorentz Invariance, 83
Local Poincaré Invariance, 83
Local Position Invariance, 83
Locality, 793

- from subset overlaps, 827
- in configuration space, 445, 796
- in space, 100, 107, 153, 445, 451
- in spacetime, 73, 128
- in time, 107, 153
- on manifolds, 454
quasi-, 793

Localization, 188, 211, 444, 594, 716, 809, 827
Localized

- energy, 761
- in configuration space, 575, 626, 630
- in phase space, 453
- in space, 340, 350, 364, 453–455, 457,

575, 626
- in time, 364, 386, 454, 457, 626
- subconfiguration, 188, 337, 344–346
- subset, 809
- subsystem, 809

Locally
- finite, 778
- linear, 662
- small category, 843
- valid foliation, 386

Location, 5–7, 25, 90, 92
Logic

atemporal -, 8, 338, 598
binary -, 638, 640
contextual -, 640
geometrical -, 640
multi-valued -, 640
propositional -, 572, 594
temporal -, 8, 339

Longitudinal potential, 283, 797
Loop, 265, 331, 516, 518, 564, 782

- representation, 175
- space, 516, 707, 790, 791, 804
diffeomorphism invariant -, 331

Loop Quantum
- Cosmology, 176
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- Gravity, alias Nododynamics, x, xiv, 149,
154, 175, 176, 193, 194, 200, 208,
265, 266, 313, 317, 353, 378, 389,
469, 516, 517, 558–560, 564, 606,
612, 618, 791

Lorentz, Hendrik Antoon, 13, 38, 39, 41, 42,
47, 83, 105, 144, 160, 169

Low-velocity regime, vii

M
M-Theory, x, xiv, 175, 178, 178, 194, 197,

200, 270, 347, 619, 641
Mach, Ernst, x, xi, 33, 203, 228, 246
Mach-type Internal Principle, 248
Mach-type Spacetime Principle, 352
Machian Strategy, 365
Mach’s Principle (for the Origin of Inertia), 35,

83, 116
Mach’s Space Principle, 35, 117, 248, 352
Mach’s Time Principle, 35, 35, 36, 116, 124,

129, 184, 218, 224, 225, 228, 255,
288, 353, 441, 463, 540, 575, 763

Mackey, George, 484, 492, 569, 573, 575, 835
Mackey Theory, 484, 638, 835, 837
Mackey’s Principle, 569, 573, 575, 576, 598
Manifest Parametrization Irrelevance, 123, 218
Manifest Reparametrization Invariance, 122,

217
Manifold, 667, 675, 826

- with boundary, 669
- with corners, 779
Banach -, 726
complex -, 701
differentiable -, 154, 379, 467–469, 635,

842
Fréchet -, 726, 782, 784
Hilbert -, 726
Poisson -, 746, 746, 842
symplectic -, 746, 747, 787
topological -, xvi, 154, 155, 197, 212, 251,

265, 379, 449, 667, 668, 702, 706,
715, 825

Map, 647
Legendre -, 395, 753

Markov chain, 11, 805
Mass

- distribution, 35
- gap, 75, 171
- hierarchy, 171, 291, 292, 534
- limit on primordial Black Holes, 165
- measurement, 64
- metric, 31, 446
- ratio, 291
- unit, 27

Chandrasekhar -, 86
clock -, 63
enclosed -, 158
gravitational -, 24, 25, 27, 158
inertial -, 20, 27, 75, 161
measurement of -, 64
origin of -, 75
Planck -, viii
proton -, viii
reduced -, 711
regulator -, 511, 514
solar -, 166, 198
stellar -, 86
variable -, 498, 509

Mass ratio, 292
gravitational-to-inertial -, 79

Mass–energy equivalence, 48
Matrix

co-variance - (Statistics), 802
density, 552
density -, 829–831

- of the Universe, 519
thermal -, 831

Dirac -, 67
Legendre -, 749, 752
Pauli -, 60, 696
S-, 72, 95, 161, 171, 511, 605
transformation -

Jacobian -, 30, 84, 669, 670
Legendre -, 748, 760, 768
d∂−1-Legendre -, 767

Matter Time Approach, xvi
Maximal collision, 345, 450, 576, 722, 729
Maxwell, James Clerk -, 37, 38, 811
McTaggart’s A, B and C series, 7
Mean Value Theorem, 663
Measurable, 803, 804
Measure, xxxvii, 168, 532, 572, 581, 583, 801,

803
group -, 212, 515, 579, 581
Haar -, 803
Lebesgue -, 803, 804
probability -, 341, 804

Measure Problem, xiii, 168, 190, 195, 581, 582
Measure Theory, 803
Measurements in QM, 62
Mechanics, 236

Celestial -, 20
Newtonian -, 19
parametrized particle -, 149
Relational Particle—(RPM), vii, xi, 36,

119, 125, 129, 139, 149, 203, 213,
237, 239, 240, 328, 495, 503, 507,
557, 617, 637, 709, 715
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Mechanics (cont.)
Temporally-Relational but

Spatially-Absolute -, 123, 139
Terrestrial -, 20

Meshing
- charts, 153, 625, 669, 794
- orbifold charts, 776
- sections, 632
- stratified manifold charts, 779
-in bundles, 706
-stratified manifold charts, 453

Metric, 12, 80, 98, 170, 727, 826
Bianchi -, 731
Euclidean -, 12, 29
FLRW -, 88
Friedman–Lemaître–Robertson–Walker

(FLRW), 88
Fubini–Study -, 716, 717
induced -, 381
Kerr–Newman -, 86
kinetic -, 121, 293, 711

GR -, 271
Minkowski -, 13
path -, 675, 824
Reissner–Nordström -, 87
Riemannian -, 12, 675
Schwarzschild -, 85, 165
semi-Riemannian -, 80, 105, 675
spacetime -, 80
spherical -, 716
temporal -, 96
time -, 125

Metric function, 664, 677
Metric (in metric space sense), 648
Metric level of structure, xvi
Metric spaces, 12, 464, 471, 664, 681, 711
Metric tensor, 675
Metrizability, 725, 726, 727, 779, 781, 783
Metrodynamics, 410, 412
Metrodynamics, general -, 611
Metrology, 15, 16
Metrostatics, Galileo–Riemann -, 411
Michelson–Morley experiment, 38
Microcausality, 71, 162, 193, 582
Midisuperspace, x, 88, 149, 378, 560, 594,

716, 819
: Einstein–Rosen cylindrical gravitational

waves, 149
: Gowdy cosmologies, 149, 332
: spherically-symmetric -, 149

Minimal relationally nontrivial unit, 215
Minisuperspace, x, 120, 129, 137, 149, 198,

203, 527, 532, 557, 617, 624

Misner, Charles, 100, 130, 167, 168, 220, 290,
486, 490, 732, 773, 785

Modespace (of small inhomogeneities), 532,
737

Modules (Algebra), 464, 653, 697
Moment of inertia, 273, 711, 718, 723
Momentum, 31, 48, 77, 95, 121, 123, 206, 299,

743, 766
- flux, 110, 257, 759
- representation, 477
3-geometry -, 335
4-, 71
associated -, 375
conjugate to ‘cosmological constant’, 133
dilational -, 133, 239
Dirac -, 67
discrete theory -, 463
electromagnetic -, 69
embedding -, 284
field -, 759, 761
generalized -, 463, 741
GR -, 106

Ashtekar -, 109
TRi -, 254

histories -, 146, 355, 376, 377
Hopf–Dragt -, 360
knot -, 331
Newtonian -, 20
paths -, 360
Principles of Dynamics -, 31
quantum -, 56
relative Jacobi -, 235
RPM -, 237
scalar field -, 65
shape -, 239, 274, 507
SIC -

reduced -, 373
TRi -, 222, 249, 765
Yang–Mills -, 75
York time as a-, 199

Momentum–velocity relation, 741
Moncrief, Vincent, 311, 558, 783, 786, 787
Monopole, 627, 707

Dirac -, 448
GUT -, 90
Iwai -, 448
magnetic -, 28, 628

Monotonicity, 10, 62, 63, 122, 132, 199, 217,
273, 283, 285, 289, 290, 446, 447,
463, 537

Morphism, 648, 841
Morse

- function, 708
- spacetime, 470, 823
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- Theory, 708, 843
Moyal star product, 477
Multi-particle interpretation of QFT, 66
Multiple Choice Problem, xiii, 154, 194, 195,

621
Multiple Choice Problem strategies, 622
Multiplier

- coordinates, 764
- elimination, 233, 740, 764, 766

N
N-a-gonland, 238, 715
N-stop metroland, 238, 715
Naïve Schrödinger Interpretation, 187, 570
Nash–Moser Theorem, 726
Natural transformation, 842
Nerve, 703
Newton, Sir Isaac, vi, 8, 10, 19, 21, 22, 24, 33,

46, 225
Newtonian Physics, v, 8, 33, 44, 49, 85
Newton’s

- bucket, 24, 35
- gravitational constant, G, vi, 24
- Second Law of Mechanics, 31, 79

No Unexplained Multiplicities (aspect), xiii,
154

Nododynamics, alias Loop Quantum Gravity
(LQG), x, xiv, 149, 154, 175, 176,
193, 194, 200, 208, 265, 265, 266,
313, 317, 353, 378, 389, 469,
516–518, 558–560, 564, 606, 612,
618, 791

Noether’s Theorem, 77, 741, 757–759, 761
Non Tempus sed Cambium Approaches, 205,

232
Non Tempus sed Historia, 206, 356
Non Tempus sed Via, 206, 581
Non-observation of magnetic monopoles, 28
Nongenericity, 761
Nonlinear, 73, 89, 109, 160, 240, 278, 376,

547, 621, 793, 794, 797
Nonmetricity, 677
Norm, 329, 652
Normal, 98
Normed spaces, 28, 464, 652, 711, 725, 838
Not actable upon, 21, 21, 33, 34, 49, 83, 352
Now, 22
Now, present -, 4, 6
Null, 43, 44, 45, 80, 89, 94, 144, 177, 411,

439–441, 761
- normal, 94
- split, 152, 205, 440
- structure quantization, 636
- surface, 440

Null cone, 44–46, 49, 71, 86, 92, 102, 162,
408, 410, 417, 440, 445, 527, 659

O
Observables, xiii, 49, 134, 150, 321, 322, 563,

697, 760, 798
Bergmann -, 353, 395, 400, 435
boundary -, 512
classical -, 55
classical unconstrained -, U , 811
complete -, 324
constrained -, 138
Dirac -, D, 138, 141, 326, 395
generator-complying -, 141, 195, 435, 466
global quantum -, 629
gravitational -, 194
histories -, 400, 435, 456
Kuchař -, K , 138
local -, 629, 799, 839
partial -, 139, 325, 333, 554, 622, 623
path -, 439
quantum -, 60, 62, 187, 563, 830
quantum histories -, 591
quantum partial -, 187
quantum unconstrained -, Û , 478
semiclassical -, 616
space–time split -, 394
spacetime -, S, 142, 144, 349
true -, 324
unconstrained -, U , 137

Observables algebraic structures, 142, 846
Observer, 5, 13, 16, 43, 45, 49, 79, 80, 111,

139, 166, 261, 346, 393, 455, 554,
623, 675, 698, 823

comoving -, 88, 273, 274
Eulerian -, 103
fleet of -, xiii, 44, 102, 103, 137, 146, 311,

389, 393, 467
GR -, 93, 146
quantum -, 59, 93, 497

Obstruction, 73
- to a brackets algebraic structure, 73, 148,

269, 298, 304, 403, 408, 409, 412,
415, 416, 432, 453, 566, 694

global -, 448, 452, 480, 485, 488, 627, 641,
707, 845, 846

Ohm’s Law, 29
Open, 383, 452, 455, 470, 642, 662, 663, 663,

665–667, 669, 681, 703, 706, 726,
727, 776, 778, 783, 796, 804, 805,
817, 819, 843, 844

Operationalism, 9, 11, 16, 21, 35, 43, 49, 60,
62, 172, 226, 227, 290, 356, 360,
384, 472, 565, 629
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Operator ordering, 56, 166, 186, 479, 489, 492,
501, 502, 508, 509, 517, 523, 524,
529, 543, 549, 555–557, 560, 567,
589, 607, 611, 613, 615

- of quantum beables, 566
ξ -, 490, 491, 510
beables -, 567
dynamical -, 489
conformal -, 290, 490, 509, 510, 515, 520,

531, 558, 628, 773
Kuchař’s -, 609
Laplacian -, 490, 510, 628
‘momenta to the right’ -, 514, 515, 558,

559, 612, 616
normal -, 66, 72
symmetric -, 56, 558

Orbifold, 719, 722, 776, 776, 787
Ordering, 8
Ordering of facets, 196
Orientability, 472, 669, 822
Origin of Structure in the Universe, xiv, 615
Orthoalgebra, 588, 589, 824
Overlap

- of charts, 592, 667–670
- of open sets, 706
- of patches, 446, 447
- of sheaf sections, 843
- of subsets, 827

Overlap (QM), 57, 57

P
Page, Don, 187, 344, 571, 573–576
Paracompact Hausdorff spaces, 845
Paracompactness, 666, 678, 727, 780, 781
Paradigm

Aristotelian -, 22, 52
Einsteinian -, 13, 290, 347, 761
Galilean -, 22, 49, 52, 238
Minkowskian -, 44, 47, 48, 52, 75, 81, 82,

160
Newtonian -, 20–22, 30, 33, 52, 82, 209,

238
Relational -, 33
Universal -, 13

Paradigm Shift, vi, viii, ix, 49, 82
Paradigm Split, 115
Paradigms

- of Physics, v, viii, 4, 6
Absolute -, 22

Parageodesic, 451
- equation, 229, 250
- principle, 219, 444, 467, 763
- principle split conformal transformations

(PPSCT), 290, 771

Parallax, 17
Parallel transport, 385, 673, 673, 706, 729
Parametrization (of events), 7
Parametrized Field Theory, 149
Partial

- observables, 398
Partial Excision (strategy), 623
Partial Observables Approach, 261, 326
Partial ordering, 648
Particle, viii, 5, 6, 20, 31, 36, 53, 56, 60, 66,

68, 71, 73, 80, 81, 173
- as a representation, 161, 164
- in QFTiCS, 164
massive -, 43, 75
massless -, 43, 68
mediator -, 33, 68, 73, 74, 160
parametrized -, 149
point -, 94, 172
superpartner -, 171
test -, 79, 103, 111

Partional Evolution Problem, 297
Partition, 245, 314, 474, 556, 585, 647, 696,

718, 778, 779, 782, 784, 801, 811,
827

- function (SM), 724, 811, 811, 813, 831
- of unity, 678
- refinement, 812

Passage, 8
Past, 4, 4, 6–8, 10, 45, 46, 92, 101, 102, 340,

343, 345, 382, 455, 589, 594
causal -, 45

Past history, 49, 50
Patching, 444

- beables, 454, 629, 630
- between WKB regions, 627
- constraint algebraic structures, 630
- contexts, 641
- emergent WKB timefunctions, 626
- FDE solutions, 194, 454, 625
- geodesics, 451
- GLETs, 447
- Hilbert space operators, 625
- observables, 454, 623, 629, 630
- PDE solutions, 153, 444, 446, 454, 625,

794
- representations, 194, 625
- timefunctions, 622
- unitary evolutions, 194, 625
- using sheaves, 640, 844
- wavefunctions, 638
-geodesics, 445

Patching (strategy), 458, 622, 627
Path Integral Approach, xvi, 159, 630



Index 909

Path integrals, 77, 128, 182, 189, 387, 470,
473, 512, 579, 581, 583–585,
588–592, 600, 609, 630, 635, 636,
638, 724, 821

Euclidean -, 77, 168, 582
gravitational -, 168, 581, 582, 622
Lorentzian -, 77
TRi -, 583, 591

Path-connected, 776
Paths, 145, 309
Paths Postulate, 349
Patterns, 188, 340–342, 346, 576, 698, 817,

818
Pauli, Wolfgang, 59–61, 72, 77, 91, 118, 158,

160, 493, 511, 695
Pauli–Lubański pseudovector, 695
PDE, 382, 546, 793

- problem, 62, 107, 109, 252, 253, 439,
758, 793

GR initial-value -, 416
beables -, 323, 328–330, 332, 564, 754
elliptic -, 459, 498, 576, 796, 797, 805

quasilinear -, 523, 797
first-order -, 795

quasilinear -, 795
GR constraints as -, 109
GR evolutionary -, 458
Hamilton–Jacobi -, 748
hyperbolic -, 107, 184, 271, 498, 728, 793,

795, 796, 798, 806
linear -, 725, 796, 798
nonlinear -, 794, 796, 797
second-order -, 795
Thin Sandwich -, 253, 254
ultrahyperbolic -, 170, 382

PDE Theory, 440, 443, 457, 540, 663, 794,
805, 806

Penrose, Roger, 86, 94, 115, 176, 177, 350,
440, 517

Penrose diagram, 92, 111, 198
Perspectival, 261, 554, 814
Perspectival Acceptance (strategy), 623
Phase space, 107, 134, 194, 232, 275,

298–300, 321, 322, 370, 453, 519,
709, 746, 759, 767, 810, 811

histories -, 355
d∂-, 304

Phase transition, 162
Philosophical worldviews, 6
Photon, 68, 70, 73
Picture of QM

Heisenberg -, 58, 187, 188, 588
Schrödinger -, 58, 181

‘Planck’
- angular momentum, 158
- entropy, 159
- force, 158
- moment, 158
- power, 158
- velocity, 158

Planck
- density, 158
- length, viii, 158, 162, 165, 461
- mass, viii, 158, 292
- regime, viii, 116, 166
- temperature, 158, 166
- timescale, viii, 170
- units, viii, 115, 158, 165, 198

Planck satellite, 90
Planckian cube, vii, 197, 262–264, 267, 269,

468
Planck’s constant �, vi
Poincaré, Henri, 42, 46, 659, 703
Point identification map, 101, 233, 352, 388,

419
Poisson, Siméon, 25, 31, 82, 317, 746
Poisson equation, 82
Poisson’s Law, 25, 26, 81
Polarization, 477, 492
Portmanteau, 247
Poset, 319, 473, 648, 653, 824
Positive operator-valued measures, 492, 493,

512
Post Postulate, 527
Power objects, 847
Present, 4, 4, 5, 7, 46, 576

- now, 4, 6
causal -, 45
specious -, 46, 346

Presentism, 7, 31
Preshape space, p(N,d), 199, 281, 546, 711
Preshapes, 236, 265
Presheaves, 452, 512, 640, 641, 843, 843, 844,

847
Principal function, Hamilton’s, 534
Principal function, Hamilton’s -, 748
Principles of Dynamics, xii, xxxv, 30, 739
Probability, 572, 801, 804

- density, 376
- density (QM), 58
- distribution, 801
- distribution function, 188, 342, 801

joint -, 803
- measure

Borel -, 803, 804
- space, 341, 804
negative -, 627, 831
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Problem of Time
- strategies, xv, xvi, 119, 124, 131, 133, 145
A Local Resolution of -, xvi, 208, 211, 365,

617
facet interference, xv
strategies -, 146

Problem of Zeros, Infinities and
Non-Smoothnesses (PoZIN), 445,
446, 447, 630, 631

Proca Theory, 308
Process, Poisson -, 805, 817
Product

ordinary -, 594
tensor -, 66, 586, 587, 590, 594

- of representations, 697, 835
Project (map), 379, 381
Projection, 71, 99, 104, 120, 148, 190, 380,

395, 528, 572, 682, 701, 704, 785
Projector, 62, 69, 98, 101, 190, 487, 534, 559,

574, 585, 587, 588, 590, 594, 652,
680, 829

records -, 594
Promote (strategy), 566
Propagator, 66, 72, 74, 574, 575, 582

advanced -, 66
anti-Feynman -, 66
fermionic -, 68
Feynman -, 66, 68
graviton -, 161
photon -, 70
retarded -, 66

Proper, 29
Proper map, 781
Proposition–Projector Association, 487, 572,

576, 577, 588, 590, 594
Propositions, 133, 188, 227, 337, 361, 554,

569, 571, 572, 575, 585, 588, 589,
594, 599, 632, 639, 641, 824, 830

Protective theorems, 258, 259, 458, 632, 797
Provider (strategy), 133

Constraint -, 123, 134, 309, 316, 317, 501
Generator -, 134, 141

Pseudo-Riem, PRiem(m), 348, 456
Pseudotensor, 761
Pull-back, 353, 380, 381, 385, 389, 671
Push-forward, 380, 671

Q
QM versus GR, v
Quadrilateralland, 238, 715
Quantization, 207

BRST -, 512
Canonical -, 116, 159, 166, 175, 198, 477
Covariant -, 118, 159, 169, 559

Deformation -, 477, 642
Dirac -, 185, 502, 512, 516, 518, 544
Dynamical -, 489, 514, 521, 613
Geometrical -, 200, 477, 501, 628
Group -, 516
Group-averaging -, 502, 516
Kinematical -, 56, 138, 477, 521, 613, 707,

837, 838
Reduced -, 185, 504

Quantum Chromodynamics, 73
Quantum Cosmology, xiv, 113, 138, 158, 167,

184, 191, 240, 291, 344, 431, 491,
494, 496, 509, 518, 519, 570, 576,
577, 590, 618, 637, 748, 833

Loop -, 176
Semiclassical -, 149, 165, 295, 531, 539,

551, 578, 614, 626, 627, 636, 639
Quantum Electrodynamics (QED), 72, 73, 158
Quantum Field Theory in Curved Spacetime

(QFTiCS), 159, 163, 618
Quantum Field Theory (QFT), v, 65, 91, 159,

160, 162–164, 169, 171, 179, 189,
197, 198, 269, 353, 387, 511, 512,
514, 516, 527, 528, 584, 586, 591,
593, 616, 798, 815, 832

Quantum Gestalt (QG), x, 117, 118, 131, 150,
187–189, 193, 201, 317, 399, 435,
473, 493, 494, 511, 514, 520, 554,
567, 570, 575, 584, 608, 618, 621,
639, 641, 643, 841

Quantum Gravity, x, 157, 194, 197, 490
Covariant -, 160, 200
Foundations of -, v

Quantum Measurement Problem, 59, 567
Quantum Mechanics (QM), v, 55, 477
Quantum Newtonian Gravity, viii, 197
Quantum operators, 58, 182, 211
Quantum wave equation, xii, 58, 65, 166, 185,

198, 199, 440, 489, 491, 508, 524,
625, 627, 638

- of the Universe, 130
time-dependent -, 58, 62, 66, 71, 181, 287,

495, 536, 540, 548
semiclassical emergent -, 536

time-independent -, 66, 130, 166, 167, 182,
495, 521

Quantum wavefunction, 55, 58, 60, 497
- of the Universe, 167, 344, 528

Quantum Zeno Problem, 605, 605
Quark, 76
Quasilinearity, 278
Questions

- of becoming, 338, 343, 455, 574
- of being, 569
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Questions (cont.)
- of being at a particular time, 338
- of conditioned being, 338
- of simple being, 337
atemporal -, 337
temporal -, 338

Quotient, xxxvi, 107, 127, 209, 265, 280, 316,
348, 371, 383, 452, 464, 466, 471,
472, 703, 711, 713, 720, 724, 728,
729, 775, 776, 783, 785–787, 791

- group, 650, 777
- map, 776
- topology, 775, 783

R
R-formulation (of RPMs), 238, 239, 241, 285,

357, 360, 363, 364, 449, 557, 570,
571, 592, 603, 623, 814

Radius
Bohr -, 197
Hubble -, 158, 197
Schwarzschild -, viii, 158

Random
- variable, 801
- vector, 802

Ratio, 657, 658, 680, 713
- of distances, 30, 655, 681, 716
- of magnitudes, 655
- of relative separations, 119, 236
- of scalar products, 656
relative -, 262

Raychaudhuri equation, 273
Real projective space RP

n, 345, 458, 668, 701
Reality conditions (canonical quantization),

175, 312, 389, 518
Rearrange Temporal Questions (strategy), 339,

339
Records, 191, 340, 341, 345, 346, 356, 376,

597, 616
- projector, 594
imperfect -, 362, 577, 595
pre-, 343, 345, 575, 577

Records Approach
Barbour’s -, 344, 576
Page’s -, 343, 575
the Author’s -, 345, 577

Records Theory, 188, 191, 196, 342–344, 359,
361, 435, 455, 471, 575, 578, 594,
598, 630, 639, 641, 809

Reduction, 233, 238, 239, 255, 305, 307, 310,
371–373, 449, 615, 747, 790

Routhian -, 221, 245, 742, 759, 761, 766
d∂-, 250, 425, 766

symmetry -, 273

Refinement, 4, 666, 704, 779
common -, 812
partition -, 812

Reflections, 657
Refoliation Invariance, 146, 148, 152, 155,

191, 196, 389, 390, 401, 416, 426,
439, 457, 474, 518, 607, 608

- Theorem of GR, 147
Accept - (strategy), 607, 609
Quantum -, 189, 191, 560, 609, 632
TRi -, 429

Regularization, 511, 514, 517, 558, 559, 607,
611, 799

dimensional -, 511
Pauli–Villars -, 511
point-splitting -, 511
ribbon -, 517

Relational, 142
Relational Approach, 209, 406
Relational first principles, 422, 425
Relational Particle Mechanics (RPM), 496
Relational space, R(N,d), 238, 272, 711,

777, 787
Relational triviality, 210, 232, 248, 302, 623,

715
Relationalism, 33, 142, 261, 268, 352, 435

Configurational -, xi, 126, 130, 149, 194,
207, 231, 247, 365, 463, 469

Internal -, 125, 125, 251, 347
Spacetime -, xiii, 141, 144, 149, 179, 190,

194, 195, 269, 297, 340, 347, 365,
383, 398, 399, 401, 426, 433, 434,
455, 466, 617

Spatial -, 125, 352
Temporal -, xi, 130, 193, 207, 243, 352,

493
Relationalspace, 238
Relative Jacobi coordinates, 224
Relative space r(N,d), 209, 710
Relativistic wave equation, 71, 524
Relativity, 148

Carrollian -, 42
Galilean -, 23, 42, 45, 148, 403, 408, 415
General - (GR), 79
Special - (SR), 41

Relativity Principle, 41
Galilean -, 41
Lorentzian -, 41, 408

Renormalizable, 162, 169
naïvely -, 72
non-, 72, 73, 162, 512

Renormalization, 499
naïve -, 198
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Reparametrization-induced gauge group
projective -, PRigg, 396
Rigg, 396

Representation
induced -, 835
irreducible -, 71, 72, 83, 277, 279, 481,

653, 657, 676, 696
Lie -, 694
tensor product -, 697

Representation Theory, 59, 171, 200, 212, 306,
514, 653, 694–697, 835, 839, 841,
842

- of algebroids, 838
Representations, 76
Reslicing Invariance, 466, 474
Restriction morphism, 843
Rethreading Invariance, 439
Rheonomic/nomous, 709, 745, 748
Ribbons, 517
Riem, Riem(�), 97, 105, 112, 120, 128, 132,

137, 149, 182, 251, 271, 272, 280,
281, 313, 317, 381, 386, 402, 411,
412, 445, 513, 528, 572, 727–729,
782, 783, 786, 787, 822, 823

Riemann, Bernhard, 12, 13, 81, 214, 244, 461,
540, 635, 664, 667, 673, 675, 677,
678, 701

Riemann sphere, 701
Rindler wedge, 86, 89
Ring (Algebra), 653, 680
Ripping, 469, 470, 637, 822
Rod, 11, 17, 18, 43, 51, 64, 80, 94

non-ideal -, 574
portable -, 17

Rotations, 46, 50, 77, 137, 311, 656, 686, 689,
698

Routhian, 742, 742, 744, 745, 747, 752, 757,
769

anti-, 743, 744, 745, 747, 753, 768
d∂-, 767, 768

d∂-, 769
Routhian reduction, 742

d∂-, 766
Rovelli, Carlo, 139, 175, 224, 261, 325
RPM

Affine Shape -, 262, 329, 504, 510
Conformal Shape -, 214, 263, 281, 330,

503, 713
Metric Shape -, 119, 213, 236, 487,

503–506, 623
Metric Shape and Scale -, 119, 127, 128,

135, 213, 235, 485, 503, 505, 506,
546, 623

Shape -, 119

Spherical Shape -, 215
Supersymmetric -, 267, 518

RPM (Relational Particle Mechanics), vii, xi,
36, 119, 125, 129, 139, 149, 203,
213, 237, 239, 240, 328, 495, 503,
507, 532, 543, 557, 617, 637, 709,
715

S
S-matrix, 72, 72, 95, 161, 171, 511, 605
Sample space, 583, 801, 804, 817, 827
Sampling, 216, 341, 471, 801
Scalar–Tensor Theory, 259
Scale Models with Shape as both Perturbation

and Environment (strategy), 553,
605

Scale Models with Shape as Environment
(strategy), 553

Scale–shape split, 279, 292, 293, 412, 506,
534, 545, 717, 734

Scalefactor of the Universe, a, 88
Schrödinger, Erwin -, 58, 188
Schwinger terms, 559
Scleronomic/nomous, 709, 745, 748
Section, 212, 448, 625, 628, 632, 706

global -, 448, 452, 625, 641, 707, 843, 845,
846

local -, 448, 632, 682, 777, 783
presheaf -, 844
sheaf -, 452, 628, 843, 843, 844, 845

Selection principle, 122, 133, 175, 217, 328,
344, 474, 577

Self-adjoint, 55, 58, 63, 138, 187, 482–486,
489, 492, 508, 641, 698, 838

Semblance of becoming, 8
Semblance of dynamics, 187, 188, 196, 343,

344, 346, 361, 455, 575, 578, 598,
616, 630, 631

Semblance of history, 188, 346, 455, 598, 630
Semidirect product, �, 304, 305, 312, 324,

484, 591, 638, 650, 686, 688, 698,
835, 836

Separation, 4, 665
Separation property of distance, 664, 675, 724,

788
Separation (topological), 472
Separation (topology), 727, 781, 783
Separations

relative -, 52, 119, 214
Sets, xvi, 647, 826
Shape, 119, 237, 294
Shape and scale, 119
Shape configurations, 236
Shape data, 342
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Shape information, 341
Shape quantities, 721, 815
Shape space, 722

affine -, 343
conformal -, 342
projective -, 343

Shape space, s(N,d), xi, 238, 240, 272, 281,
531, 532, 536, 711, 720, , 776, 787,
818

Shape Statistics, 215, 265, 341, 342, 345, 435,
575, 717, 719, 817–819

Sheaf
- cohomology, 845
- gluing condition, 452, 843, 845
- local condition, 452, 843

Sheaves, xvi, 197, 239, 450–453, 455, 456,
458, 473, 628, 630, 631, 636, 638,
640, 641, 780, 785, 827, 828, 839,
841, 843, 844, 845, 847

Shift, 100, 101, 101, 251–253, 301, 370, 382,
384, 385, 388, 607, 761

- kinematics, 393
Signature, 13, 43, 49, 80, 91, 96, 141, 145,

168, 271, 380, 381, 392, 399, 404,
406, 421, 467, 468, 630, 636, 651,
675, 689, 701

Sikorski spaces, 780
Simplicial complex, 668, 702, 703, 828
Simplicity postulates, 252

Cartan -, 82
Lovelock -, 82, 170

Simultaneity, 4, 8, 10, 16, 22, 46, 61
GR -, 91

Singular, 636, 748
Singularity Theorems, 94, 112, 116
Site, 846
Slice, 147, 379

- (Lie group action on a manifold), 776
CMC -, 278, 281, 285, 386, 410, 413
maximal -, 277, 285, 410, 412

Slice Dependence Problem, 466
Slice (Lie group action on a manifold), 777
Slice (map), 379, 381
Slice Theorem, 777, 781, 784, 787
Slicing, 155, 380
Slicing Independence, 466
Slightly Inhomogeneous Cosmology (SIC), x,

xiv, 149, 183, 203, 365, 389, 390,
416, 434, 508, 509, 527, 531, 532,
543, 548, 557, 565, 571, 593, 606,
608, 612, 617, 624, 733, 735, 788

Small quantities regime, vii
Smearing variables

TRi-, 304, 310, 323, 424, 429, 767

Sobolev spaces, 796–798, 805, 806
Space, vi, viii, 3–6, 12, 13, 19, 97, 119, 141,

155, 159, 339, 473
absolute -, 21–24, 31, 33–35, 38, 45, 125,

126, 209, 210, 214, 215, 224, 267,
357, 509, 531, 798

curved -, 12
discrete -, 148, 155, 193
flat -, 408
notion of -, 95, 177, 215, 229, 247, 249,

464, 514, 709, 790
Space map, 384, 400
Space of

- affine connections, 729
- base objects Bo, 301
- causal structure, 348
- collections of subsets, 639, 825
- conformal spacetime metrics,CpRiem,

787, 348
- connections, Con, 781
- differentiable structures, 821
- embeddings, 382
- foliations, 386
- GR solutions, GR-sol, 348, 386
- histories, Hist, 355, 356, 456
- hypersurfaces, 112
- knots, 791
- loops, 516, 782, 790, 791, 804
- metric spaces, 824
- mixed states, 829
- norms, 638
- objects, o, 211, 449
- operators, 479
- p-forms, �p , 680, 725
- paths, path, 639
- projectors, 830
- Riemannian 3-metrics, Riem(�), 251
- scalar fields, 725
- sections, sec, 837
- sets, 826
- slices, 382
- small inhomogeneities, 376, 790
- spaces, 120, 440, 466, 474
- spacetimes, superspacetime(m), 348,

784, 785
- topological spaces, 472, 825, 826
- wavefunctions, 478
-g-invariant quantities, 305

Space Principle
Leibniz’s -, 34
Mach’s -, 35, 117, 248, 352

Space-time, 7, 459
Aristotelian -, 7, 22
Galilean -, 7, 22
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Space-time (cont.)
Mechanics -, 141, 347
Newtonian -, 7, 22, 96, 111, 146
strong gravity -, 406

Spacelike, 43, 49, 71, 80, 91, 94, 100, 101,
107, 111, 144–146, 163, 189,
381–383, 391, 467, 528

Spacetime, vi, ix, xiii, 7, 12, 16, 41, 79, 97,
110, 119, 155, 579

- action principle, 53, 74, 84
- covariant derivative, 80
- curvature, 80, 81
- diagrams, 44
- diffeomorphisms, Diff (m), 91
- dimension 4, 83
- emergent, 422
- foliation, xiii, xvi
- formulation of GR, 83
- metric, 80, 98
- primality, 13, 115, 159, 168, 284, 398,

435, 439, 440, 527, 579, 616
- scalar, 333, 398, 399
- split, 100, 101, 353, 394
- strutting, 146, 253, 388
co-geometrization by -, 13, 43
complexified -, 77
curved -, 164, 173, 190, 582
curved background -, 159, 163, 757, 760
discrete -, 148, 155, 193, 473
emergent -, 149, 409, 619
fixed background -, 70, 141, 173
flat -, 13, 43, 44, 46–50, 80, 86, 118, 160,

496, 650
flat background asymptotic -, 198
generic -, 163
GR -, 7, 46, 50, 79, 91, 101, 111, 117, 118,

128, 131, 141, 143, 146, 349, 388
integrating over all -, 565
Minkowskian SR -, 7
Morse -, 470, 823
semiclassical -, 550
singular -, 823
split -, 146, 152, 315, 349, 388, 391, 394,

410, 435, 441, 457, 757
TRi -, 425

static -, 85, 112, 173
stationary -, 85, 86, 87, 272, 761

Spacetime Constructability, xiii, 148, 194, 365,
466

Quantum -, 191
Spacetime Construction, 120, 148, 152, 196,

208, 255, 365, 401, 403, 416, 417,
419, 424, 426, 428, 432–434, 440,

458, 459, 474, 583, 617, 632, 635,
639

Semiclassical -, 611
Spacetime Construction Problem, xiii, 148,

149, 399
Spacetime Construction strategies

quantum -, 611
Spacetime foam, 165, 193, 197, 468, 636, 821
Spacetime Principle, Mach-type -, 352
Spacetime Relationalism, xiii, 141, 144, 149,

179, 190, 194, 196, 269, 297, 340,
347, 365, 383, 398, 399, 401, 426,
433, 434, 455, 466, 617

Quantum -, 188
Spacetime versus space, 119, 150, 152, 317,

409, 467, 794
Spacetime-and-Canonical Approach, 190
Spatial

- coordinates, 5
- extent, 5
- geometry, 243
- metric, 98

Spatial gradient of the change of the instant,
425, 428

Spatial primality, 205, 441
Special, 29
Special Relativity (SR), v, 7, 12, 41, 70, 71,

75, 79, 91
- gamma factor, 38

Specifier equation, 134, 297, 750
Spectrum condition, 71
Speed of light c, vi
Spheres Sn, 149, 215, 378, 485, 487, 669, 675,

697, 698, 775
Spin, 60
Spin foam, 612
Spin networks, 175, 517, 625
Split

trace-tracefree, 277
SR γ -factor, 53
SR (Special Relativity), 8
Stabilizer, 650, 696, 698, 777, 782
Standard candle, 17
Standard Model, 73, 75, 172, 174, 200, 250,

278, 518, 689
Start Afresh (strategy), 566
Static

- spacetime, 85, 112, 173
Stationary

- spacetime, 85, 86, 87, 272, 761
- wavefunction, 58, 130, 166, 181

Statistic, 802, 817, 819
Statistical Mechanics (SM), xxxvii, 807
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Statistics
Bose–Einstein, 60, 67, 831
Clumping -, 817
Fermi–Dirac, 60, 67, 831
Geometrical -, 818
Maxwell–Boltzmann -, 811
Shape -, 265, 346

Stone–von Neumann Theorem, 61
Strata, 345, 450, 451, 472, 518, 631, 638, 722,

776, 778, 778, 779, 783, 785
: Unfold Purely by Enhanced Physical

Modelling (strategy), 452
Accept All - (strategy), 450, 720
Excise - (strategy), 450, 720
Unfold - (strategy), 450, 451, 628, 720, 785

Stratification, 449, 450, 452, 627, 720, 722,
778, 785–787, 791

- property
regular -, 778

Stratification Theorems, 781, 784, 787
Stratified manifold, xvi, xxxvi, 239, 449–453,

463, 465, 472, 473, 482, 628, 638,
720, 775, 778, 779, 819

- ‘fitting together’ condition, 638, 778
HS -, 826
LCHS -, 826

Stratifold, 453, 780, 785, 788, 826, 828, 846
String

closed -, 173, 173, 174
open -, 173, 174, 177

String Theory, xiv, 172, 172, 175, 177, 179,
194, 200, 269, 270, 347, 409, 511,
560, 641

bosonic -, 149, 172, 174, 400
supersymmetric, 172

Strong force, 73, 76
Strong Gravity, 149, 259, 260, 312, 314, 403,

404, 406, 408, 411, 415, 417, 458,
557, 558, 611, 795

Structure constants, 135, 139, 479, 556, 685,
686, 687, 731, 753, 835

Structure formation, 167, 716
Structure functions, 310, 312, 369, 395, 753,

835
Strutting, 388

- of spacetime, 146, 253, 388
Subconfiguration space, 744, 809
Subgroup

normal -, 650, 681, 696, 775
Subobject classifier, 847
Super-diffeomorphisms, 267, 353, 837
Superalgebra, 696

Lie -, 838
Poincaré -, 315

Virasoro -, 837
Witt -, 837

Superalgebroid, 838
Supergravity -, 316, 838

Superconformal QFT, 269
Supergravity, x, xiv, 171, 172, 178, 194, 196,

200, 267–270, 309, 313, 378, 390,
392, 398, 417, 437, 550, 560, 565,
604

Canonical -, 176, 200, 315–317, 319, 324,
333–335, 353, 364, 518, 519, 557

Supergroup
affine -, 269
conformal -, 269
diffeomorphism -, 837
Poincaré -, 171, 172, 200, 267

Supermetric
DeWitt -, 105

inverse -, 105
Superposition Principle, 25, 89
Superspace, superspace(�), 106, 120, 251,

272, 281, 284, 437, 448, 450, 572,
581, 628, 778, 783–787, 819, 823

Superspacetime, superspacetime(m), 456,
581

Supersymmetry, 171, 172, 174, 177, 200, 265,
267–270, 315–317, 437, 519, 558,
560, 619, 635, 836

Surjective, 647, 704, 726, 776
Surrounding space (level-independent), 155
Symmetry, 671, 741

- breaking, 75
charge conjugation -, 75
global -, 72, 75
local gauge -, 72
parity inversion -, 75
time-reversal -, 75

Symplectic
- matrix, 652
- quadratic form, 652

Synchronization, 16, 43, 50, 273

T
Tachyon, 170, 174
Taking Function Spaces Thereover (aspect),

137, 144, 321, 321, 326, 349, 464
Quantum-level -, 563

Tangibility, 10, 33, 127, 288, 302, 658
Teitelboim, Claudio, 147, 148, 152, 176, 300,

309, 311, 312, 389, 391, 392, 406,
558

Teitelboim split, 312
Temperature, 87, 164, 807, 807

- dependence, 17
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Temperature (cont.)
absolute zero -, 17
astrophysical -, 158
cosmic microwave background -, 166
Hawking -, 164
Planck -, 158
Unruh -, 166

Temporal logic, 8
Temporal notions

tensed -, 4
tenseless -, 4

Temporal Questions
Accept - (strategy), 339

Temporal Relationalism, xi, 122, 130, 193,
207, 217, 231, 243, 493

Tempus Ante Quantum, 271, 521
Tempus Nihil Est, 206
Tempus Post Quantum, 527
Tensed, 7
Tenseless, 7
Tensor, 81, 670, 690, 691, 727

- curvature, 81, 82
Bel–Robinson -, 761, 809
Cartesian -, 28, 30, 652, 678
change -, 235
conformal -, 278, 678
curvature -

Ricci -, 82, 169, 682
Riemann -, 81, 99, 104, 169, 395,

674–676, 682, 698, 799
Weyl -, 83, 108, 169, 350, 679, 682,

698, 813
curvilinear -, 28
electrical conductivity -, 29
electromagnetic field strength, 47
energy–momentum–stress -, 54, 82, 84,

112, 160, 161, 163, 376, 761
g-, 211, 305, 306
general curved -, 678
homothetic -, 680
hypersurface -, 98, 99, 406, 419
inertia -, 450, 720
Killing -, 698
Kronecker δ -, 29
Lorentzian -, 47, 47
metric, 675
non-, 672
Poisson -, 477, 683, 697, 747, 767
pseudo-, 670
Zalaletdinov’s correlation -, 815

Tensor Calculus, 30, 32, 80
conformal -, 679
homothetic -, 219

Tensorial, 80
non-, 127

Tensoriality, 671, 671, 672
change -, 235

Tensors, Quotient Theorem for -, 29
Tessellation, 718
Thermodynamics

First Law of -, 807
Second Law of -, 87, 808
Third Law of -, 808
Zeroth Law of -, 807

Thin Sandwich, 128, 149, 370
- completion

Machian -, 425
- data, 128
- equation, 131, 252, 253, 254, 370, 788
- PDE, 253, 254
Machian -, 254
TRi -, 432

Thin Sandwich Problem, xii, 129, 131, 149,
252, 253, 257, 259, 266, 267, 283,
370, 371, 453, 593

Thin Sandwich Theorem
Bartnik–Fodor -, 253, 451, 796
Belasco–Ohanian -, 797

Third Quantization, 528
Thomas

- integrability, →© , 306, 311, 313, 315, 317,
692, 836

- precession, 311, 686, 689, 698
Threading, 102, 152, 155
Threading Approach, 153, 154, 439
Tidal

- effect, 111
- equation, 25, 81

Tilt, 44, 393, 394
Tilted, 102, 103, 388, 389, 393, 425
Time, v, vi, viii, xi, xiv, 1, 3–6, 19, 22, 141,

155, 201, 493, 620
- as a container, 21
- as a parameter, 21
- coordinate, 5, 91
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